On the Coupling Between Length and Time Scales in Reactive Flow

Joseph M. Powers, Samuel Paolucci, Ashraf N. Al-Khateeb

Department of Aerospace and Mechanical Engineering

University of Notre Dame, Notre Dame, Indiana

International Workshop on Model Reduction in Reacting Flow

Rome

3 September 2007

Support: National Science Foundation, ND Center for Applied Mathematics

Objectives

- To illustrate the full coupling of length and time scales in reactive flows.
- To give evidence that a mathematically verified estimate for the finest length scale in a continuum model of a laminar flame with detailed kinetics is $\mathcal{O}(10^{-4} \ cm)$.
- To show such a continuum model can be macrovalidated by comparing predictions of flames speeds to observations, while noting 10^{-4} cm-scale structures are too fine for present-day diagnostics.

Scale Coupling in Paradigm Linear System

• solving PDE gives

$$\psi = C \exp(-(\nu k^2 + \alpha + ika)t) \exp(ikx)$$

- length scale $\ell \sim 1/k$; time scale $\tau \sim ((\nu k^2 + \alpha)^2 + k^2 a^2)^{-1/2}$
- small $\ell, \tau \sim \ell^2/\nu;$ $\;$ large $\ell, \tau \sim 1/\alpha$
- Length scale fully coupled to time scale:

$$\tau \sim \frac{\ell^2}{\nu} \left(1 - \ell^2 \left(\frac{\alpha}{\nu} + \frac{a^2}{2\nu^2} \right) + \dots \right)$$

• local fast reaction induces high k, small ℓ , and small τ .

Constitutive Relations

$$J_{i}^{m} = \rho \sum_{\substack{k=1\\k\neq i}}^{N} \frac{M_{i}D_{ik}Y_{k}}{M} \left(\frac{1}{\chi_{k}}\frac{\partial\chi_{k}}{\partial\tilde{x}} + \left(1 - \frac{M_{k}}{M}\right)\frac{1}{p}\frac{\partial p}{\partial\tilde{x}}\right) - D_{i}^{T}\frac{1}{T}\frac{\partial T}{\partial\tilde{x}},$$

$$J^{q} = q + \sum_{i=1}^{N} J_{i}^{m}h_{i} - \Re T \sum_{i=1}^{N} \frac{D_{i}^{T}}{M_{i}} \left(\frac{1}{\chi_{i}}\frac{\partial\chi_{i}}{\partial\tilde{x}} + \left(1 - \frac{M_{i}}{M}\right)\frac{1}{p}\frac{\partial p}{\partial\tilde{x}}\right),$$

$$\dot{\omega}_{i} = \sum_{j=1}^{J} \nu_{ij}a_{j}T^{\beta_{j}}\exp\left(\frac{-\overline{E}_{j}}{\overline{R}T}\right) \left(\prod_{k=1}^{N}\overline{\rho}_{k}^{\nu_{k}j}\right) \left(1 - \frac{1}{K_{c,j}}\prod_{k=1}^{N}\overline{\rho}_{k}^{\nu_{k}j}\right)$$

$$q = -k\frac{\partial T}{\partial\tilde{x}},$$

$$p = \Re T \sum_{i=1}^{N} \frac{\rho Y_{i}}{M_{i}},$$

and others ...

Dynamical System Formulation

• PDEs
$$\longrightarrow$$
 ODEs

$$\frac{d}{dx} (\rho u) = 0,$$

$$\frac{d}{dx} (\rho u h + J^q) = 0,$$

$$\frac{d}{dx} (\rho u Y_l^e + J_l^e) = 0, \quad l = 1, \dots, L - 1,$$

$$\frac{d}{dx} (\rho u Y_i + J_i^m) = \dot{\omega}_i M_i, \quad i = 1, \dots, N - L.$$

 $\bullet \ \mathsf{ODEs} \longrightarrow \mathsf{DAEs}$

$$\mathbf{A}(\mathbf{z}) \cdot \frac{d\mathbf{z}}{dx} = \mathbf{f}(\mathbf{z}).$$

Results

Steady Laminar Premixed Hydrogen-Air Flame

- N = 9 species, L = 3 atomic elements, and J = 19 reversible reactions,
- Stoichiometric Hydrogen-Air: $2H_2 + (O_2 + 3.76N_2)$,
- $p_o = 1 atm$,
- CHEMKIN and IMSL are employed.

Macro-Mathematical Verification

• Good "picture norm" agreement with Smooke et al., '83.

Macro-Experimental Validation

• Good agreement with flame speed data (Dixon-Lewis, '79).

Variation of grid shows physical scales are at $\mathcal{O}(10^{-4}\ cm)$

- 4000% error in Y_{OH} when $\Delta x = 10^{-2} cm!$
- 4% error in Y_{OH} at $\Delta x \sim 10^{-4} \ cm$.

AMR strategy shows physical scales are at $\mathcal{O}(10^{-4}\ cm)$

- PREMIX algorithm has an adaptive mesh refinement option for steady laminar one-dimensional flames
- Using common error-control criteria, the algorithm selects a finest grid of $6 \times 10^{-5} cm$ for an $H_2 air$ flame at 1 atm.

Spatial eigenvalue analysis shows scales are $\mathcal{O}(10^{-4}\ cm)$

• Found from generalized eigenvalues of $\mathbf{A}(\mathbf{z}) \cdot d\mathbf{z}/dx = \mathbf{f}(\mathbf{z})$.

Temporal eigenvalue analysis estimates scales are $\mathcal{O}(10^{-4}\ cm)$

- Link between space and time scales in steady flames given by advection time of a Lagrangian particle through the reaction zone.
- Simple time scale estimate found from temporal eigenvalues of spatially homogeneous problem $d\mathbf{z}/dt = \mathbf{f}(\mathbf{z})$ shows $\tau_{finest} \sim 3 \times 10^{-7} s$ in induction zone.
- Product of flame speed and finest time scale estimates the finest length scale:

 $\ell_{finest} \sim S\tau_{finest}$ $\ell_{finest} \sim (200 \ cm/s)(3 \times 10^{-7} \ s) = 6 \times 10^{-5} \ cm$ $\ell_{finest} = \mathcal{O}(10^{-4} \ cm)$

Mean-Free-Path Estimate

- Mean-free-path scale is the cutoff *minimum* length scale associated with continuum theories.
- Simple estimate given by Vincenti and Kruger, 1965:

$$\ell_{mfp} = \frac{M}{\sqrt{2}\mathcal{N}\pi d^2\rho}.$$

• Continuum theory linearized near equilibrium reveals *analytically* that continuum length scales are correlated with mean free path:

$$\ell_{finest} \approx \ell_{mfp} \underbrace{\left(\frac{8\sqrt{\pi}e^{\frac{E}{\Re T}}\sqrt{K_{eq}}\rho S}{(16\overline{\rho}_{O_2i} + 8\overline{\rho}_{Oi})^{3/2}\mathcal{N}\sqrt{kTm}}\right)}_{=O(1)}$$

Independent unsteady calculations show scales are $\mathcal{O}(10^{-4})~cm$

For recent DNS of unsteady hydrogen-air flames...

"The domain is $4.1 \ mm$ in each of the two spatial directions. A uniform grid spacing of $4.3 \ microns$ was required to resolve the ignition fronts..."

J. H. Chen, *et al.*, "Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities.
I. Fundamental analysis and diagnostics," *Combustion and Flame*, 145:128-144, 2006.

Comparison with Other Published Results

Ref.	Mixture molar ratio	$\Delta x, (cm)$	$\ell_{finest}, (cm)$	$\ell_{mfp}, (cm)$
1	$1.26H_2 + O_2 + 3.76N_2$	2.50×10^{-2}	8.05×10^{-4}	4.33×10^{-5}
2	$CH_4 + 2O_2 + 10N_2$	unknown	$6.12 imes 10^{-4}$	4.33×10^{-5}
3	$0.59H_2 + O_2 + 3.76N_2$	3.54×10^{-2}	4.35×10^{-5}	7.84×10^{-6}
4	$CH_4 + 2O_2 + 10N_2$	1.56×10^{-3}	$2.89 imes 10^{-5}$	6.68×10^{-6}

- 1. Katta V. R. and Roquemore W. M., 1995, Combustion and Flame, 102 (1-2), pp. 21-40.
- 2. Najm H. N. and Wyckoff P. S., 1997, Combustion and Flame, 110 (1-2), pp. 92-112.
- 3. Patnaik G. and Kailasanath K., 1994, Combustion and Flame, 99 (2), pp. 247-253.
- 4. Knio O. M. and Najm H. N., 2000, Proc. Combustion Institute, 28, pp. 1851-1857.

The modified equation for the paradigm problem, inert limit

leading order numerical dispersion

- Discretization-based terms alter the dynamics.
- Numerical diffusion could suppress physical instability.

• To solve for the steady structure

$$a\frac{d\psi}{dx} = \nu \frac{d^2\psi}{dx^2},$$

Exact solution $\Rightarrow \psi = C_1 + C_2 \exp\left(\frac{ax}{\nu}\right).$

- Analogous to what has been done in our work

$$\lambda = [0 \ a/\nu],$$
$$\Rightarrow \ell_{finest} = \nu/a.$$

– The required grid resolution is $\Delta x < \nu/a$.

• This grid size guarantees that the steady parts of the dissipation and dispersion errors in the model problem are small.

Implications for combustion

- Equilibrium quantities are insensitive to resolution of fine scales.
- Due to non-linearity, errors at micro-scale level may alter the macro-scale behavior.
- The sensitivity of results to fine scale structures is not known *a priori*.
- Lack of resolution may explain some failures, e.g. DDT.
- Linear stability analysis:
 - Requires the fully resolved steady state structure.
 - For one-step kinetics, Sharpe, '03 shows failure to resolve steady structures leads to quantitative and qualitative errors in premixed laminar flame dynamics.

Conclusions

- Verification of species concentrations in one-dimensional steady flames require 10^{-4} cm-level resolution.
- Result holds for multi-dimensional unsteady flows (Chen, 2006).
- The finest length scales are fully reflective of the underlying physics and not the particular mixture, chemical kinetics mechanism, or numerical method.
- The required grid resolution can be easily estimated *a priori* by a simple mean-free-path calculation.
- Validation of steady one-dimensional flame speeds is not difficult.
- Validation of complex flame dynamics will likely require 10^{-4} cm resolution.