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Abstract— It is demonstrated that a common technique in
reaction dynamics for construction of Slow Invariant Mani-
folds, connection of equilibria by heteroclinic orbits, can fail.
While the method is guaranteed to generate an invariant
manifold, the local dynamics far from equilibrium may be
such that nearby trajectories are in fact carried away from the
identified invariant manifold, thus rendering it to be of lim ited
utility in capturing slow dynamics far from equilibrium. An
eigenvalue-based method is described to characterize the local
behavior of such invariant manifolds.

I. I NTRODUCTION

Spatially homogeneous chemical reactions are described
by dynamical systems of the form

dz

dt
= f(z), z(0) = zo, z, zo, f ∈ R

N . (1)

Here, z is a vector of lengthN containing the species
concentrations, assuming that linear constraints representing
element conservation have been removed,t is time, andf
is a non-linear function ofz representing the law of mass
action with Arrhenius kinetics.

We take a Slow Invariant Manifold (SIM) to be an invari-
ant manifold (IM) on which slow dynamics are confined and
to which nearby trajectories are attracted. The identifica-
tion of one-dimensional SIMs by constructing heteroclinic
orbits connecting equilibria has gained attention since its
introduction [1] and extension by others,e.g. [2], [3], [4].
The essence of the fundamental hypothesis is illustrated in
Fig. 1. That hypothesis is that SIMs may be constructed
by 1) identifying equilibria of Eq. (1),i.e. pointsz where
f(z) = 0, and 2) connecting by trajectories from appropriate
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Fig. 1. Sketch of SIM envisioned as the invariant manifold connecting
equilibria.

IM

Saddle

Sink

Fig. 2. Sketch of failure of the method of heteroclinic orbitconstruction
for SIM identifcation.

non-physical saddle equilibria (those with at most one
positive eigenvalue) to the unique physical equilibrium,
which is a sink. Near the equilibria, the IM is guaranteed to
be attractive; moreover, for many reactive systems the IM
appears to be attractive in regions far from equilibrium.

However, nothing in the SIM construction algorithm pre-
cludes the scenario sketched in Fig. 2. Certainly, equilibria
can be identified and connected via heteroclinic orbits to
construct a canonical IM. But for a genericf(z), one has
no guarantee that trajectories near the canonical IM are in
fact attracted to it. In this study, we summarize analyses and
an example given by Mengers [5] for attractiveness criteria
for an IM; additional background is to be found in [6].

II. SUMMARY OF ANALYSIS

With the local JacobianJ = ∂f/∂z, defined throughout
the entire phase space, one can analyzeJ in the neigh-
borhood of any IM, such as an IM connecting equilibria.
At the physical equilibrium, all of the eigenvalues ofJ are
guaranteed to be negative and real, and all nearby points
will be drawn to the physical equilibrium. Away from the
physical equilibrium, it is possible for some eigenvalues to
be positive, and this can lead to certain trajectories being
drawn away from an IM. It is well known that tr(J) is
proportional to the rate of change of a local volume in
phase space. However, even if tr(J) < 0, the existence of
a positive eigenvalue can induce a local repulsion of an
individual trajectory from an IM.

It is possible [2], [5] to identify a unit tangent vector
to the IM, αt, and a set of unit normal vectors,αni, i =
1, . . . , N − 1. These vectors can be used to identify the



tangential and normal stretching rates,σt andσni:

σt = α
T
t · Js ·αt, σni = α

T
ni · Js ·αni, i = 1, . . . , N − 1.

(2)
Here Js = (J + JT )/2, the symmetric part ofJ. Along
the IM, αt is uniquely defined, up to its sign. However,
there are an infinite set ofαni when N > 2. Certainly if
all possibleσni < 0 and mini|σni| ≫ |σt|, the IM will be a
SIM; however, it is easy to construct cases for which these
criteria are not met.

One can pose the following optimization problem to
identify the maximumσn and its associatedαn. First, we
can recastJs = Q · Λ · QT , whereQ is a rotation matrix
with normalized eigenvectors ofJs in its columns, andΛ is
a diagonal matrix with the eigenvalues ofJs on its diagonal.
Then we seekαn to maximize

σn = (QT · αn)T ·Λ · (QT · αn), (3)

subject to

α
T
n · αn = 1, α

T
n · αt = 0. (4)

BecauseQ andαn both have unit norms, it is obvious that
|σn| ≤ |λmax|, where|λmax| is the magnitude of the largest
eigenvalue ofJs.

III. E XAMPLE

Consider the system, of the form of Eq. (1), withN = 3:

dz1

dt
=

1

20
(1 − z2

1
), (5a)

dz2

dt
= −2z2 −

35

16
z3 + 2(1 − z2

1
)z3, (5b)

dz3

dt
= z2 + z3. (5c)

This system has two finite roots,R1 at z = (−1, 0, 0)T and
R2 atz = (1, 0, 0)T . The JacobianJ has eigenvalues ofλ =
{1/10,−1/4,−3/4} at R1 andλ = {−1/10,−1/4,−3/4}
atR2. Thus,R1 is a saddle with one unstable mode, andR2

is a sink, analogous to a physical equilibrium in a reactive
system. There is a canonical IM defined by the heteroclinic
orbit that connectsR1 to R2 along thez2 = z3 = 0 axis;
however, we find this branch does not attract neighboring
trajectories along the entire IM, as is obvious by inspecting
Fig. 3, which shows a projection of the IM and nearby
trajectories in the(z1, z3) plane. The unit tangent to the
canonical IM is αt = (1, 0, 0)T , yielding a tangential
stretching rate ofσt = −z1/10. On the canonical IM,
we thus find thatσt ∼ 1/10 near R1 and σt ∼ −1/10
near the physical equilibriumR2. There exist points all
along the canonical IM withσn > 0. For example, atz =
(0, 0, 0)T , the maximum normal stretching rate isσn,max =
−1/2+

√
2473/32 = 1.05 for αn = (0,−0.132,−0.991)T .

Near the physical equilibrium atz = (1, 0, 0)T , one still
finds σn,max = −1/2 +

√
2665/32 = 1.11 for αn =
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Fig. 3. Projection of the IM connecting equilibria along with nearby
trajectories illustrating the non-attractive regions of the IM.

(0,−0.187, 0.982)T , but the real negative eigenvalues ofJ

itself render all trajectories to be attracted to the equilibrium.
It is likely that non-normality effects [7] need to be further
analyzed to better explain the behavior.

IV. CONCLUSION

Construction of invariant manifolds via connection of
equilibria by heteroclinic orbits offers no guarantee thatone
has found a slow invariant manifold.
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