Non-Equilibrium Thermodynamics of Reactive

Systems

J.M. Powers (powers@nd.edu) S. Paolucci (paolucci@nd.edu) University of Notre Dame, Notre Dame, IN 46556 USA

60th Annual Meeting of

the APS DFD Salt Lake City, Utah

18 November, 2007

Support: National Science Foundation

NO production via Zel'dovich kinetics

$$\begin{aligned} \frac{d[NO]}{dt} &= \hat{\omega}_{[NO]} = 0.72 - 9.4 \times 10^5 [NO] + 2.2 \times 10^7 [N] \\ &- 3.2 \times 10^{13} [N] [NO] + 1.1 \times 10^{13} [N]^2, \\ \frac{d[N]}{dt} &= \hat{\omega}_{[N]} = 0.72 + 5.8 \times 10^5 [NO] - 2.3 \times 10^7 [N] \\ &- 1.0 \times 10^{13} [N] [NO] - 1.1 \times 10^{13} [N]^2. \end{aligned}$$

Constants evaluated for $T = 6000 \ K$, $P = 2.5 \ bar$, $C_1 = C_2 = 4 \times 10^{-6} \ mole/cc$, $\Delta G_1^o = -2.3 \times 10^{12} \ erg/mole$, $\Delta G_2^o = -2.0 \times 10^{12} \ erg/mole$. Algebraic constraints absorbed into ODEs.

Model Problem

We seek to identify the generalized stream function $\psi(\mathbf{x})$ and potential $\phi(\mathbf{x})$ which can be associated with the dynamic system

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}),$$

where $\mathbf{x} = (x_1, x_2)^T$, $\mathbf{f} = (f_1, f_2)^T$. We assume the origin has been transformed to the frame in which

$$\mathbf{f}(\mathbf{0}) = \mathbf{0}.$$

Stream Function

To find $\psi(\mathbf{x})$, recast the equations as the differential one-form

$$f_1 dx_2 - f_2 dx_1 = 0.$$

If $\nabla \cdot \mathbf{f} = 0$, the equation is exact and can be integrated directly. However, we are concerned with the more general case in which $\nabla \cdot \mathbf{f} \neq 0$. For our case, it is always possible to find $\mu(\mathbf{x})$ such that

$$d\psi = \mu(f_1 dx_2 - f_2 dx_1) = 0.$$

It can be shown that $\mu(\mathbf{x})$ must satisfy the hyperbolic equation

$$\mathbf{f}^T \cdot \nabla \mu = -\mu \nabla \cdot \mathbf{f}.$$

Fluid mechanics analog: $\mathbf{f} \to \mathbf{u}$, $\mu \to \rho$, $\psi \to$ the compressible stream function, and $\phi \to$ the velocity potential, if it exists.

Note μ is non-unique and singular at equilibrium.

Potential

If a classical potential ϕ exists, its gradient must yield ${f f}$, so

$$\nabla \phi = \mathbf{f}.$$

In order for a potential to exist, the vector f must be irrotational:

$$\nabla \times \mathbf{f} = \mathbf{0}.$$

This is not the case in general!

While a potential may not exist in a certain space, there may exist a transformation to another space in which a generalized potential does exist.

Analysis Near Equilibrium

In the neighborhood of the origin $\mathbf{x}=\mathbf{0}$, the system is in equilibrium: $\mathbf{f}=\mathbf{0}$. Thus, near the origin

$$\mathbf{f} = \mathbf{J} \cdot \mathbf{x} + \cdots,$$

where J is a *constant* matrix which is the Jacobian of f evaluated at the origin. We are concerned with forms of f which arise from mass action kinetics. Note that J itself need not be symmetric, and in general is not. Onsager reciprocity still requires a symmetry, but it is manifested in the expression for entropy evolution near equilibrium, and not directly in J.

Analysis Near Equilibrium (continued)

We consider Jacobians that have eigenvalues $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2)$ which are real and negative, and \mathbf{P} is the matrix whose columns correspond to the eigenvectors of \mathbf{J} . Neglecting higher order terms, it can be shown that

$$(\mathbf{J} \cdot \mathbf{x})^T \cdot \nabla \mu = -\mu \operatorname{Tr}(\mathbf{J}),$$

or with $\mathbf{x} = \mathbf{P} \cdot \mathbf{y}$, and subsequently $y_i = z_i^{-\lambda_i}$ and $(z_1 = r \cos \theta, z_2 = r \sin \theta)$ we obtain

$$\mu = g(\theta) r^{\lambda_1 + \lambda_2},$$

where $g(\theta)$ is an arbitrary function of θ . Now at the equilibrium point, obtained as $r \to 0$, one finds, for $\lambda_1, \lambda_2 < 0$, that $\mu \to \infty$.

Analysis Near Equilibrium (continued)

In addition, for the potential ϕ to exist,

 $\nabla \times \mathbf{f} = \nabla \times \mathbf{J} \cdot \mathbf{x} = \mathbf{0}.$

This demands the symmetry of ${\bf J}$, a condition that will not be satisfied in general!

However, for arbitrary J and with $\mathbf{x}=\mathbf{P}\cdot\mathbf{y},$ it can be easily shown that a generalized potential exists and is given by

$$\phi = \frac{1}{2} \left(\lambda_1 y_1^2 + \lambda_2 y_2^2 \right) + C,$$

where *C* is an arbitrary constant. Since $\lambda_1, \lambda_2 < 0$, it is easily seen that ϕ has a maximum at the equilibrium point $\mathbf{y} = \mathbf{0}$.

Illustrative Example 1

Consider the simple example

$$\frac{dx_1}{dt} = -x_1, \qquad \frac{dx_2}{dt} = -4 x_2.$$

This problem has a stable equilibrium at $\mathbf{x} = \mathbf{0}$ and has eigenvalues $\lambda_1 = -1$ and $\lambda_2 = -4$. It is already in diagonal form, so no transformation will be necessary. It has similar properties to chemically reacting systems near a physical equilibrium point, when cast in appropriate coordinates. We also note that it has the exact solution

$$x_1 = x_{10}e^{-t}, \qquad x_2 = x_{20}e^{-4t}.$$

Illustrative Example 1 (continued)

This induces the differential one-form

$$x_1 dx_2 - 4 x_2 dx_1 = 0.$$

Since $\nabla \cdot \mathbf{f} = -5$, this is not exact, but can be rendered exact by the integrating factor (i.e. the generalized density) which is $\mu = x_1^{-5}$. Note that this approaches positive infinity at the equilibrium point. Subsequently we obtain the stream function

$$\psi = \frac{x_2}{x_1^4} + C_1.$$

It has the property that $abla imes \mathbf{f} = \mathbf{0}$, so a potential ϕ exists and is

$$\phi = -\frac{1}{2} \left(x_1^2 + 4 x_2^2 \right) + C_2.$$

 C_1 and C_2 are arbitrary constants that are chosen to be zero.

Illustrative Example 1 (continued)

The figure shows lines of constant ϕ , ψ , the SIM, and the equilibrium point. Lines of constant ψ are orthogonal to lines of constant ϕ .

Illustrative Example 2

Consider the slightly more complicated example

$$\frac{dx_1}{dt} = -x_1, \qquad \frac{dx_2}{dt} = 3 x_1 - 4 x_2.$$

This problem has the same stable equilibrium at $\mathbf{x} = \mathbf{0}$ and eigenvalues $\lambda_1 = -1$ and $\lambda_2 = -4$. This system also has similar properties to chemically reacting systems near the equilibrium point. It has the exact solution

$$x_1 = x_{10}e^{-t}, \qquad x_2 = (x_{20} - x_{10})e^{-4t} + x_{10}e^{-t}$$

Illustrative Example 2 (continued)

This induces the differential one-form

$$x_1 dx_2 - 4 x_2 dx_1 = 0.$$

Since $\nabla \cdot \mathbf{f} = -5$, this is not exact, but can be rendered exact by the integrating factor (i.e. the generalized density) $\mu = x_1^{-5}$. Subsequently we obtain the stream function

$$\psi = \frac{x_2 - x_1}{x_1^4} + C_1.$$

It is noted that $\nabla \times \mathbf{f} = \mathbf{3}$, so a classical potential does not exist. However, a generalized potential ϕ exists and is given by

$$\phi = -\frac{1}{2} \left[x_1^2 + 4(x_2 - x_1)^2 \right] + C_2.$$

Again, C_1 and C_2 are arbitrary constants that are chosen to be zero.

The figure shows lines of constant ϕ , ψ , the SIM, and the equilibrium point. Lines of constant ψ are *not* orthogonal to lines of constant ϕ in this space!.

Conclusions

- In general, a classical potential does not exist in reaction coordinate space; however, a generalized potential can always be found in the linear regime.
- The magnitude of the gradient of the potential in the transformed space is minimized on the SIM in the linear regime.
- The SIM does not coincide with either the local minima of irreversibility production rates or Gibbs free energy, except near a physical equilbrium.
- While such potentials are valuable near equilibrium, they offer no guidance for nonlinear (non-equilibrium!) kinetics.
- Work on the nonlinear (non-equilibrium!) regime is ongoing