presented at the

International Workshop on Model
Reduction in Reacting Flow,
Rome, Italy, September 2007

The Thermodynamics of Slow Invariant
Manifolds for Reactive Systems

J. M. Powers, S. Paolucci
University of Notre Dame, Department of Aerospace and Mechanical Engineering, Notre Dame, Indiana, USA

Abstract— Construction of the Slow Invariant Manifold These two reactions proceed according to the law of
(SIM) for a reactive system is coming to be realized as mass action, with a rate modulated by an Arrhenius

the linchpin in a rational method of reduced kinetics. Here _ ;
a method of constructing a finite dimensional SIM based temperature-dependency. The reaction rates are

on identifying critical points and connecting them with

trajectories is shown for a spatially homogeneous reactive T, 4 1 Pn.Po
system. The relation between this analysis and classical as 71 = TP e T pybno [ 1— K 5 - ©))
well as irreversible thermodynamics is examined. e, 1 PNPNO
_Ta2_ _ 1 pynop
[. INTRODUCTION ry = TP~ PnPo, <1 =7 NO o) (4)
Two common problems arise in manifold methods: 1) ¢,2 PNPO,

their calculation can be difficult, and 2) they only form
an approximation in a limited range to the more usefulVariables are, foj = 1,2, the reaction rates;;, and for
SIM of the system. We extend here the developmentof a=1,...,5, the molecular species molar concentrations
method suggested to us by Davis and Skodje [1]: calcup;. We interchangeably employ conventional chemistry
lation of the SIM by integration from various finite and notation for species molar concentration, €g. = [N].
infinite critical points to the stable node of the physicalConstant parameters, for asothermal reaction, are the
equilibrium. We consider a simple but realistic detailedcollision frequency factora;, the temperaturel’, the
kinetic system. The method requires identification oftemperature-sensitivity exponef, the activation tem-
all equilibria of ordinary differential equations (ODEs) peratureTy, ;, and the equilibrium constart’;%. Equi-
describing the time-evolution dynamics of spatially ho-librium thermochemistry shows how to determing
mogeneous systems. Some of these roots will lie in nonin terms of more fundamental thermodynamic quantltles
physical regions of chemical composition space; neverThese standard relations are
theless, they provide the seed for the growth of the SIM,
which describes the long time dynamics of the chemical ( P, )ZiMl Vij (—AG _0>
Xp )

system as it approaches the equilibrium state. A importarfcj = =T }_%TJ j=12. (5

goal is to carefully expose the links between classical
therm.odynam|c_s, the non-equilibrium thermodynamlcs OSjere,Po — 1% 106 dyne/cm? is the reference pressure,
chemical kinetics, and modern mathematical theory ot : M :

R is the universal gas constadt,, i=1Vij 1S the net change

non-linear dynamics on model problems.
y P of moles in reactiory, and AG,° is the change in Gibbs
Il. MODEL PROBLEM free energy at the reference pressure for ffiereaction.

We illustrate our approach for calculating the SIM by Gibbs free energy changes at the reference pressure are
applying it to important problems in reaction kinetics.
One the mechanisms to be discussed is the Zel'dovich AG\’ =7N, + 90 —IN — INoO> (6)
mechamem of fo_rmatlen of nitric QX|de. _We consider AGY =G0 +T8 — T — T8 @)
the special case in which the reaction is isothermal and 2
isobaric. This kinetic model is widely used, is simple
enough that its exposition remains compact, and ric
enough to reveal some of the complexities of multiple
equilibria, chemical stiffness, and a non-trivial SIM.

bove, g,° is the partial molar Gibbs free energy of
species at the reference pressure. This can be determined
by using the definition of Gibbs free energy at the
reference pressurg,° h — T 3,°, whereh, and
A. Reaction Mechanism 5.° are the partial molar enthalpy and entropy at the

K3

The reaction mechanism describes hfv= 5 molecu-  'eference pressure, respectively. Now, tdke- 6000 K,
lar speciesNO, N, N», O, andO,, composed of, =2  an elevated temperature for gas phase reactions. Next,
atomic elementsN and O, react inJ = 2 reversible ©employing thermodynamic data from Sonntagal. [2],

reactions: and kinetic data from Baulctet al. [3], the kinetic rates
. r; from Egs. (3-4) can be numerically specified. The
N+NO = Na+0, j=1, (1) individual molecular species evolve according to Egs. (1-

N+0Oy = NO+O, j=2. (2) 2) at the rates dictated by Eqgs. (3-4). Their evolution is



described by the ODEs and initial conditions: C. Final Form

dbno For convenience, we select the set of initial con-
o = wno=-ritr Dno(0)=PNo.(8)  centrationspyo = PN = PN, = P = PO, =
103 mole/em?. This gives rise to a pressure ¢f =

dp _ .

d—év = wn=-r1—r2 pyn(0) =07y, 9  2.5x10° dyne/cm?. Then, using Egs. (3-8, 17-19), the
dpy reaction ratesvyo andwy become

e = wn=n PO =78.  (0) 1 7 o
5o B ) . wyo = T2x107'—=22x107py 4+ 1.1 x 10'3 5%
5 = wo=ritr, po(0)=po,  (11) —9.4 % 10°5y0 — 3.2 x 1085 7y0,  (20)
dp _ . = 72x1071 =23 %1079y — 1.1 x 10'3 53

d(t)2 = wo, = -T2 Pp,0) =70, (12) wN . PN e PN

+5.8 X 10050 — 1.0 x 10255 7x0.  (21)

Quantities with ax superscript denote the initial state
and w; is the species production rate for species
Equations (8-12) augmented by Egs. (3-4) form five ODE
in five unknowns.

' These initial conditions are chosen arbitrarily to illadé
the technique. Thus, we obtain two non-linear ODESs in
She two unknownsg y o, P

dpno . _ _ _3 mole
= w 5 , 0 - 10 5
B. Conserved Quantities dt vo(Pro-Pw). Prol(0) CWEZZ)
1) Element Conservation: Chemical reactions are dpy 7 ox), B (0)_1073 mole
characterized by the property that the total number of g¢  “N\WNO:PN) PN = cm3
elements remains constant. For the elema&ntthis is (23)
exhibited by the the following linear combination of
Egs. (8-10): D. Equilibria
. 05 o Equations (22-23) have equilibrium poinigy . 7x7)
sz\tfo + géV 42 fl]tvz = 0. (13) wherewyo = 0 andwy = 0. One of these equilibria

is that typically identified by traditional thermochemistr
Equation (13) can be integrated to form the relation ~ and can be associated with a minimization of the Gibbs

free energy. Others exist, which are non-physical because
(14) of either negative or infinite molar concentrations. How-

ever, as demonstrated by Ref. [1], identification of non-
Similarly for O, using Egs. (8,11,12), one finds physical equilibrig is a pritical step in the constructidn_o
the useful one-dimensional SIM. For Eqgs. (22-23), five
roots, Ry, R», R3, R4, and R5, are found:

Pno +Pn + 20N, =Pno + PN + 2PN, -

Po +Pno+200, = Po +Pno+200, (15)
Ri = (PNo.px) = (73x1077,3.7x107% ), (24)

2) Molecule Conservation: Generally, the number of 6 s
= (-1.6x107%-31x107%),

_ (=€ — e
molecules is not constant in chemical reactions. However; 2 — (PNoPN)

it is the case in the Zel'dovich mechanism, and this (25)

provides an additional algebraic constraint. By addingR; = (p5o,7y) = (-5.2x 1078, -2.0 x 1076 ),

Egs. (8-12) and then integrating, one finds (26)
Ry = (ﬁ]\?Ovﬁ]\?) = (—FOO, O) ) (27)

Pno t+ PN + PN, +Po +Po, = R T 0 08
Pro +Dn + P, + 5 + 74, (16) 5 = (Pno:PN) = (=00,0). (28)

] ] ] Numerical values above all have unitsmble/cm3. Only
3) Linear Dependencies. Equations (14-16) form an p ig physical. The roots at infinity are identified via the
under-constrained linear system. We can sefieh and  gtandard method discussed by Perko [4]. It is easily shown
Py as primary dependent variables and use the lineg,,¢ the equilibria are precisely those found by means of
system to cast the secondary dependent variaples,  traditional chemistry: setting each reaction rate to zero,

ﬁi_?’ _a”tf?' Po,, In terms of the primary via Gaussian .. _ ., — (, and thus demanding, from Egs. (3,4), that
elimination:

) L K = Pnlo g _ Pvolo (o9

v, = 5 (268, +PN +PNo =Py —Pno)s (A7) 1 ByPro 2 PnPos

Po = Pn —2P0, —Po — PN (18) Equations (29), in conjunction with the element con-

_ 1, _ _ _ _ _ _ straints, Egs. (17-19), form five equations in five un-
— o= * * 4 * 2 * _ ] y ’

Po- 2 (=N +Pro +403, + 276 +Px ~ Pno) knowns. These have exactly the same roots as those found

(19) by settingwyo =0, wy = 0.



E. Linear Stability concentration (mole/cc)

The dynamics of Egs. (22,23) are elucidated by study-1x10° [NO]
ing their behavior near each of the equilibria. Using
standard linearization techniques, Egs. (22,23) near thex10™”
finite equilibrium points behave as

— — e R
d (Pno—Pro )\ _ 2x107
- - e
dt \ PN — PN
7
dwno dwno 1x10
8ﬁNO*e*e aﬁN hH.e poe ﬁ —pe
PNOP PNOPN NO NO) (30)
80.)]\] 80.)]\] D —D .
6ﬁNo H.€e pH.e aﬁN ‘— e = e pN pN [N]
PNOPN PNO'PN t(s)
10710 10° 108 107 10°°

=J
The Jacobian matrixJ acquires a numerical value at rig 1. Time evolution of concentrations for the isothermaldovich
each finite equilibrium. Its eigenvalues;, determine the mechanism.
stability. Magnitudes of the reciprocals of eachprovide
the time scales of evolutiong;, near the equilibrium. x10
The eigenvalues associated with each finite equilibrium, ‘

5L
R, R, R3, are )
Ri:(M\,22) = (-1.2x107,5.4x10%), (31) 0o — S
Ro:(A,A2) = (4.4x107+8.0x10%), (32) S
Rs: (A, A2) = (—3.1x107,—2.1x 10°%). (33) g 5 [
The units for each eigenvalue are!. The time constants g A\
for each equilibria are = 10
Ry:(r,7) = (84x107%s,1.8x1077 s),(34) B
Ry:(m,m) = (23x10785,2.1x1078 s),(35) N
Ry:(r,m) = (32x107%5,4.7x 1077 5).(36) 0l , U
The physical rootR; is stable, and the two finite non- s // / //"/ 2\ L
physical roots are unstable. F&s, with complex eigen- 9 — 3 ‘ > 1 ‘ o 1 5
values,r; is associated with amplitude growth, ang x10°

is associated with oscillation time. The fastest time scale [NOJ (mole/cc)

associated with the phySical roof, = 3.2 x 107° s has g. 2. Invariant manifold for the sample problem of an issthal
been shown to be closely linked to the molecular collisionzeldovich mechanism.

time (Powers and Paolucci, [5]). Furthermore, the ratio

of time scales for the physical root near equilibrium

is »/m1 = 1.4 x 10'. This gives evidence that even G. Sow Invariant Manifold

the two-step Zel'dovich mechanism retains stiffness at . . .

the elevated temperature, and that more general mode_lsOne can obtain the important .S,IMS by numerically
which incorporate such kinetics will pose great Com_mggratlng_ Egs. (22’_23) from a critical point to ano_th_er
putational challenges. For ordinary combustion temper(—:”t'_c"]‘I point, see Fig. 2, which focuses OP th? _f|n|te
atures,~ 1400 K, the stiffness ratio for the Zel'dovich "€9'0" of _phase Space. T,he, curve Iabeled_ SIM |s.the
mechanism dramatically increases o 10°. There are slow invariant manifold; this is the set of points to which

complications in analyzing the stability of roots at infypit &Il reaction trajectories are attracted. Also shown are
including fundamentally non-linear behavior. NumericalPh@se space trajectories for initial conditions that are

experiment suggests thdt, is an unstable sink/saddle close to the_SIM._NumencaI experiments gllow, one to
combination, and?s is an unstable source. map the trajectories on the so-called Poincaré sphere

[4]. This allows one to project the roots at infinity in

F. Non-Linear Dynamics physical space onto a finite space and easily visualize the

The full dynamics of the evolution of the concentra-trajectories. Figure 3 gives a sketch of the trajectories in
tions as predicted by numerical integration are shown ifthis projection. Because of scaling effects, it is difficult
Fig. 1. For early time, below the time scale of molecularto graphically exhibit the behavior in the Poincaré pro-
collisions, the concentrations are unchanging. Near a timgction; numerical experiments verify the topology shown
well predicted by the fast time scate ~ 102 s reaction  here is correct.
events commence. At a time well predicted by the slow While the phase space trajectory approaches an ex-
time scalers ~ 107 s, the system enters its final tremum of the Gibbs free energy near equilibrium, it
relaxation to the physical equilibrium, Eq. (33). is not certain why the path along the SIM is preferred.
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Fig. 5. Comparison of different theories for reduced kirgetin the
Zel'dovich mechanism.

soure This behavior near equilibrium has led some to speculate,

cf. Lebiedz [6] that such a valley can elucidate the
SIM far from the equilibrium point. This is not true,

as can be seen in Fig. 5, which shows the SIM, an
excellent approximation to the SIM given by the Maas-

Pope Intrinsic Low Dimensional Manifold (ILDM), and a
Fig. 3. Sketch of trajectories on projection of Poincarbesp for the poor approximation away from equilibrium given by the

Zel'dovich mechanism.
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locus of the minimum of the irreversibility production rate
gradient. So two important questions are raised: 1) What
is the connection between the SIM and thermodynamics?
2) What is the connection between dynamics of the
system and its thermodynamics? These questions will be
addressed in more detail.

Ill. CONCLUSION

The SIM is the key benchmark to which all methods

2735%10° of reduced kinetics can be compared. Its construction
5,,miecriS @ided by consideration of non-physical equilibria and
points at infinity. While commonly used potentials such as
;.Z' 2725%10° the Gibbs free energy have some value in elucidating the
dynamics near an equilibrium point, they offer no guid-

ance for the behavior of the system far from equilibrium,

Fig. 4. Surface depictingV G| near R, along with the trajectory of
the slow invariant manifold for the sample problem of thethsomal
Zel'dovich mechanism.

Consideration of the gradient of the Gibbs free energy
allows an explanation to be formulated in the vicinity of
the equilibrium point. Define the gradient @f in the

PN Pno Pbhase space to be

[‘)QG
_ PNO D
ve=| | 37)
9PN Pno

The magnitude is given byVG| = VvVG-VG. At
equilibrium, |[VG| = 0. It takes on positive values away
from the physical equilibrium. For the sample problem,
the surface whose height is proportiona|¥oG| is shown

in Fig. 4. There is an obvious valley in Fig. 4. It can
be shown that this valley coincides with a valley in
the gradient of the irreversibility production rate. Fuath
comparison of the locus of this valley with the invariant
manifold shows, near equilibrium, that they also coincide.

where a more general formulation is required.
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