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Abstract— It is demonstrated that a common technique in
reaction dynamics for construction of Slow Invariant Mani-
folds, connection of equilibria by heteroclinic orbits, can fail.
While the method is guaranteed to generate an invariant
manifold, the local dynamics far from equilibrium may be
such that nearby trajectories are in fact carried away from the
identified invariant manifold, thus rendering it to be of lim ited
utility in capturing slow dynamics far from equilibrium. An
eigenvalue-based method is described to characterize thechl
behavior of such invariant manifolds.

Fig. 2. Sketch of failure of the method of heteroclinic ortinstruction
I. INTRODUCTION for SIM identifcation.
Spatially homogeneous chemical reactions are described
by dynamical systems of the form

% = f(z), z(0) = z,, z,2z,,f eRY. (1)
Here, z is a vector of lengthN containing the species
concentrations, assuming that linear constraints reptiese
element conservation have been removeis, time, andf

is a non-linear function o representing the law of mass
action with Arrhenius kinetics.

non-physical saddle equilibria (those with at most one
positive eigenvalue) to the unique physical equilibrium,
which is a sink. Near the equilibria, the IM is guaranteed to
be attractive; moreover, for many reactive systems the IM
appears to be attractive in regions far from equilibrium.
However, nothing in the SIM construction algorithm pre-
cludes the scenario sketched in Fig. 2. Certainly, equalibr
can be identified and connected via heteroclinic orbits to
construct a canonical IM. But for a genefi¢z), one has

We take a Slow Invariant Manifold (SIM) to be an invari- tee that traiectori ih ical IM .
ant manifold (IM) on which slow dynamics are confined ang'© guarantee that trajeclories near the canonica are n
fact attracted to it. In this study, we summarize analyseks an

to which nearby trajectories are attracted. The identifica- le ai by M 5] for attracti iteri
tion of one-dimensional SIMs by constructing heteroclinic;:Jln exalrlr\}lp edg(;\_{fn ?/b eEgers [d]' otr ab rafc |ve(;u_ass60r| era
orbits connecting equilibria has gained attention sinee it or an IM; additional background is to be found in [6].

introduction [1] and extension by othersg. [2], [3], [4]. Il. SUMMARY OF ANALYSIS
The essence of the fundamental hypothesis is illustrated in With the local Jacobiad — df /2, defined throughout

Fig. 1. That hypothesis is that SIMs may be cons’[ructe(ghe entire phase space, one can analjzin the neigh-

by 1) identifying equilibria of Eq. (1)i.e pointsz where borhood of any IM, such as an IM connecting equilibria.

f(2) = 0, and 2) connecting by trajectories from approprlateAt the physical equilibrium, all of the eigenvalues bfre

guaranteed to be negative and real, and all nearby points
will be drawn to the physical equilibrium. Away from the
physical equilibrium, it is possible for some eigenvalugs t
be positive, and this can lead to certain trajectories being
drawn away from an IM. It is well known that (tF) is
proportional to the rate of change of a local volume in
phase space. However, even ifJty < 0, the existence of
a positive eigenvalue can induce a local repulsion of an
individual trajectory from an IM.

It is possible [2], [5] to identify a unit tangent vector
Fig. 1. Sketch of SIM envisioned as the invariant manifoldrecting  t0 the IM, o, and a set of unit normal vectorey,;,i =
equilibria. 1,...,N — 1. These vectors can be used to identify the




tangential and normal stretching rates,ando,,;:

o :atT-Js-at, crm-:ozzi-.ls-am-, i=1,...,N—1.

2)
Here J, = (J + J7)/2, the symmetric part off. Along
the IM, «; is uniquely defined, up to its sign. However,
there are an infinite set ak,; when N > 2. Certainly if
all possibles,,; < 0 and min|o,;| > |o;|, the IM will be a
SIM; however, it is easy to construct cases for which these
criteria are not met.

One can pose the following optimization problem to
identify the maximumg,, and its associated,,. First, we
can recastl, = Q- A - QT, whereQ is a rotation matrix
with normalized eigenvectors df; in its columns, and\ is
a diagonal matrix with the eigenvalueshf on its diagonal.
Then we seekx,, to maximize

On = (QT : an)T A (QT o), Q)

subject to

T
n

" (4)
Because) and «,, both have unit norms, it is obvious that
lon| < [Amaz|, Where|A,q.| is the magnitude of the largest

eigenvalue ofJ,.

a, o, =1, o, o = 0.

(

Fig. 3.
trajectories illustrating the non-attractive regions toé M.
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Projection of the IM connecting equilibria along kvihearby

0,—0.187,0.982)7, but the real negative eigenvaluesbf

itself render all trajectories to be attracted to the eliilim.

It is likely that non-normality effects [7] need to be furthe

I1l. EXAMPLE
Consider the system, of the form of Eq. (1), with= 3:

dzy 1 2

o T Ak &2
dzg 35 2

rE T R G W (5b)
dz

This system has two finite root&; atz = (—1,0,0)” and
Ry atz = (1,0,0)T. The Jacobiad has eigenvalues of =
{1/10,-1/4,-3/4} at R; andX = {-1/10,-1/4,-3/4}
at R,. Thus,R; is a saddle with one unstable mode, dad

is a sink, analogous to a physical equilibrium in a reactive
system. There is a canonical IM defined by the heteroclinic

orbit that connects?; to R, along thez, = 23 = 0 axis;

however, we find this branch does not attract neighboring[2l

trajectories along the entire IM, as is obvious by inspegtin
Fig. 3, which shows a projection of the IM and nearby
trajectories in the(zy, z3) plane. The unit tangent to the
canonical IM isa; = (1,0,0)7, yielding a tangential
stretching rate ofo; —21/10. On the canonical IM,
we thus find thato; ~ 1/10 nearR; ando; ~ —1/10
near the physical equilibriunR,. There exist points all
along the canonical IM witly,, > 0. For example, agz =
(0,0,0)7, the maximum normal stretching rateds maz =
—1/2++/2473/32 = 1.05 for a,, = (0, —0.132, —0.991)7.
Near the physical equilibrium at = (1,0,0)7, one still
finds o mae = —1/2 4+ v/2665/32 = 1.11 for a,

analyzed to better explain the behavior.

IV. CONCLUSION
Construction of invariant manifolds via connection of

equilibria by heteroclinic orbits offers no guarantee tha
has found a slow invariant manifold.
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