
On the Computation of Approximate Slow
Invariant Manifolds

Samuel Paolucci, Joseph M. Powers, and Ashraf N. Al-Khateeb
Department of Aerospace and Mechanical Engineering

University of Notre Dame, Notre Dame, Indiana

International Workshop of Model Reduction in Reacting Flow

Rome

4 September 2007

support: National Science Foundation, ND Center for Applied Mathematics



Major Issues in Reduced Modeling of Reactive Flows

• How to construct a Slow Invariant Manifold (SIM)?

• SIM for ODEs is different than SIM for PDEs.

• How to construct a SIM for PDEs?



Partial Review of Manifold Methods in Reactive Systems

• Davis and Skodje, JCP, 1999: demonstration that (Intrinsic Low

Dimensional Manifold) ILDM is not SIM in simple non-linear

ODEs, finds SIM in simple ODEs,

• Singh, Powers, and Paolucci, JCP, 2002: use ILDM to construct

Approximate SIM (ASIM) in simple and detailed PDEs,

• Ren and Pope, C&F, 2006: show conditions for chemical manifold

to approximate reaction-diffusion system,

• Davis, JPC, 2006: systematic development of manifolds for

reaction-diffusion,

• Lam, CST, 2007: considers CSP for reaction-diffusion coupling.



Motivation

• Severe stiffness in reactive flow systems with detailed gas phase

chemical kinetics renders fully resolved simulations of many

systems to be impractical.

• ILDM method can reduce computational time while retaining

essential fidelity of full detailed kinetics.

• The ILDM is only an approximation of the SIM.

• Using ILDM in systems with diffusion can lead to large errors

at boundaries and when diffusion time scales are comparable to

those of reactions.

• An Approximate Slow Invariant Manifold (ASIM) is developed for

systems where reactions couple with diffusion.



Chemical Kinetics Modeled as a Dynamical System

• ILDM developed for spatially homogeneous premixed reactor:

dy

dt
= f(y), y(0) = y0, y ∈ R

n,

y = (h, p, Y1, Y2, ..., Yn−2)
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Eigenvalues and Eigenvectors from Decomposition of Jacobi an

fy = J = VΛṼ, Ṽ = V−1,

V =
(

Vs Vf

)

,

Λ =




Λ(s) 0

0 Λ(f)



 .

• The time scales associated with the dynamical system are the

reciprocal of the eigenvalues:

τi =
1

|λ(i)|
.



Mathematical Model for ILDM

• With z = Ṽy and g = f − fyy

1

λ(i)

(

dzi

dt
+ ṽi

n∑

j=1

dvj

dt
zj

)

= zi +
ṽig

λ(i)

, i = 1, . . . , n,

• By equilibrating the fast dynamics

zi +
ṽig

λ(i)

= 0

︸ ︷︷ ︸

ILDM

, i = m + 1, . . . , n. ⇒ Ṽf f = 0
︸ ︷︷ ︸

ILDM

.

• Slow dynamics approximated from differential algebraic equa-

tions on the ILDM

Ṽs

dy

dt
= Ṽsf , 0 = Ṽf f .



SIM vs. ILDM

• An invariant manifold is defined as a subspace S ⊂ R
n if for any

solution y(t), y(0) ∈ S, implies that for some T > 0, y(t) ∈ S

for all t ∈ [0, T ].

• Slow Invariant Manifold (SIM) is a trajectory in phase space, and

the vector f must be tangent to it.

• ILDM is an approximation of the SIM and is not a phase space

trajectory.

• ILDM approximation gives rise to an intrinsic error which de-

creases as stiffness increases.



Comparison of the SIM with the ILDM

• Example from Davis and Skodje, J. Chem. Phys., 1999:

dy

dt
=

d

dt

(

y1

y2

)

=

(

−y1

−γy2 +
(γ−1)y1+γy2

1

(1+y1)2

)

= f(y),

• The ILDM for this system is given by

Ṽf f = 0, ⇒ y2 =
y1

1 + y1

+
2y2

1

γ(γ − 1)(1 + y1)3
,

• while the SIM is given by

y2 = y1(1 − y1 + y2
1 − y3

1 + y4
1 + . . . ) =

y1

1 + y1

.



Construction of the SIM via Trajectories

• An exact SIM can be found by identifying all critical points and

connecting them with trajectories (Davis, Skodie, 1999; Creta, et

al. 2006).

• Useful for ODEs.

• Equilibrium points at infinity must be considered.

• Not all invariant manifolds are attracting.



Zel’dovich Mechanism for NO Production

N + NO ⇋ N2 + O

N + O2 ⇋ NO + O

• spatially homogeneous,

• isothermal and isobaric, T = 6000 K , P = 2.5 bar,

• law of mass action with reversible Arrhenius kinetics,

• kinetic data from Baulch, et al., 2005,

• thermodynamic data from Sonntag, et al., 2003.



Zel’dovich Mechanism: ODEs

d[NO]

dt
= r2 − r1 = ω̇[NO], [NO](t = 0) = [NO]o,

d[N ]

dt
= −r1 − r2 = ω̇[N ], [N ](t = 0) = [N ]o,

d[N2]

dt
= r1 = ω̇[N2], [N2](t = 0) = [N2]o,

d[O]

dt
= r1 + r2 = ω̇[O], [O](t = 0) = [O]o,

d[O2]

dt
= −r2 = ω̇[O2], [O2](t = 0) = [O2]o,

r1 = k1[N ][NO]

(

1 −
1

Keq1

[N2][O]

[N ][NO]

)

, Keq1 = exp

(
−∆Go

1

ℜT

)

r2 = k2[N ][O2]

(

1 −
1

Keq2

[NO][O]

[N ][O2]

)

, Keq2 = exp

(
−∆Go

2

ℜT

)

.



Zel’dovich Mechanism: DAEs

d[NO]

dt
= ω̇[NO],

d[N ]

dt
= ω̇[N ],

[NO] + [O] + 2[O2] = [NO]o + [O]o + 2[O2]o ≡ C1,

[NO] + [N ] + 2[N2] = [NO]o + [N ]o + 2[N2]o ≡ C2,

[NO] + [N ] + [N2] + [O2] + [O] = [NO]o + [N ]o + [N2]o

+ [O2]o + [O]o ≡ C3.

Constraints for element and molecule conservation.



Classical Dynamic Systems Form

d[NO]

dt
= ˆ̇ω[NO] = 0.72 − 9.4 × 105[NO] + 2.2 × 107[N ]

− 3.2 × 1013[N ][NO] + 1.1 × 1013[N ]2,

d[N ]

dt
= ˆ̇ω[N ] = 0.72 + 5.8 × 105[NO] − 2.3 × 107[N ]

− 1.0 × 1013[N ][NO] − 1.1 × 1013[N ]2.

Constants evaluated for T = 6000 K , P = 2.5 bar, C1 = C2 =

4 × 10−6 mole/cc, ∆Go
1 = −2.3 × 1012 erg/mole, ∆Go

2 =

−2.0×1012 erg/mole. Algebraic constraints absorbed into ODEs.



Species Evolution in Time
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Dynamical Systems Approach to Construct SIM

Finite equilibria and linear stability:

1. ([NO], [N ]) = (−1.6 × 10−6,−3.1 × 10−8),

(λ1, λ2) = (5.4 × 106,−1.2 × 107) saddle (unstable)

2. ([NO], [N ]) = (−5.2 × 10−8,−2.0 × 10−6),

(λ1, λ2) = (4.4 × 107 ± 8.0 × 106i) spiral source (unstable)

3. ([NO], [N ]) = (7.3 × 10−7, 3.7 × 10−8),

(λ1, λ2) = (−2.1 × 106,−3.1 × 107) sink (stable, physical)

stiffness ratio = λ2/λ1 = 14.7

Equilibria at infinity and non-linear stability

1. ([NO], [N ]) → (+∞, 0) sink/saddle (unstable),

2. ([NO], [N ]) → (−∞, 0) source (unstable).



Detailed Phase Space Map with All Finite Equilibria
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Projected Phase Space from Poincar é’s Sphere
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ASIM for Reaction-Diffusion PDEs

• Slow dynamics can be approximated by the ASIM

Ṽs

∂y

∂t
= Ṽsf − Ṽs

∂h

∂x
,

0 = Ṽf f − Ṽf

∂h

∂x
.

• Spatially discretize to form differential-algebraic equations (DAEs):

Ṽsi

dyi

dt
= Ṽsifi − Ṽsi

hi+1 − hi−1

2∆x
,

0 = Ṽf i
fi − Ṽf i

hi+1 − hi−1

2∆x
.

• Solve numerically with DASSL

• Ṽs, Ṽf computed in situ; easily fixed for a priori computation



Davis-Skodje Example Extended to Reaction-Diffusion

∂y

∂t
= f(y) −D

∂h

∂x

• Boundary conditions are chosen on the SIM

y(t, 0) = 0, y(t, 1) =

(

1

1
2

+ 1
4γ(γ−1)

)

.

• Initial conditions

y(0, x) =




x

(
1
2

+ 1
4γ(γ−1)

)

x



 .



Davis-Skodje Reaction-Diffusion Results
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• Solution at t = 5, for γ = 10 with varying D.

• PDE solutions are fully resolved.



Reaction Diffusion Example Results

• The global error when using ASIM is small in general, and is

similar to that incurred by the full PDE near steady state.
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NO Production Reaction-Diffusion System

• Isothermal and isobaric, T = 3500 K,P = 1.5 bar, with

Neumann boundary conditions,and initial distribution:
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NO Production Reaction Diffusion System

• At t = 10−6 s.
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Conclusions

• No robust analysis currently exists to determine reaction and

diffusion time scales a priori.

• The ASIM couples reaction and diffusion while systematically

equilibrating fast time scales.

• Casting the ASIM method in terms of differential-algebraic equa-

tions is an effective way to robustly implement the method.

• At this point the fast and slow subspace decomposition is depen-

dent only on reaction and should itself be modified to include fast

and slow diffusion time scales.

• The error incurred in approximating the slow dynamics by the

ASIM is small in general.


