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Abstract— Open spatially homogeneous reactive systems
may possess multiple physical equilibria and display limit
cycle behavior. It is demonstrated for two systems, i) a simple
Gray-Scott model, and ii) a detailed hydrogen-air model, that
the existence of multiple physical equilibria and limit cycles
introduces challenges for the use of manifold methods as a
reduction technique. In particular, detailed understanding of
boundaries of basins of attraction is likely required in order
for any reduction to maintain fidelity to the full model.

I. I NTRODUCTION

It is well known that open spatially homogeneous reactive
systems may possess multiple physical equilbria and exhibit
limit cycle behavior. Any stable physical equilbria, as well
as any stable limit cycle, will also possess a basin of
attraction, whose boundaries are difficult to discern without
fully exploring a multi-dimensional phase space. It is also
the case that many reduction methods rely upon projecting
an arbitrary point in phase space onto a lower dimension
manifold. One common method for identifying such mani-
folds which are one-dimensional is to connect equilbria with
heteroclinic orbits and examine their ability to attract nearby
orbits via calculation of normal stretching rates [1]. Those
that are attractive are known as Slow Invariant Manifolds
(SIMs). However, it must be recognized that naı̈ve projec-
tion, uninformed by knowledge of the basins of attraction,
from an arbitrary point onto a lower dimensional manifold
runs the risk of projecting onto the wrong manifold. For
cases in which there are multiple candidate SIMs, even less
is clear, including how to define a basin of attraction for a
SIM.

In this study, we summarize two such cases whose full
exposition, including literature review, model equations, and
numerical parameter values, is given by Mengers [2]. Those
two cases are i) a simple Gray-Scott model, widely used to
study pattern formation dynamics, and ii) a detailed kinetics
model for hydrogen-air combustion.

II. GRAY-SCOTT

The Gray-Scott model has two irreversible reactions in
three species,U , V , andP : U + 2V → 3V , V → P. The
spatially homogenous version is

dYU

dt
= −YUY 2

V + F(1 − YU ), (1)

dYV

dt
= YUY 2

V
− (F + k)YV . (2)

Here Y represents mass fraction,t time, with F > 0 and
k > 0 as parameters. One real finite root,R1 : (YU , YV ) =
(1, 0), is guaranteed to be a sink. The character of the other
two roots depends onF andk. WhenF = 0.16× 10−3 and
k = 3.1×10−2, three real positive finite roots,R1, R2, and
R3, are found, plotted in Fig. 1a.
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Fig. 1. Naı̈ve projection onto a reduced manifold in the Gray-Scott system

The sink atR1 has heteroclinic connections with the
saddle atR2 as well as the point at infinity atI2. There is
also a spiral source atR3. SurroundingR3 is an invariant
manifold comprising a stable limit cycle, whose basin of
attraction is shaded. Figure 1a depicts an initial condition
within the basin of attraction of the limit cycle, denoted
with a “+.” Many reduction algorithms would project this
point onto the manifold emanating fromI2, which leads
ultimately to R1. This induces large error, as the actual
trajectory is led to the limit cycle surroundingR3. Figure 1b
depicts the evolution ofYU andYV from “+” for its actual
limit cycle behavior and that obtained upon naı̈ve projection
to the wrong reduced manifold.

III. H YDROGEN-A IR

We next employ a 9 species, 20 reaction hydrogen-air
mechanism with a species ordering of{O2, H2, H2O, N2,
OH, H, O, HO2, H2O2} in an isothermal, isochoric simu-
lation of combustion with fresh mixture inflow balanced by
exhaust. The system has 3 algebraic constraints; therefore,
we can confine attention to speciesi = {1, 2, 3, 5, 6, 7}. We
identify 97 real finite equilibria. Of these, 3 have positive
concentrations for all 9 species, making them physical, and
13 have one positive eigenvalue, making them candidates
for connection to the physical roots. For the physical
equilibria, R4 has all negative real eigenvalues and thus
is a sink;R69 has one positive real eigenvalue, making it a
candidate for connecting to other equlibria; andR1 has four



negative real eigenvalues and one complex conjugate pair
of eigenvalues with positive real part, making it a saddle.
The long time dynamics of systems with initial conditions
in the neighborhood ofR1 exhibit limit cycle behavior.

We integrate with initial conditions perturbed alongR69’s
unstable eigenvector in either direction. In one direction, the
trajectory approachesR4 along its slowest eigenvector; this
is a branch of the SIM. In the other direction, the trajectory
collapses onto the limit cycle. These trajectories are shown
in a projection of phase space in Fig. 2. Herezi is the
specific mole number of speciesi.
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Fig. 2. The limit cycle and a SIM branch in the hydrogen-air mechanism.

Two time evolutions are shown in Fig. 3, where from
nearly identical initial conditions, the top and bottom dis-
play relaxation toR4 and the stable limit cycle, respectively.
Thus,R69 lies on the boundary of the basin of attraction
between the limit cycle andR4. We can identify other
branches of the SIM by examining the heteroclinic orbits
from other candidate equilibria. We find four additional
branches, emanating fromR9, R17, R30, and R53, re-
spectively. A projection of these branches’ approach to
the physical equilibrium sink,R4, is shown in Fig. 4. To
evaluate the attractiveness of these branches, we calculate
the normal stretching ratio along each manifold. We find
that all five normal stretching ratios remain negative along
the entire length of both theR69 andR53 branches. Thus,
both are candidates for a SIM, rendering it also useful to
construct a basin of attraction for each, not done here. We
find there are positive stretching ratios in multiple normal
directions for a large portion of the branches nearR9, R17,
andR30. This indicates nearby trajectories may diverge, an
undesirable trait for a reduction.

IV. CONCLUSION

These results raise concerns about the heteroclinic orbit
SIM construction technique for open systems in the absence
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Fig. 3. Evolutions of hydrogen-air system from nearR69.
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Fig. 4. Multiple branches of the SIM in the hydrogen-air mechanism.

of knowledge about the basins of attraction, which are
difficult to obtain in practice.
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