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Abstract— Approximate Slow Invariant Manifolds
(ASIMs) in reactive flow systems are described by an
elliptic system of partial differential equations. This work
addresses the efficient construction of these manifolds and
their coupling to the slow dynamics. Results are given for a
simple benchmark system and for more realistic systems.

I. INTRODUCTION

A wide variety of combustion processes involve a large
number of elementary reactions occurring simultaneously
within a complex flow field. These processes are modeled
by a large number of partial differential equations (PDEs)
representing the evolution of numerous reactive chemical
species, coupled with the full Navier-Stokes equations.
Fully resolved solution of these equations, which incor-
porate detailed finite rate chemical kinetics, often requires
a prohibitive amount of computational resources. Hence,
there is a need to develop methods which rationally
reduce the model equations such that accurate numerical
simulations can be accomplished in a reasonable amount
of computational time.

Elementary chemical reactions occur over a wide range
of scales which is manifested as stiffness in the model
equations, and subsequently high computational costs.
For stable systems, this stiffness can be reduced by
systematically equilibrating the fast time scale chemical
processes and resolving only the relevant slow time scales.
The reduced model equations describe the slow dynamics
under the assumption that the fast dynamics can be
neglected. Most chemical time scales are faster than time
scales typically used to model continuum phenomena such
as advection and diffusion. Nevertheless, it is important
that the reduced model equations maintain the coupling of
the flow processes with those chemical processes which
occur at similar time scales. Singh, et al. [1] address
how the coupling of fluid and chemical processes can be
maintained such that an approximate and less expensive
numerical solution of the reduced model equations is con-
sistent with the more accurate and expensive numerical
solution of the full model equations.

In realistic problems it is important to achieve compu-
tational efficiency for simulating spatially inhomogeneous
reactive systems which are modeled by PDEs and which
have infinite dimensional invariant manifolds. The present
work addresses the construction of ASIMs as described
by Singh, et al. [1]. In their construction, the full model
equations are projected onto the fast and slow basis vec-
tors associated with chemistry. A set of elliptic PDEs is
obtained by equilibrating the fast dynamics. These elliptic

PDEs are analogous to algebraic equations describing
the commonly used Intrinsic Low Dimensional Manifold
(ILDM), [1]. The elliptic PDEs describe the infinite-
dimensional ASIM to which the reactive flow system
relaxes before reaching steady state. The ASIM accounts
for the effects of advection and diffusion in the reactive
flow system. When using the ASIM, a set of elliptic PDEs
in physical space, coupled with time-dependent reduced
PDEs associated with the slow dynamics, is solved.
The present work addresses the efficient construction of
these manifolds and their coupling to the slow dynamics.
Results are given for a simple benchmark system and for
more realistic systems.

II. REACTIVE FLOW EQUATIONS

The governing equations for a reacting flow system can
be written in the following compact form:

∂y

∂t
= f(y) −∇ · h(y), (1)

where y ∈ R
n represents a set of dependent variables,

h(y) represents the advective and diffusive flux vectors,
and f(y) represents the reaction source term. The inde-
pendent time and space variables are t and x, respectively.

We rewrite the advection-diffusion-reaction equations
in terms of a new set of variables defined by z = Ṽ · y,
where

Ṽ = V−1 =

(

Ṽs

Ṽf

)

(2)

and
V =

(

Vs Vf

)

(3)

is the eigenvector matrix of the Jacobian of the source
term f . Assuming m slow variables, then Ṽs is of size
m × n, while Ṽf is of size (n − m) × n. We note that
the basis V is derived solely from the chemistry of a
spatially homogeneous system. While this will eventually
lead to an improved estimate of the system’s behavior, a
better basis on which to project would take account of the
infinite-dimensional eigenfunctions associated with the
advection-diffusion operator. This, however, is difficult.

Under some assumptions, Singh, et al. [1] have shown
that the slow dynamics are described by

Ṽs ·
∂y

∂t
= Ṽs · f − Ṽs · ∇ · h, (4)

and this evolution equation couples with the equation for
the infinite-dimensional manifold which accounts for the
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effects of advection and diffusion:

0 = Ṽf · f − Ṽf · ∇ · h. (5)

Equation (5) represents the infinite-dimensional ASIM on
which the slow dynamics evolve. For two- and three-
dimensional reactive flows, the ASIM is described by a
set of elliptic partial differential equations. Upon spatial
discretization of Eqs. (4) and (5), the slow dynamics are
described by a system of differential algebraic equations
(DAEs) which have to be solved together with prescribed
boundary conditions.

III. RESULTS

The basic problem is to efficiently and accurately
compute an approximation to the slow invariant manifold
embedded in the infinite-dimensional space. In order to
test the accuracy of the numerical construction of the
ASIM we first use the generalized Davis-Skodje model
(see [1] and [2]) which includes diffusion effects and is
defined in the domain x ∈ [0, 1]:

∂y1

∂t
= −y1 + D1

∂2y1

∂x2
, (6)

∂y2

∂t
= −γy2 +

(γ − 1)y1 + γy2

1

(1 + y1)2
+ D2

∂2y2

∂x2
, (7)

with boundary conditions

y1(t, 0) = y2(t, 0) = 0, and , y1(t, 1) = a, y2(t, 1) = b.

(8)
where γ > 1 gives a measure of stiffness for the system,
D1 > 0 and D2 > 0 are diffusion coefficients, and a and
b are arbitrary constants. If γ is increased, the stiffness of
the system will increase.

In addition to discussing the accuracy of the con-
struction, we characterize the attractiveness of the slow
manifold as a function of γ, D1, D2, a, and b, and given
arbitrary initial conditions, provide an efficient strategy to
determine approximately the time it takes for the solution
trajectory to be sufficiently close to the slow manifold and
the corresponding location near the manifold.

Subsequently, we demonstrate the the efficiency of
the algorithm by solving a reaction-diffusion problem
which describes the NO formation using the Zel’dovich
mechanism, and other more complex systems.

IV. CONCLUSION

While no robust analysis exists to determine advection
and diffusion time scales a priori, we find that in reactive
flow systems, in which advection and diffusion have
time scales comparable to those of reactions, the ASIM
provides a better approximation of the slow dynamics
compared to most other reduction strategies. Most impor-
tantly, we demonstrate that the ASIM can in general be
efficiently computed and subsequently we show that the
slow dynamics of relevant advection-diffusion-reaction
systems can be modeled with a substantial reduction in
computational cost.
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