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Abstract— Construction of the Slow Invariant Manifold
(SIM) for a reactive system is coming to be realized as
the linchpin in a rational method of reduced kinetics. Here
a method of constructing a finite dimensional SIM based
on identifying critical points and connecting them with
trajectories is shown for a spatially homogeneous reactive
system. The relation between this analysis and classical as
well as irreversible thermodynamics is examined.

I. I NTRODUCTION

Two common problems arise in manifold methods: 1)
their calculation can be difficult, and 2) they only form
an approximation in a limited range to the more useful
SIM of the system. We extend here the development of a
method suggested to us by Davis and Skodje [1]: calcu-
lation of the SIM by integration from various finite and
infinite critical points to the stable node of the physical
equilibrium. We consider a simple but realistic detailed
kinetic system. The method requires identification of
all equilibria of ordinary differential equations (ODEs)
describing the time-evolution dynamics of spatially ho-
mogeneous systems. Some of these roots will lie in non-
physical regions of chemical composition space; never-
theless, they provide the seed for the growth of the SIM,
which describes the long time dynamics of the chemical
system as it approaches the equilibrium state. A important
goal is to carefully expose the links between classical
thermodynamics, the non-equilibrium thermodynamics of
chemical kinetics, and modern mathematical theory of
non-linear dynamics on model problems.

II. M ODEL PROBLEM

We illustrate our approach for calculating the SIM by
applying it to important problems in reaction kinetics.
One the mechanisms to be discussed is the Zel’dovich
mechanism of formation of nitric oxide. We consider
the special case in which the reaction is isothermal and
isobaric. This kinetic model is widely used, is simple
enough that its exposition remains compact, and rich
enough to reveal some of the complexities of multiple
equilibria, chemical stiffness, and a non-trivial SIM.

A. Reaction Mechanism

The reaction mechanism describes howM = 5 molecu-
lar species,NO, N , N2, O, andO2, composed ofL = 2
atomic elements,N and O, react in J = 2 reversible
reactions:

N + NO ⇌ N2 + O, j = 1, (1)

N + O2 ⇌ NO + O, j = 2. (2)

These two reactions proceed according to the law of
mass action, with a rate modulated by an Arrhenius
temperature-dependency. The reaction rates are

r1 = α1T
β1e−

Ta,1

T ρNρNO

(

1 − 1

Keq
c,1

ρN2
ρO

ρNρNO

)

,(3)

r2 = α2T
β2e−

Ta,2

T ρNρO2

(

1 − 1

Keq
c,2

ρNOρO

ρNρO2

)

.(4)

Variables are, forj = 1, 2, the reaction rates,rj , and for
i = 1, . . . , 5, the molecular species molar concentrations
ρi. We interchangeably employ conventional chemistry
notation for species molar concentration, e.g.ρN = [N ].
Constant parameters, for anisothermal reaction, are the
collision frequency factorαj , the temperatureT , the
temperature-sensitivity exponentβj, the activation tem-
peratureTa,j, and the equilibrium constantKeq

c,j. Equi-
librium thermochemistry shows how to determineKeq

c,j

in terms of more fundamental thermodynamic quantities.
These standard relations are

Keq
c,j =

(
Po

RT

)P

M
i=1

νij

exp

(−∆G o
j

RT

)

, j = 1, 2. (5)

Here,Po = 1× 106 dyne/cm2 is the reference pressure,
R is the universal gas constant,

∑M
i=1

νij is the net change
of moles in reactionj, and∆G o

j is the change in Gibbs
free energy at the reference pressure for thejth reaction.
Gibbs free energy changes at the reference pressure are

∆G o
1

= g o
N2

+ g o
O − g o

N − g o
NO, (6)

∆G o
2 = g o

NO + g o
O − g o

N − g o
O2

. (7)

Above, g o
i is the partial molar Gibbs free energy of

speciesi at the reference pressure. This can be determined
by using the definition of Gibbs free energy at the
reference pressure,g o

i = h
o

i − T s o
i , where h

o

i and
s o

i are the partial molar enthalpy and entropy at the
reference pressure, respectively. Now, takeT = 6000 K,
an elevated temperature for gas phase reactions. Next,
employing thermodynamic data from Sonntag,et al. [2],
and kinetic data from Baulch,et al. [3], the kinetic rates
rj from Eqs. (3-4) can be numerically specified. The
individual molecular species evolve according to Eqs. (1-
2) at the rates dictated by Eqs. (3-4). Their evolution is
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described by the ODEs and initial conditions:

dρNO

dt
= ωNO ≡ −r1 + r2, ρNO(0) = ρ ∗

NO, (8)

dρN

dt
= ωN ≡ −r1 − r2, ρN (0) = ρ ∗

N , (9)

dρN2

dt
= ωN2

≡ r1, ρN2
(0) = ρ ∗

N2
, (10)

dρO

dt
= ωO ≡ r1 + r2, ρO(0) = ρ ∗

O , (11)

dρO2

dt
= ωO2

≡ −r2. ρO2
(0) = ρ ∗

O2
. (12)

Quantities with a∗ superscript denote the initial state,
and ωi is the species production rate for speciesi.
Equations (8-12) augmented by Eqs. (3-4) form five ODEs
in five unknowns.

B. Conserved Quantities

1) Element Conservation: Chemical reactions are
characterized by the property that the total number of
elements remains constant. For the elementN , this is
exhibited by the the following linear combination of
Eqs. (8-10):

dρNO

dt
+

dρN

dt
+ 2

dρN2

dt
= 0. (13)

Equation (13) can be integrated to form the relation

ρNO + ρN + 2ρN2
= ρ ∗

NO + ρ ∗

N + 2ρ ∗

N2
. (14)

Similarly for O, using Eqs. (8,11,12), one finds

ρO + ρNO + 2ρO2
= ρ ∗

O + ρ ∗

NO + 2ρ ∗

O2
. (15)

2) Molecule Conservation: Generally, the number of
molecules is not constant in chemical reactions. However,
it is the case in the Zel’dovich mechanism, and this
provides an additional algebraic constraint. By adding
Eqs. (8-12) and then integrating, one finds

ρNO + ρN + ρN2
+ ρO + ρO2

=

ρ ∗

NO + ρ ∗

N + ρ ∗

N2
+ ρ ∗

O + ρ ∗

O2
. (16)

3) Linear Dependencies: Equations (14-16) form an
under-constrained linear system. We can selectρNO and
ρN as primary dependent variables and use the linear
system to cast the secondary dependent variables,ρN2

,
ρO, and ρO2

, in terms of the primary via Gaussian
elimination:

ρN2
=

1

2

(
2ρ ∗

N2
+ ρ ∗

N + ρ ∗

NO − ρN − ρNO

)
, (17)

ρO = ρ ∗

N − 2ρ ∗

O2
− ρ ∗

O − ρN , (18)

ρO2
=

1

2

(
−ρ ∗

N + ρ ∗

NO + 4ρ ∗

O2
+ 2ρ ∗

O + ρN − ρNO

)
.

(19)

C. Final Form

For convenience, we select the set of initial con-
centrationsρ ∗

NO = ρ ∗

N = ρ ∗

N2
= ρ ∗

O = ρ ∗

O2
=

10−3 mole/cm3. This gives rise to a pressure ofP =
2.5 × 106 dyne/cm2. Then, using Eqs. (3-8, 17-19), the
reaction ratesωNO andωN become

ωNO = 7.2 × 10−1 − 2.2 × 107ρN + 1.1 × 1013 ρ2

N

−9.4 × 105ρNO − 3.2 × 1013ρNρNO, (20)

ωN = 7.2 × 10−1 − 2.3 × 107ρN − 1.1 × 1013 ρ2

N

+5.8 × 105ρNO − 1.0 × 1013ρNρNO. (21)

These initial conditions are chosen arbitrarily to illustrate
the technique. Thus, we obtain two non-linear ODEs in
the two unknowns,ρNO, ρN :

dρNO

dt
= ωNO(ρNO, ρN), ρNO(0) = 10−3

mole

cm3
,

(22)
dρN

dt
= ωN (ρNO, ρN ), ρN (0) = 10−3

mole

cm3
.

(23)

D. Equilibria

Equations (22-23) have equilibrium points(ρ e
NO, ρ e

N )
whereωNO = 0 and ωN = 0. One of these equilibria
is that typically identified by traditional thermochemistry
and can be associated with a minimization of the Gibbs
free energy. Others exist, which are non-physical because
of either negative or infinite molar concentrations. How-
ever, as demonstrated by Ref. [1], identification of non-
physical equilibria is a critical step in the construction of
the useful one-dimensional SIM. For Eqs. (22-23), five
roots,R1, R2, R3, R4, andR5, are found:

R1 = (ρ e
NO, ρ e

N ) =
(
7.3 × 10−7, 3.7 × 10−8

)
, (24)

R2 = (ρ e
NO, ρ e

N ) =
(
−1.6 × 10−6,−3.1 × 10−8

)
,

(25)

R3 = (ρ e
NO, ρ e

N ) =
(
−5.2 × 10−8,−2.0 × 10−6

)
,

(26)

R4 = (ρ e
NO, ρ e

N ) = (+∞, 0) , (27)

R5 = (ρ e
NO, ρ e

N ) = (−∞, 0) . (28)

Numerical values above all have units ofmole/cm3. Only
R1 is physical. The roots at infinity are identified via the
standard method discussed by Perko [4]. It is easily shown
that the equilibria are precisely those found by means of
traditional chemistry: setting each reaction rate to zero,
r1 = r2 = 0, and thus demanding, from Eqs. (3,4), that

Keq
c,1 =

ρN2
ρO

ρNρNO

, Keq
c,2 =

ρNOρO

ρNρO2

. (29)

Equations (29), in conjunction with the element con-
straints, Eqs. (17-19), form five equations in five un-
knowns. These have exactly the same roots as those found
by settingωNO = 0, ωN = 0.



E. Linear Stability

The dynamics of Eqs. (22,23) are elucidated by study-
ing their behavior near each of the equilibria. Using
standard linearization techniques, Eqs. (22,23) near the
finite equilibrium points behave as

d

dt

(
ρNO − ρ e

NO

ρN − ρ e
N

)

=






∂ωNO

∂ρNO

∣
∣
∣
ρ e

NO
,ρ e

N

∂ωNO

∂ρN

∣
∣
∣
ρ e

NO
,ρ e

N

∂ωN

∂ρNO

∣
∣
∣
ρ e

NO
,ρ e

N

∂ωN

∂ρN

∣
∣
∣
ρ e

NO
,ρ e

N






︸ ︷︷ ︸

≡J

(
ρNO − ρ e

NO

ρN − ρ e
N .

)

(30)

The Jacobian matrixJ acquires a numerical value at
each finite equilibrium. Its eigenvalues,λj , determine the
stability. Magnitudes of the reciprocals of eachλj provide
the time scales of evolution,τj , near the equilibrium.
The eigenvalues associated with each finite equilibrium,
R1, R2, R3, are

R1 : (λ1, λ2) = (−1.2 × 107, 5.4 × 106), (31)

R2 : (λ1, λ2) = (4.4 × 107 ± 8.0 × 106i), (32)

R3 : (λ1, λ2) = (−3.1 × 107,−2.1 × 106). (33)

The units for each eigenvalue ares−1. The time constants
for each equilibria are

R1 : (τ1, τ2) = (8.4 × 10−8 s, 1.8 × 10−7 s),(34)

R2 : (τ1, τ2) = (2.3 × 10−8 s, 2.1 × 10−8 s),(35)

R3 : (τ1, τ2) = (3.2 × 10−8 s, 4.7 × 10−7 s).(36)

The physical rootR3 is stable, and the two finite non-
physical roots are unstable. ForR2, with complex eigen-
values,τ1 is associated with amplitude growth, andτ2

is associated with oscillation time. The fastest time scale
associated with the physical root,τ1 = 3.2 × 10−8 s has
been shown to be closely linked to the molecular collision
time (Powers and Paolucci, [5]). Furthermore, the ratio
of time scales for the physical root near equilibrium
is τ2/τ1 = 1.4 × 101. This gives evidence that even
the two-step Zel’dovich mechanism retains stiffness at
the elevated temperature, and that more general models
which incorporate such kinetics will pose great com-
putational challenges. For ordinary combustion temper-
atures,∼ 1400 K, the stiffness ratio for the Zel’dovich
mechanism dramatically increases to∼ 106. There are
complications in analyzing the stability of roots at infinity,
including fundamentally non-linear behavior. Numerical
experiment suggests thatR4 is an unstable sink/saddle
combination, andR5 is an unstable source.

F. Non-Linear Dynamics

The full dynamics of the evolution of the concentra-
tions as predicted by numerical integration are shown in
Fig. 1. For early time, below the time scale of molecular
collisions, the concentrations are unchanging. Near a time
well predicted by the fast time scaleτ1 ∼ 10−8 s reaction
events commence. At a time well predicted by the slow
time scale τ2 ∼ 10−7 s, the system enters its final
relaxation to the physical equilibrium, Eq. (33).
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Fig. 1. Time evolution of concentrations for the isothermalZel’dovich
mechanism.
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Fig. 2. Invariant manifold for the sample problem of an isothermal
Zel’dovich mechanism.

G. Slow Invariant Manifold

One can obtain the important SIMs by numerically
integrating Eqs. (22,23) from a critical point to another
critical point, see Fig. 2, which focuses on the finite
region of phase space. The curve labeled “SIM” is the
slow invariant manifold; this is the set of points to which
all reaction trajectories are attracted. Also shown are
phase space trajectories for initial conditions that are
close to the SIM. Numerical experiments allow one to
map the trajectories on the so-called Poincaré sphere
[4]. This allows one to project the roots at infinity in
physical space onto a finite space and easily visualize the
trajectories. Figure 3 gives a sketch of the trajectories in
this projection. Because of scaling effects, it is difficult
to graphically exhibit the behavior in the Poincaré pro-
jection; numerical experiments verify the topology shown
here is correct.

While the phase space trajectory approaches an ex-
tremum of the Gibbs free energy near equilibrium, it
is not certain why the path along the SIM is preferred.
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Fig. 3. Sketch of trajectories on projection of Poincaré sphere for the
Zel’dovich mechanism.
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Fig. 4. Surface depicting|∇G| nearR1 along with the trajectory of
the slow invariant manifold for the sample problem of the isothermal
Zel’dovich mechanism.

Consideration of the gradient of the Gibbs free energy
allows an explanation to be formulated in the vicinity of
the equilibrium point. Define the gradient ofG in the
ρN , ρNO phase space to be

∇G ≡






∂G
∂ρNO

∣
∣
∣
ρN

∂G
∂ρN

∣
∣
∣
ρNO




 . (37)

The magnitude is given by|∇G| =
√
∇G · ∇G. At

equilibrium, |∇G| = 0. It takes on positive values away
from the physical equilibrium. For the sample problem,
the surface whose height is proportional to|∇G| is shown
in Fig. 4. There is an obvious valley in Fig. 4. It can
be shown that this valley coincides with a valley in
the gradient of the irreversibility production rate. Further
comparison of the locus of this valley with the invariant
manifold shows, near equilibrium, that they also coincide.
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Fig. 5. Comparison of different theories for reduced kinetics in the
Zel’dovich mechanism.

This behavior near equilibrium has led some to speculate,
cf. Lebiedz [6] that such a valley can elucidate the
SIM far from the equilibrium point. This is not true,
as can be seen in Fig. 5, which shows the SIM, an
excellent approximation to the SIM given by the Maas-
Pope Intrinsic Low Dimensional Manifold (ILDM), and a
poor approximation away from equilibrium given by the
locus of the minimum of the irreversibility production rate
gradient. So two important questions are raised: 1) What
is the connection between the SIM and thermodynamics?
2) What is the connection between dynamics of the
system and its thermodynamics? These questions will be
addressed in more detail.

III. C ONCLUSION

The SIM is the key benchmark to which all methods
of reduced kinetics can be compared. Its construction
is aided by consideration of non-physical equilibria and
points at infinity. While commonly used potentials such as
the Gibbs free energy have some value in elucidating the
dynamics near an equilibrium point, they offer no guid-
ance for the behavior of the system far from equilibrium,
where a more general formulation is required.
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