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Abstract. A two-phase model based upon principles of contin­
uum mixture theory is numerically solved to predict the evo­
lution of detonation in a granulated reactive material. Shock 
to detonation transition (SDT) is considered whereby com­
bustion is initiated due to compression of the material by a 
moving piston. In particular, this study demonstrates the exis­
tence of a SDT event which gives rise to a steady two-phase 
Chapman-Jouguet (CJ) detonation structure consisting of a 
single lead shock in the gas and an unshocked solid; this struc­
ture has previously been independently predicted by a steady­
state theory. The unsteady model equations, which constitute a 
non-strictly hyperbolic system, are numerically solved using 
a modem high-resolution method. The numerical method is 
based on Godunov's method, and utilizes an approximate so­
lution for the two-phase Riemann problem. Comparisons are 
made between numerical predictions and known theoretical 
results for 1) an inert two-phase shock tube problem, 2) an 
inert compaction wave structure, and 3) a reactive two-phase 
detonation structure; in all cases, good agreement exists. 

Keywords: Two-phase flow, Shock to detonation transi­
tion, Non-strictly hyperbolic systems, Approximate Riemann 
solvers 

1 Introduction 

There has been considerable research during the past two 
decades addressing the evolution of detonation in granulated 
energetic material. Much of this research has been motivated 
by concerns over the accidental detonation of damaged high­
explosives or propellants in response to mechanical impact 
or thermal insult. Here, damaged material refers to cast solid 
material which has been inadvertently fractured; thus, local 
granulated regions exist within the material. Experiments have 
shown that these granulated regions significantly increase the 
detonability of the material through various mechanisms of hot 
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spot formation, and can accelerate the normal combustion rate 
of the material by several orders of magnitude. Of particular 
concern is the accidental detonation of solid propellants used 
in rocket motors which may have been damaged prior to, or 
during, motor operation (Bernecker and Price 1974a; I 974b). 
Devices also exist which utilize the energy released by detona­
tion to perform specific tasks within controlled environments. 
One such device is the Super*Zip separation joint which is 
regularly used on the Space Shuttle to release spacecraft from 
the Shuttle's cargo bay. This device, which uses a detonat­
ing explosive cord as a mechanism to achieve separation, has 
malfunctioned during experimental test firings (Bement and 
Schimmel 1988). The causes of these malfunctions are un­
clear, but may be attributable to a damaged explosive. 

In order to better quantify the risks of accidental detona­
tion in damaged energetic material, or to quantify the effect 
of material damage on the performance of explosively actu­
ated devices, it is necessary to develop models. To this end, 
a number of models have been formulated using principles of 
continuum mixture theory (e.g., Baer and Nunziato 1986; But­
ler and Krier 1986; Powers et al. I 990a). Though these mod­
els have many common features, differences in the functional 
form of the evolution equations and constitutive models exist. 
These differences have been the focus of much debate; some 
relevant issues are discussed in detail by Powers et al. (1990a) 
and are not repeated here. In addition to the models based on 
continuum mixture theory, Stewart et al. (1994) formulated a 
simplified model for predicting detonation in granulated re­
active material using a modified single phase state variable 
approach. 

Much of the two-phase detonation modeling effort has fo­
cused on predicting the time- dependent events associated with 
the transition from a low pressure ('" I M Pa), low speed 
('" 100 m/ s) deflagration wave to a high pressure ('" I G Pa), 
high speed (rv 7 km/s) detonation wave (Baer and Nunzi­
ato 1986; Baer et al. 1986; Butler and Krier 1986; Saurel et 
al. 1992; Smirnov and Tyurnikov 1994); this process is com­
monly termed deflagration to detonation transition (DDT). In 
these studies, the structure of the fully developed detonation 
waves was not analyzed in detail. However, such an analysis 
is important because it identifies both existence conditions for 
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Gaseous Products 

Fig. 1. Schematic of a hypothetical two-phase detonation wave prop­
agating in a granulated material 

steady two-phase detonations and the fine length scales occur­
ring within these waves; these fine length scales are often un­
resolved by coarsely gridded numerical simulations using the 
unsteady model equations. The fundamental problem of steady 
detonation structure was studied by Powers et al. (1988; 1990b) 
in which they classified and discussed steady two-phase deto­
nations within the context of the well-developed theory for one 
phase detonations (Fickett and Davis 1979). More recently, 
Embid and Majda (1992) and Embid et al. (1992) have de­
veloped an asymptotic theory using the model of Baer and 
Nunziato (1986) for the transition to detonation in reactive 
granular materials. 

A schematic of a hypothetical two-phase (reactive solid 
and inert gas) detonation is given in Fig.1; here, the detona­
tion is described within the context of the model formulated by 
Powers et al. (l990a; 1990b). In this figure, transition to deto­
nation has already occurred due to compression of the material 
by a piston having a prescribed velocity Up . The detonation 
wave, which is propagating to the right with speed D, consists 
of a single lead shock in the gas and an unshocked solid. Com­
bustion of the solid occurs within the subsonic region of the gas 
which follows the lead shock; this region is referred to as the 
reaction zone. At the end of the reaction zone, all of the solid 
has been completely consumed by combustion. Compression 
of the gas by the shock, and subsequent heat transfer from 
the gas to the solid, provides sufficient thermal energy to the 
solid to initiate combustion. Due to combustion, solid particle 
mass is converted into gaseous products, with the conversion 
of chemical energy of the solid into both thermal and kinetic 
energy of the gas. This energy conversion process sustains 
the propagation of the wave through the material by means of 
acoustic energy transmission in the gas from the point of local 
reaction to the shock. 

For piston speeds less than a minimum critical value, UpCJ 

(which is dependent upon the properties of the explosive, the 
ambient state of the material, etc.), either a Chapman-Jouguet 
(CJ) detonation wave or a weak detonation wave may result. 
Which of these two waves evolves depends upon several fac­
tors including the initial bulk density of the material, interphase 
drag and heat transfer, and material compaction. A steady CJ 
detonation propagates at a unique speed Dc J such that the 
velocity of the gas relative to the wave is locally sonic at the 

end of the reaction zone. A steady weak detonation propagates 
with speed D > Dc J, and the velocity of the gas relative to the 
wave is locally supersonic at the end of the reaction zone. Both 
of these waves are self-supported since acoustic waves gener­
ated by the moving piston cannot propagate into the reaction 
zone to influence the detonation. However, for piston speeds 
in excess of UpCJ ' the velocity of the gas relative to the wave 
is such that the flow is subsonic at the end of the reaction zone; 
consequently, acoustic waves generated by the moving piston 
do influence the detonation resulting in a piston-supported, or 
overdriven, wave. 

The goal of this study is to numerically predict the time­
dependent development of a fully resolved CJ detonation in 
a granulated material due to compression of the material by 
a moving piston. The acceleration of the piston is specified 
as a function of time such that it attains a maximum constant 
velocity after a time interval which is short relative to the time 
required for the detonation to develop. The model used in this 
study was formulated by Powers et al. (1990a). Here, we fol­
low the rationale of that study and adopt certain modeling 
choices in order to 1) maintain tractability and to 2) allow for 
direct comparisons of numerical predictions with those given 
by the steady analysis of Powers et al. (1990b). It is not the em­
phasis of this study to accurately reproduce all experimentally 
observed features characteristic of SDT (Le., transition time, 
transition length, etc.); rather, the emphasis is on demonstrat­
ing the existence of a SDT event which gives rise to a detona­
tion structure predicted by the steady analysis. Nevertheless, 
the model does predict results commensurate with experiments 
for the CJ wave speed (rv 7500 m/ s) and the peak detonation 
pressure (rv 20 CPa) in granulated HMX. To the best of our 
knowledge, this work is the first to give detailed comparisons 
of an unsteady prediction for two-phase detonation structure 
with the prediction given by a steady-state theory. 

The unsteady model equations, which constitute a non­
strictly hyperbolic system, are numerically solved using a 
modem high-resolution method. The numerical method is 
based on Godunov's method, and utilizes an approximate so­
lution for the two-phase Riemann problem. The utility of this 
numerical method is in its ability to accurately resolve com­
plicated flow structure involving discontinuities without the 
explicit addition of artificial viscosity. The numerical method 
is nominally second order accurate in time and space in re­
gions of smooth flow, but reduces to first order accuracy in 
space near discontinuities. In addition to the SDT simulation, 
an inert two-phase shock tube problem is simulated, and the 
evolution of a compaction wave in response to a moving piston 
is simulated. For each simulation, the numerically predicted 
results are compared with known solutions to demonstrate the 
validity of the numerical method. 

Included in this paper are 1) a discussion of the model 
including both the model assumptions and the equations, 2) a 
mathematical analysis of the model equations, 3) a discussion 
of the numerical method, 4) results for the inert two-phase 
shock tube simulation, the compaction wave simulation, and 
the SDT simulation, and 5) some conclusions. 



2 Model equations 

The continuum model used in this study assumes 1) the exis­
tence of reactive, spherical solid particles and an inert gas, both 
having fixed composition, 2) that both phases are fully com­
pressible, 3) that all intraphase diffusive transport processes are 
negligible, 4) that body forces are negligible, 5) that each phase 
is in complete non-equilibrium with the other (consequently, 
each phase can exchange mass, momentum, and energy with 
the other), and 6) that the two-phase flow is one-dimensional 
(in a macroscopic sense). The model equations are given in 
divergence form by the following: 

%t [PJ¢)r] + :x [PlcPIUr] = (~) P2cP2aPl
m

, (1) 

(2) 

( U~) (3) m cPlcP2 = e2 + 2 ;: P2cP2aPI + (3-r-u2 (U2 - Ul) 

cPlcP2 
+hrl/3 (T2 -TI), (3) 

%t [P2cP2] + :x [P2cP2 U2] = - (~) P2cP2aPj, (4) 

a a [ 2 ] 
at [P2cP2U2] + ax P2cP2U2 + P2cP2 

P2cPlcP~ +-- [P2 - PI - !(cP2)] , 
J.Lc 

(7) 

an a 
at + ax [u2n] = 0, (8) 

PI = PI (pt, el), (9) 

el = el(PI,TI), (10) 

2 aPI I PI aPI I aPI I 
cl = apl 8, = PT ael p, + apl e, 

(11) 

P2 = P2(P2, e2), (12) 

e2 = e2(P2, T2), (13) 
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(14) 

(15) 

(16) 

In these equations, the subscripts "1" and "2" denote quantities 
associated with the gas and solid, respectively. The indepen­
dent variables are time t and position x. Dependent variables 
are as follows: the phase density Pi (i = 1,2), defined as the 
mass of phase i per unit volume occupied by that phase; the 
phase pressure Pi; the phase temperature Ti; the particle ve­
locity measured with respect to a stationary reference frame 
Ui; the specific internal energy ei; the specific entropy Si; the 
sound speed Ci; the volume fraction cPi , defined as the ratio of 
the volume occupied by phase i to the total volume; the ra­
dius of the spherical solid particles r; and the number of solid 
particles per unit volume n. 

Equations (1-3) are evolution equations for the mass, mo­
mentum, and energy of the gas. Equations (4-6) are evolution 
equations for the mass, momentum, and energy of the solid. 
These evolution equations are constructed such that when Eqs. 
(1) and (4), Eqs. (2) and (5), and Eqs. (3) and (6) are added, 
respectively, the forcing terms cancel yielding conservation 
equations for the mixture mass, momentum, and energy. Fur­
thermore, it is easily shown that these equations are frame­
invariant under a Galilean transformation. 

The forcing terms in Eqs. (1) and (4) account for the ex­
change of mass from the solid to the gas due to combustion. 
Here, mass exchange is modeled as a single, irreversible pro­
cess (solid~inert gas), and all chemical reaction is confined 
to the particle surface. Combustion initiation is assumed to 
occur when Tl ~ Tig , where Tig is a constant ignition temper­
ature. The combustion rate is modeled by a gas phase pressure­
dependent bum law; such an assumption is commonly made 
in solid propellant combustion modeling. Values for the com­
bustion rate parameters a and m are assumed constant for this 
study. 

The forcing terms in Eqs. (2) and (5) account for two forms 
of momentum exchange between the gas and solid. First, the 
gas is gaining that momentum associated with the solid which 
is being converted into gas due to combustion. Second, there 
is an exchange of momentum due to solid particle-gas drag 
interaction. This interaction is modeled by a drag law which 
states that the drag is proportional to the difference in velocity 
between the phases and inversely proportional to the particle 
radius. In the drag law, (3 is defined as a constant drag coeffi­
cient. 

The forcing terms in Eqs. (3) and (6) account for the ex­
change of energy between the gas and solid. Energy exchange 
associated with combustion, and with particle-gas drag inter­
action are accounted for, as is the exchange of thermal energy 
between the gas and solid. The thermal energy exchange rate 
is assumed to be proportional to the temperature difference 
between the gas and the solid and inversely proportional to 
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the cube root of the particle radius. In the expression govern­
ing thermal energy exchange, h is defined as a constant heat 
transfer coefficient. 

Equation (7) is a dynamic compaction equation describing 
changes in solid volume fraction due to both compaction and 
combustion of the granular material. This equation predicts 
that, in the absence of combustion, the solid volume fraction, 
¢2, will equilibrate to a value such that the solid phase pres­
sure, P2, equals the sum of the gas phase pressure, PI, and an 
intragranular, or configurational, stress, f, which is assumed to 
vary with (/;2; the equilibration rate is governed by the constant 
parameter Ike which is termed the compaction viscosity. 

Equation (8) is an evolution equation for the particle num­
ber density. This equation expresses that the total number of 
particles in the system is conserved. 

Equations (9-11) and (12-14) are functional dependencies 
for the thermal and caloric equations of state, and the defini­
tion for the sound speed for the gas and the solid, respectively. 
Equation (15) is the definition for particle number density ex­
pressed in terms of the solid volume fraction and the particle 
radius, and Eq. (16) is a saturation condition. 

3 Mathematical analysis of the model equations 

Using vector notation, Eqs. (1-8) can be expressed in the stan­
dard divergence form 

aq af(q) _ ( ) at + ox - g q , 

where 

P2¢2(e2 + uV2), P2¢~' n(, 

(17) 

f(q) = [PI<PIUI, PI<PIUT + PI <PI , PI<Plul(el +uU2+PI/pd, 

P2<P2U2, P2<P2U~ + P2<P2, P2<P2u2(e2 + u~ + Pd P2), 

g(q) = [(3jr)p2<P2aPF, u2(3jr)P2<P2aPlm 

+{3<PI<P2(U2 - uI)jr, (e2 + u~)(3jr)p2<p2aPlm 

+{3<PI<P2U2(U2 - udjr + h<PI<P2(T2 - T I)jr
l / 3

, 

-(3jr)p2<P2aPlm, -u2(3jr)P2<P2aPlm 

-{3<PI <P2(U2 - uI)jr, -(e2 + u~)(3jr)p2<p2aPlm 

-(3<PI<P2U2(U2 - uI)jr - h<pI<P2(T2 - T I)jr lf3 , 

-2(3jr)p2<p~aPlm + P2<PI<P~(P2 - PI - f)jlke, 0( . 
Equivalently, Eq. (17) can be expressed in the non-divergence 
form 

aq aq at + A(q) ox = g(q), (18) 

where the flux Jacobian A(q) = 8f(q)jaq is the 8x8 matrix 

o 0 
cT - uT - (HI - uT) r I 2uI - ulr l r l 

UI (cT - HI) - UI (HI - uT) r l 

o 
HI - UTrl UI +ulr l 

o 
o 
o 
o 

o 
-PI'r/ljP2 

-UIPI'TJI/P2 
o 

~ - u~ - (H2 - uD r 2 + 'TJ2 
U2 (~- H 2) - U2 (H2 - uD r 2 +U2'TJ2 

-<P2U2 

o 
o 
o 
o 

o 

-u2n j (P2<P2) 

o 
PI'TJlj (P2<P2) 

UIPI'TJlj (P2<P2) 
o 

-'TJd<p2 
-u2'TJd<p2 

o 
o 
o 
o 
o 
o 
o 

0 
0 
0 
0 
0 

o 
o 
o 

2U2 - U2r 2 

H2 - U~r2 
<P2 

nj (P2<P2) 

Here, the total enthalpies HI and H2 are defined by 

and the Griineisen coefficients r I and r 2 are defined by 

0 
0 
0 
0 
0 

(19) 

(20) 

(21) 

Additionally, the following variables have been introduced into 
Eq. (19) for compactness: 

(22) 

It is noted that for calorically perfect ideal equations of state 
for the gas and solid, 'TJi = ° (i = 1, 2). 

The mathematical classification of the model equations 
requires an analysis of the eigenvalues A (k) (k = 1, ... , 8) and 
corresponding right eigenvectors r(k) (k = 1, ... ,8) of A(q). 
The A(k) and r(k) are given by 

r(l) = [1, UI, HI - CUrl , 0, 0, 0, 0, O]T, 

r(2)=[I, UI+CI , HI+ulcl , 0, 0, 0, 0, O]T, 

r(3) = [1, UI - CI, HI - UICI, 0, 0, 0, 0, O]T, 

r(4) = [0, 0, 0, 1, U2, H2 - ~jr2' <P2, O]T, 

(24) 

(25) 

(26) 

(27) 



r(5) = [0, 0, 0, I, U2+C2, H2+u2c2, ¢2, 

(28) 

r(6) = [0, 0, 0, I, U2 - C2, H2 - U2C2, ¢2, 

(29) 

r(7) = [ PI TJI PI TJI U2 
P2¢2 (U2 - ud2 - q)' P2¢2 (U2 - UI)2 - q)' 

PITJI (HI + UI U2 - uD 
0, TJ2 I, of (30) 

P2¢2 (U2 - ud2 - cD' 0, ¢2r 2 ' 

res) = [0, 0, 0, 0, 0, 0, 0, If. (31) 

Here, A (I) and r(l), A (2) and r(2), and A (3) and r(3) are associ­

ated with the propagation of entropy waves, forward travel­
ing acoustic waves, and backward traveling acoustic waves in 
the gas, respectively; A (4) and r(4), A (5) and r(5), and A (6) and 
r(6) are associated with the propagation of entropy waves, for­
ward traveling acoustic waves, and backward traveling acous­
tic waves in the solid, respectively; A(7) and r(7) are associated 
with the propagation of infinitesimal disturbances in volume 
fraction; and, A(S) and res) are associated with the propagation 
of infinitesimal disturbances in particle number density. 

Following Zauderer (1989), a system of equations having 
the form of Eq. (18) is classified as strictly hyperbolic if for 
each x, t, and q, the eigenvalues of A(q) are real and distinct; 
in such a case, a linearly independent set of right eigenvectors 
exists. If the eigenvalues are real but not distinct, then the 
system of equations is non-strictly hyperbolic provided that 
the corresponding right eigenvectors are linearly independent. 
In the event that the eigenvalues are real but not distinct, and 
the right eigenvectors are not linearly independent, then the 
system of equations is parabolic. 

Since the eigenvalues given by Eq. (23) are real but not 
distinct, the model equations constitute a non-strictly hyper­
bolic system provided that the right eigenvectors [Eqs. (24-
31)] are linearly independent. Linear independence requires 
that the matrix of right eigenvectors R = [r(l)lr(2) 1·· ' Ir(S)] 
be non-singular. It is shown by Gonthier (1996) that the right 
eigenvectors are linearly independent except at the singular 
points ¢2 = ° and U2 = UI ± CI. For ¢2 = 0, the forward and 
backward acoustic eigenvectors for the solid, r(5) and r(6) re­
spectively, degenerate (upon proper scaling) into the particle 
number density eigenvector res): 

lim [P2 ¢2 r(5)] = lim [P2 ¢2 r(6)] = r(S). 
</>2->0 n </>2->0 n 

For U2 = UI + CI and U2 = UI - CI, the compaction eigenvec­
tor r(7) degenerates (upon proper scaling) into the gas phase 
forward and backward acoustic eigenvectors r(2) and r(3), re­
spectively: 

r [P2¢2 (U2 - UI? - cl) (7)] (2) 
U2-!~+CI PI TJI r = r , 
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Consequently, the model equations constitute a non-strictly 
hyperbolic system having parabolic degeneracies on the man­
ifolds ¢2 = ° and U2 = UI ± CI in phase space. Similar singu­
larities have been identified in the two-phase model proposed 
by Baer and Nunziato (1986); a detailed discussion is given 
by Embid and Baer (1992). 

4 Numerical method 

Since the model equations are hyperbolic, discontinuous solu­
tions are admitted (Whitham 1974). As such, a requirement 
of any numerical method used to solve these equations is 
the ability to accurately resolve discontinuities. Several high­
resolution methods have been developed for this purpose for 
strictly hyperbolic systems such as the Euler equations of gas 
dynamics (e.g., Roe 1981; Osher and Solomon 1982; Osher 
1984). Many of these methods are based on Godunov's method 
which requires the exact or approximate solution of a Riemann 
problem at computational cell interfaces in order to advance 
the solution in time. The numerical method described herein 
was formulated using concepts associated with these well­
developed methods for strictly hyperbolic systems. A sum­
mary of the numerical method is given below; details of the 
method are given by Gonthier (1996). 

The spatial domain x E [Xmin, xmax] is discretized into N 

uniformly spaced nodes located at the points Xj = Xmin + (j -
1).6.x (j = I, ... , N), where.6.x = (xmax - Xmin)/(N - I). 
Each node Xj (j = 2, ... , N - I) is located at the center 
of a computational cell of width .6.x; the location of the cell 
boundaries are denoted as Xj±I / 2' The nodes XI and XN are 
located at the boundaries of the computational domain. 

The model equations are numerically solved on the com­
putational grid using the method of fractional steps (Strang 
1968): 

(32) 

where Qn+2 and Qn are numerical approximations for q at 
times t = (n + 2).6.t and t = n.6.t, respectively. The numerical 
operator %/".t represents the method used to solve the homo­
geneous model equations [obtained by setting g(q) = ° in Eq. 
(17)] which account for nonlinear convection. The numerical 
operator %st:..t represents the method used to solve the coupled 
system of ordinary differential equations (ODEs) [obtained by 
setting a/ax = ° in Eq. (17)] which account for the phase in­
teraction processes. Here, the splitting procedure requires that 
each successive numerical step be performed over a time inter­
val.6.t which is chosen based upon a local Courant-Friedrichs­
Lewy (CFL) condition .6.t =(CFL).6.x/IAlmax, where CFL is 
a dimensionless number. All simulations performed in this 
study used CFL = 0.4. 

The numerical method used in the convective step is based 
on Godunov's method. Since the Riemann problem for this 
two-phase system has not been analytically studied, an approx­
imate solution is used in the numerical method (see Appendix 



188 

A). The approximate Riemann solution is obtained by an ap­
proach similar to that used by Glaister (1988) to formulate an 
approximate Riemann solution for the Euler equations for a 
non-ideal gas. Implicit in the construction of the approximate 
·solution for the two- phase Riemann problem is the assumption 
that a physically relevant exact solution exists which consists 
of at most eight waves: a 1) shock wave, 2) rarefaction wave, 
and 3) contact discontinuity (entropy wave) in the gas; a 4) 
shock wave, 5) rarefaction wave, and 6) contact discontinuity 
in the solid; a 7) compaction wave; and a 8) particle num­
ber density wave. The convective step Zc~tQn, which uses 
a predictor/corrector Runge-Kutta integration procedure for 
increased temporal accuracy, is as follows: 

- _ n b.t ( (H) (H») 
Qj - Q j - 2b.x Fj +I / 2 - Fj _ I / 2 ' (33) 

n+1 n b.t (-(H) -(H») 
Q j = Q j - b.x Fj +I / 2 - Fj _ I / 2 , (34) 

where 

F(H) - F(L) + F(C) 
j+I/2 - J+I/2 J+I/2' 

Here, F~~(/2 and Fj~i/2 are higher order numerical fluxes eval­

uated using the initial data Qn and the intermediate data Q, 
respectively. The higher order numerical flux consists of a 
lower order numerical flux F~:~ /2 and a corrective flux F~~;/2' 
The lower order flux, which introduces significant numerical 
diffusion into the method, is determined from the approxi­
mate solution of the Riemann problem. The corrective flux 
is constructed using flux extrapolation and is limited based 
upon the local solution behavior in order to achieve nomi­
nally second order spatial accuracy in smooth regions of the 
flow (Chakravarthy and Osher 1985). Near discontinuities, the 
corrective flux is suppressed allowing the numerical diffusion 
inherent in the lower order flux to prevent the generation of 
spurious oscillations. 

The numerical method used in the source step is a stiff 
ODE solver contained in the standard package LSODE. To 
obtain Qn+l, given the initial data Qn, the source step 21s~tQn 
requires the solution of a system of ODEs having the following 
form at each computational node Xj (j = I, ... , N): 

d [~~ 1 [~~~~: ~~: :~: :~~ 1 
dt e2 = h3(P2, U2, e2, ¢2) . 

¢2 h4(P2, U2, e2, ¢2) 

(35) 

Here, hi, h2, h3, and h4 are nonlinear algebraic functions of the 
solid phase variables. Equation (35) is obtained by reducing 
the system of ODEs given by Eq. (17) with a/ax = O. The 
reductions involve obtaining algebraic expressions for PI, UI, 
e I, ¢ I, and n in terms of the solid phase variables and the initial 
data Qn. 

Difficulties are encountered in the numerical method near 
the singularities U2 = UI ± CI and ¢2 = O. At these points, the 
model equations become parabolic and the numerical method 
breaks down. Bell et al. (989) describe modifications to the 

Godunov methodology which are needed to suppress numeri­
cal instabilities resulting from a loss ofhyperbolicity. To avoid 
difficulties near the singularities U2 = UI ±CI, a technique sim­
ilar to that given by Bell et al. is adopted. To avoid difficulties 
near the singularity ¢2 = 0, combustion is terminated when 
the local solid volume fraction is less than 1.0 x 10-4 ; thus, 
the solid particles are assumed to have an inert solid core. It is 
noted that this complete combustion singularity also exists in 
the steady-state model and, within the context of that model, 
has been shown to be inconsequential (Powers et al. 1990b). 

5 Results 

Results are presented for three different simulations: 1) an in­
ert two-phase shock tube problem, 2) the evolution of a com­
paction wave in response to a moving piston, and 3) the evo­
lution of a detonation wave in response to a moving piston. 
Comparisons are made with exact solutions for the shock tube 
problem, with predictions given by a simplified steady state 
theory for the compaction wave structure, and with predic­
tions given by a formal steady state theory for the detonation 
wave structure. The computations were performed on an IBM 
RS6000 Model 350 workstation. 

5.1 Two-phase shock tube simulation 

The two-phase shock tube problem involves the breakup of 
a single initial discontinuity separating constant left (L) and 
right (R) states into self-similar waves consisting of a shock 
wave, a rarefaction wave, and a contact discontinuity in both 
the gas and the solid. This problem considers convection only; 
consequently, g(q) = 0 in Eq. (7). In this simulation, an 
ideal equation of state was used for the gas [PI = PIRITI ; 
el = cvlTd and a constant covolume non-ideal equation 
of state was used for the solid [P2 = P2R2T2/0 - bp2); 
e2 = Cv2T2J (Toro 1989). These state equations were chosen 
solely to compare numerical predictions with existing closed­
form analytical solutions. Values chosen for the model param­
eters and the initial conditions are given in Table 1. The initial 
discontinuity was located at the position x = 0 m. For this 
simulation, 200 computational nodes were used. 

Shown in Figs. 2a-c is a comparison between the numer­
ical and exact solution at time t = 5 ms. In these figures, all 
quantities have been scaled by the corresponding maximum 
exact values. For each phase, the solution consists of a right 
propagating shock wave, followed by a slower moving right 
propagating contact discontinuity, and a left propagating rar­
efaction wave. Also, ajump is predicted in the particle number 
density (n) across both the shock and the contact discontinuity 
in the solid; a continuous variation in n is predicted across the 
rarefaction wave. Good agreement exists between the numer­
ically predicted solution and the exact solution. 

A convergence study was performed for this solution using 
computational grids ranging from 100 to 15000 nodes. Results 
of this study showed the rate of convergence to be b.x 1.003 . 

Machine round-off error was insignificant for this range of 
nodal points. 



Table 1. Parameters and initial conditions (IC's) 
used in the two-phase shock tube simulation 

Parameter 
or IC Value Units 

b 5.00 x 10-2 m 3/kg 
C"I 7.18 X 102 J/kg/K 
C,,2 7.18 x 102 J/kg/K 
RI 2.87 x 102 J/kg/K 
R2 2.87 x 102 J/kg/K 
UIL 0 m/s 
U2L 0 m/s 
UIR 0 m/s 
U2R 0 m/s 
PIL/PIR 1.00 x 101 

P2L/ P2R 1.00 x 10 1 

PI L/PI R 1.00 X 101 

P 2L/P2R 1.00x 101 

nL/nR 1.00 x 10° 

5.2 Compaction wave simulation 

This simulation considers the evolution of an inert compaction 
wave due to compression of the material by an accelerating 
piston. The piston accelerates from rest at t = 0 f.J,S to a constant 
velocity of 100 mj sat t = 2.0 f.J,s. Here, a compaction wave 
refers to the propagation of a finite disturbance in the porosity 
of the system due to mechanical stresses. In this simulation, a 
virial equation of state was used for the gas [PI = PI Rl Tl (1 + 
bpI); el = cvlTd, and a non-ideal Tait equation of state was 
used for the solid [P2 = (,2 - l)cv2P2T2 - P2oi7 112; e2 = 
Cv2T2 + P2oi7 112P2 + q); also, the configurational stress !(¢2) 
given by Powers et al. (1989) was used: 

_ p _ P ¢~ (2 - ¢2o)2 In( ~ ) 
! - (20 10),/.,2 (2 _ ¢ )2 I (_1_)· 

'+'20 2 n 1-0;1>20 

(36) 

In this expression, quantities labeled with subscript "0" are 
associated with the ambient state of the material. For this sim­
ulation, the model equations were transformed to a reference 
frame moving with the piston such that the transformed ve­
locities at the piston surface were zero. Reflective boundary 
conditions were enforced at the piston surface. No boundary 
conditions were enforced at the upstream boundary since time 
was restricted such that there was insufficient time for the wave 
to reach this boundary. The computational domain, which con­
sisted of 600 nodes, was initialized with the ambient state given 
in Table 2. Values for the model parameters are also given in 
Table 2. The computational run time for this simulation was 
approximately 45 minutes. 

Figures 3a,b show the gas and solid pressure histories. In 
these figures, ~ is the position measured in the piston-attached 
coordinate system (the piston surface is located at ~ = 0 m). A 
smooth increase is initially predicted in both the gas and solid 
pressure in response to the moving piston. The gas pressure 
rises from its ambient value of2.58 M Pa to a maximum value 
of28.26 M Pa in 0.3 ms; the solid pressure rises from its ambi­
ent value of9.12 M Pa to a maximum value of69.16 M Pa in 
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Fig.2a-c. Comparison of the numerical and exact solution for the 
two-phase shock tube simulation at t = 5 ms: a gas phase quantities, 
b solid phase quantities, and c solid volume fraction and particle 
number density 

0.2 ms. Subsequently, both pressures remain essentially con­
stant as a steady compaction wave develops and propagates 
away from the piston. Though not shown here, there is also 
a smooth increase in the other state variables across the com­
paction wave. The predicted length and time for transition to 
a fully developed compaction wave are approximately 0.1 m 
(measured relative to the piston) and 0.6 ms, respectively. The 
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Table 2. Parameters and initial conditions (IC's) used in the compaction wave and the 
detonation wave simulations 

Parameter Compaction Compaction 
orIC (Numerical I) (Numerical 2) Detonation 

b 1.10 X 10-3 I. 10 X 10-3 1.10 X 10-3 

RI 8.50 X 102 8.50 X 102 8.50 X 102 

Cvl 2.40 x 103 2.40 X 103 2.40 X 103 

Cv2 1.50 x 103 1.50 X 103 1.50 X 103 

'12 5.00 x 10° 5.00 x 10° 5.00 x 10° 
C7 8.98 X 106 8.98 X 106 8.98 X 106 

q 0 0 5.84 X 106 

a 0 0 2.90 X 10-9 

m 1.00 x 10° 
(3 0 1.00 X 104 1.00 X 104 

h 0 1.00 X 107 1.00 X 107 

J.l.c 1.00 x 103 1.00 X 103 1.00 X 106 

T ig 3.10 x 102 

To 1.00 X 10-4 1.00 X 10-4 1.00 X 10-4 

(ho 7.30 x 10- 1 7.30 X 10- 1 7.30 X 10- 1 

T o 3.00 X 102 3.00 X 102 3.00 X 102 

Pl o 1.00 X 101 1.00 X 101 1.00 X 101 

P20 1.90 x 103 1.90 X 103 1.90 X 103 

thickness of the resulting compaction wave is predicted to be 
approximately 8 em. 

Figures 4a,b show the numerically predicted variation in 
solid pressure and volume fraction within the compaction 
wave. Also shown in these figures is the steady wave structure 
predicted by the simplified analysis of Powers et al. (1989). In 
their analysis, Powers et al. ignore gas phase effects and de­
scribe steady compaction wave structure in terms of the solid 
variables. In these figures, the flow located between the piston 
(~ = 0) and the trailing edge of the compaction wave (~ = 0.55 
m) is not shown. The prediction labeled Numerical 1 did not 
account for interphase drag and heat transfer so that a direct 
comparison between the numerical and theoretical predictions 
for compaction wave structure could be made. The prediction 
labeled Numerical 2 is for the simulation shown in Figs. 4a,b 
at t = 2 ms. As seen in these figures, the numerical and the­
oretical predictions agree well. It is noted that a dispersed 
compaction wave structure is predicted, and that the inclusion 
of interphase drag and heat transfer increases the final solid 
pressure and decreases the final solid volume fraction. The 
wave speed predicted by the steady analysis of Powers et al. 
is 404 m/ s which agrees well with the numerically predicted 
value of 407 m/ s for the simulation denoted as Numerical 1. 
The wave speed predicted for the simulation denoted as Nu­
merical 2 is 430 m/ s. Experimentally observed compaction 
wave speeds of 432 m/ s in porous HMX (¢20 = 0.73) result­
ing from the impact of a 100 m/ s piston have been reported 
by Sandusky and Liddiard (1985). 

A convergence study was performed for the solution de­
noted as Numerical 1 using computational grids ranging from 
300 to 5000 nodes. The results of this study showed the rate 
of convergence to be ~~1.541. 
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Fig. 3a,b. a Gas and b solid pressure history for the compaction wave 
simulation 
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prediction given by Powers et aL (1989) for the compaction wave 
structure: a solid pressure, and b solid volume fraction_ (The predic­
tion labeled Numerical I does not account for interphase drag and 
heat transfer.) 

5.3 Detonation wave simulation 

This simulation considers the evolution of a two-phase deto­
nation wave due to compression of the material by a moving 
piston_ The results presented here were obtained for a piston 
having the same prescribed motion as for the compaction wave 
simulation presented in the previous subsection_ The same 
state equations, boundary conditions, and initial conditions 
used in the compaction wave simulation were also used here; 
however, the following configurational stress !(¢2) given by 
Powers et al. (1990b) was used so that proper comparisons 
could be made with the published results of that study: 

! = P20 - Plo ,/., 
,/., '1/2· 
'1/20 

Numerical simulations have shown that this relation predicts 
compaction wave speeds which are substantially higher than 
those observed in experiments; as such, the experiments would 
be better modeled using the configurational stress given by Eq. 
(36)_ Values for the model parameters are given in Table 2_ For 
this simulation, the computational domain consisted of 1000 
nodes and the computational run time was approximately 2 
hours_ 
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Figures 5a-d show the velocity and pressure histories for 
the gas and solid, respectively_ In these figures, the curves 
for the solid phase quantities are plotted up to the point of 
complete combustion (i.e_, for ¢2 ~ LO x 10-4)_ Initially, 
a dispersed compaction wave is predicted to propagate away 
from the piston with a speed of 2600 m/ s_ Onset of combus­
tion occurs near the piston surface when the gas temperature 
exceeds Tig = 310 K, the value of which was chosen ad hoc_ 
The combustion rate then accelerates due to the increasing gas 
pressure, strengthens, and undergoes transition to detonation 
near ~ = 0_06 m at t = 36 j.LS_ Since the value of Tig was 
chosen ad hoc, these values for the transition length and time 
should not be construed as representative of SDT experiments; 
however, these values do agree well with the numerical pre­
dictions reported by Baer and Nunziato (1986) for the length 
(0.06 m) and time (33 j.Ls) associated with DDT in porous 
HMX (¢20 = 0_73). The detonation wave, traveling at a faster 
speed, overtakes the compaction front at t = 51 j.LS. Subse­
quently, a fully developed detonation wave having a reaction 
zone length of approximately 11 mm is formed_ Following 
the detonation wave is a rarefaction wave in the gas which 
decreases the gas velocity from its value at the end of the re­
action zone (2960 m/ s) to that of the piston (100 m/ s). The 
wave patterns are more easily seen in the gas density contours 
projected in the x- t plane given in Fig. 6_ 

Figures 7a-c show the numerically predicted variation in 
gas and solid pressure, gas and solid Mach number squared 
(relative to the wave), and solid volume fraction within the 
detonation wave at t = 90 j.LS_ Also plotted in these figures are 
the corresponding variations predicted by the steady-state the­
ory of Powers et al. 1990b. Good agreement exists between the 
numerical predictions and the steady-state theory predictions_ 
The wave structure consists of a single lead shock in the gas 
and an un shocked solid_ Since the velocity of the gas relative 
to the wave is locally sonic at the end of the reaction zone, the 
wave is a two-phase equivalent of a single phase CJ detona­
tion_ The CJ wave speed predicted by the steady-state theory is 
7499_8 m/ s which agrees well with the numerical prediction 
of 7500 m/ s_ This speed is representative of experimentally 
observed CJ wave speeds in porous HMX. 

6 Conclusions 

In conclusion, a two-phase continuum model was numerically 
solved to predict detonation in a granulated material due to 
compression of the material by a moving piston. The model 
equations were solved using a high-resolution method which is 
based upon Godunov's method_ The numerical method gave 
good results for a number of test problems in which known 
theoretical results were available for comparison. The exis­
tence of a SDT event leading to a fully resolved two-phase CJ 
detonation was demonstrated_ Detailed comparisons between 
the numerical predictions and predictions given by a formal 
steady-state theory clearly identify that the detonation struc­
ture consists of a single lead shock in the gas and an un shocked 
solid_ In this study, we emphasize the necessity of fully resolv-
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onation wave simulation 

ing all spatial structures when numerically solving unsteady 
problems. 

Since the focus of this study was on obtaining unsteady 
predictions which could be directly compared with previously 
published results for a steady two-phase CJ detonation, simple 
constitutive relations were used. Constitutive relations which 
are more representative of real physical systems can be easily 
incorporated into the model in order to obtain better predictive 
capabilities. Lastly, we note that additional work is needed 

to determine the influence of model singularities on both the 
analytical and computational solution. 
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Appendix A: 
Approximate solution of the Riemann problem 

The two-phase Riemann problem is defined as the initial 
value problem 

and 

q(x, 0) = { qL, 
qR, 

if x < 0; 
if x > 0, 

A.l 

A.2 

where qL and qR are constant states to the left and right of 
the initial discontinuity located at x = o. T~nstruc~e 
app~xima!: sol~tion, the a~erage quantitiesYI <Pi> 3!1, P1..<PJ, 

el, F lpl 4>I' F I 4>I' F lel , P2<P2, <P2, ih, P2<P2, e2, F2p24>2' F24>2' F2e2 , 
and n [average quantities are denoted by (e)] are defined as 
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functions of qL and qR such that the following expressions are 
identically satisfied: 

8 

.6.q == qR - qL = L Ci(k~k) , A.3 
k=r 

8 

.6.f == fR - fL = L );(k)Ci(k~k). AA 
k=r 

where 

);(1) = Ur, );(2) = ur + Cr, );(3) = ur - Cr, );(4) = U2, 

);(5) = U2 + C2, );(6) = U2 - C2, );(7) = U2, );(8) = U2, 

:;(1) [ - - -2 - ] T r = 1, Ur, Hr - cr/fr, 0, 0, 0, 0, ° 
~2) = [1, ur +cr, Hr +urcr, 0, 0, 0, 0, or, 
~3)= [1, Ur-Cr, Hr-urcr, 0, 0,0,0, or, 
~4) = [0, 0, 0, 1, U2, H2 - ~/j\, ¢2, or, 
~5) = [0, 0, 0, 1, U2 + C2, H2 + U2C2, ¢2, Til P2<P2 r 
~6) = [0, 0, 0, 1, U2 - C2, H2 - U2C2, ¢2, Til P2<P2 r ' 
~7) = [ F r

4>' 

P2<P2 ((U2 - ur)2 - C'T) 

1, 0 1 

-(5) 1 P2<P2 
a = --::::2.6. (P2<P2) + 2- .6.U2, 

2q C2 

-(6) = _1_ A(F'/" ) _ P2<P2 A a -::2 u 2 '/-'2 2- uU2, 
2c2 C2 

Ci(7) = P2<P2.6.<P2, 

Ci(8) = .6.n - n .6. (P2<P2) , 
P2<P2~ 

and cr, C2, Hr, H2, i\, and i\ are defined by 
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- 1-
f2 == -=-F2e2 • 

P2<P2 

In these expres~ions, ~(e) == (elR - (e)L is a difference 
operator, and Fipi</>i' Fi</>i' and Fi.; (i = 1,2) are aver­
ages for the derivatives 8Fd8(Pi<Pi), 8Fd8<pi, and 8Fd8ei 
(i = 1,2), respectively. The functional forms for the relation­
ships Fi(Pi<Pi, <Pi, ei) = Pi<Pi (i = 1,2) are obtained using the 
equations of state for the gas and solid. The average quantities 
are defined by 

Pi<Pi = J PiL<PiLPiR<PiR, 

_ ~UiL+~UiR 
Ui = V PiL<PiL + V PiR<PiR ' 

- V PiL<PiLeiL + V PiR<PiReiR 
ei = --~====~~~====---V PiL<PiL + V PiR<PiR ' 

if. _ ~HiL + ~HiR 
,- ~+~ , 

¢2 = VP2L<P2L<P2L + VP2R<P2R<P2R 

V P2L<P2L + V P2R<P2R ' 

_ VP2L<P2L n R + VP2R<P2RnL 
n = --yrp=2L=<pT 2=L=-+---'-y7=P=2R=<P:;=2=R:--' 

+Fi(PiR<PiR, <PiL, eiL) + Fi(PiR<PiR, <PiL, eiR)] 

1 
-4 [Fi(PiL<PiL, <PiR, eiR) + Fi(PiL<PiL, <PiL, eiR) 

+Fi(PiL<PiL, <PiR, eiL) + Fi(PiL<PiL, <PiL, eid] } 

A.5 

Fi</>i = {~ [Fi(PiR<PiR, <PiR, eiR) + Fi(PiL<PiL, <PiR, eid] 

-~ [Fi(PiR<PiR, <PiL, eiR) + Fi(PiL<PiL, <PiL, eid] } 

Fiei = { ~ [Fi(PiR<PiR, <PiR, eiR) + Fi(PiL<PiL, <PiL, eiR) 

+Fi(PiR<PiR, <PiL, eiR) + Fi(PiL<PiL, <PiR, eiR)] 

1 
-4 [Fi(PiR<PiR, <PiL, eid + Fi(PiR<PiR, <PiR, eid 

+Fi(PiL<PiL, <PiR, eiL) + Fi(PiL<PiL, <PiL, eiL)] } 

A.6 

A.7 

For f).(Pi<Pi) = 0, f).<Pi = ° or f).ei = ° (i = 1,2), we take 
the appropriate limits of Eqs. (A.5-A.7) [i.e., as f).(Pi<Pi) ---4 0, 

f).<Pi ---40, and f).ei ---40, respectively] to obtain the following 
expressions: 

8~ 8~ ] 
+ 8(Pi <Pi) (Pi <Pi, <PiL, eiR) + 8(Pi <Pi) (Pi <Pi, <PiL, eid , 

if f).(Pi<Pi) = 0, 

- 1 [8Fi 8Fi ] 
Fi</>i = 2 8Pi (PiR<PiR, <Pi, eiR) + 8Pi (PiL<PiL, <Pi, eid , 

if f).<Pi = 0, 

if f).ei = 0. 

In the solution outlined here, the average quantities :X(k) 

(k = 1, ... , 8) are approximations for the propagation speeds 
of the waves associated with the solution of the Riemann prob­
lem, and the average quantities a(k)J={k) are approximations for 
the jump in the state of the system across these waves. The ap­
proximate solution is constructed such that as qR - qL ---4 0, it 
reduces to the exact solution of the linearized Riemann prob­
lem [i.e., for qR - qL = O(E), E small]. Furthermore, Eq. (A.4) 
guarantees that the numerical scheme is conservative since, 
across the kth wave, we require A (k) = {jf(k) / 8q(k), where 
8q(k) == a(k)J={k) and 8r(k) == :X(k)a(k)J={k) are jumps in the 
conserved variables and the fluxes across the kth wave, re­
spectively. Details concerning the derivation of the approxi­
mate Riemann solution outlined here are given by Gonthier 
(1996). 
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