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Abstract 

Two-dimensional reactive Navier-Stokes equations 
are solved using a simple implicit Beam-Warming fi­
nite difference scheme. Comparisons of the detona­
tion wave solutions of reactive Euler equations and 
reactive Navier-Stokes equations show that physical 
diffusion is important at high resolution when the 
numerical diffusion becomes negligible. Hence, for 
accurate detonation wave solutions it is necessary to 
solve full reactive Navier-Stokes equations which in­
clude physical diffusion. High grid resolution and use 
of physical diffusion enables the use of simple cen­
tral difference approximations for spatial derivatives. 
Also, implicit time stepping allows larger time steps 
relative to explicit schemes at the expense of inver­
sion of a series of block tri-diagonal matrices with 
small block sizes. Sample problems indicate that by 
using this method the computations are up to five 
times faster than the Roe's method, which is com­
monly used in detonation computations. 

Introduction 

This study will describe two-dimensional deto­
nation wave solutions of the compressible reactive 
Navier-Stokes equations. A detonation wave is a 
strong shock wave propagating in a reactive gas, fol­
lowed by a thin exothermic reaction zone. The en­
ergy of the reaction supports the shock wave. As 
discussed in detail by Fickett and Davis1 , a steady 
one-dimensional detonation with a spatially resolved 
reaction zone structure is known as a ZND wave, 
named after Zeldovich, von Neumann, and Dering. 
In experiments2 and calculations3 •4 •5 with simpli­
fied models it has been observed and predicted that 
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these ZND waves can be unstable and exhibit a 
cellular structure in the transverse direction. In 
experiments2 , detonation in a tube with walls coated 
with a thin layer of soot etches detailed regular pat­
terns on the tube walls, indicating the existence of cel­
lular detonation wave structures. For inviscid cases, 
a normal mode linear stability analysis, in one di­
mension by Lee and Stewart3 , in two dimensions by 
Short and Stewart4 and Clavin, et al.6 demonstrates 
the fundamental instability of the one-dimensional 
ZND structure to longitudinal and transverse distur­
bances. Both theoretical and numerical structure of 
one and two-dimensional detonations has been inves­
tigated by Bourlioux, et al.7•8 Grismer and Powers9 

show numerically that detonations which are guaran­
teed stable in one dimension can be unstable when 
the geometry is relaxed to include two-dimensional 
effects. Recently Williams, et al.10 have shown sim­
ilar computations for three dimensional geometries. 
Lastly we note that Clarke, et al.11 have studied the 
transition to detonation in a viscous gas, but did not 
consider stability. 

Except for Ref. 11, all these calculations are done 
with reactive Euler equations, and the two dimen­
sional cellular structures turn out to depend on grid 
resolution, which indicates that numerical diffusion is 
playing a determining role in predicting the physics. 
To remedy this, we reintroduce in this study the usu­
ally neglected physical mechanisms of mass, momen­
tum and energy diffusion to the conservation equa­
tions. It can be shown, as done by Lindstr6m12

, that 
at low grid resolutions the solutions of both reactive 
Euler equations and reactive Navier-Stokes equations 
are similar, because the numerical diffusion domi­
nates over physical diffusion. However, as we increase 
the grid resolution the numerical diffusion decreases, 
and physical diffusion becomes important for the ac­
curate solution of reactive Navier-Stokes equations. 
Hence neglecting physical diffusion at high grid res­
olution gives rise to non-physical structures in the 
solutions. 

Our main objective is to obtain accurate solutions 
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ofreactive Navier-Stokes equations. In order to com­
pare with inviscid results, we also include results ob­
tained with a standard Roe's13 method solver as ap­
plied to reactive Euler equations. In Navier-Stokes 
simulations, physical diffusion gives rise to smooth 
solutions, and there is no need to take extraordinary 
measures, such as embodied in Roe and Flux Cor­
rected Transport (FCT) schemes, in performing spa­
tial discretization. Instead, we use a simple finite dif­
ference scheme with second order central differences 
to model spatial gradients. Use of the central dif­
ference approximation for convective terms in the re­
active Navier-Stokes equations causes oscillations to 
develop at the detonation front if the grid resolution 
is too coarse. However the grid resolution can be 
made fine enough so that these oscillations disappear. 
Increasing the grid resolution makes the computa­
tions very expensive. Here we exploit the simplicity 
of the spatial discretization to develop an efficient 
method to advance the solution in time. We use an 
implicit method based on the Beam-Warming14 algo­
rithm. This algorithm uses an Alternating Direction 
Implicit (ADI) technique based on a linearized trape­
zoidal time stepping method which is second order 
accurate in time. The implicit time stepping tech­
nique allows use of much larger time steps relative to 
typical explicit schemes, which have limitations due 
to convection, diffusion and reaction time scales. Use 
of larger time steps comes at the expense of a matrix 
inversion, necessary at every time step. For general 
systems, this can be prohibitively expensive; however, 
for reactive Navier-Stokes equations with central dif­
ference approximation for spatial gradients and use of 
the ADI technique we only need to invert block tridi­
agonal matrices composed of small blocks. Note that 
it is much less expensive to invert these block tridiag­
onal systems than general systems. Overall we save 
on computational time by using this method without 
any loss of accuracy. 

Model Equations 

The model equations are taken to be the two 
dimensional reactive Navier-Stokes equations for a 
calorically perfect ideal gas. These are expressed in 
dimensionless form below: 

op ot + V · (pu) = 0, (1) 

8 ot (pu) + V · (puu + P - r) = O, (2) 
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V · (pu (e + ~u · u) +Pu- r · u+ q) = 0, 

(3) 

:t (p.>..) + V · (pu..\ + j) = w, (4) 

w = I<p(l - ..\) exp(-E/T), (5) 

1 p 
e = --- - ..\qo, (6) 

1-lp 

P=pT, (7) 

r = µ (Vu+ VuT - ~ (\7 · u)I) , (8) 

q = -k\7T, (9) 

j = -V\7p)... (10) 

The dependent variables in Eqs. (1-10), p, u, P, T, 
r, e, q, ..\, j, and w, are the density, velocity vec­
tor, pressure, temperature, viscous stress tensor, in­
ternal energy per unit mass, heat flux vector, reac­
tion progress variable, mass diffusion flux vector, and 
reaction source term, respectively. The independent 
variables are time t and the Cartesian position co­
ordinates x and y, which do not appear explicitly 
with the vector notation used. The velocity vector 
components are u and v in x and y directions, re­
spectively. The dimensionless coefficient of viscosity 
µ, thermal conductivity k, and coefficient of mass dif­
fusion V are respectively 

.Jr k= .Jr I V= .Jr. 
µ = Re ' RePr (! - 1)' ReS c 

(11) 

The dimensionless parameters in Eqs. ( 5-11), qo, /, 
K, E, Re, Pr, and Sc, are the heat of reaction, ra­
tio of specific heats, kinetic rate constant, activation 
energy, Reynolds number, Prandtl number, and the 
Schmidt number, respectively. 

Equations (1-3) express conservation principles for 
mass, momenta, and energy, respectively. Equa­
tion (4) is an evolution equation for species mass frac­
tion. A single, first-order, irreversible, exothermic 
reaction is employed, A -+ B. The reaction progress 
variable ).. ranges from zero before reaction to unity 
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at complete reaction. Species mass fractions, Yi are 
related to the reaction progress variable by the for­
mulre, YA = 1 - .A, YB = .A. Equation (5) defines the 
reaction source term of Eq. (4) according to the Ar­
rhenius depletion model. Equations (6-7) are caloric 
and thermal equations of state, respectively. Equa­
tion (8) defines the viscous stress as a linear func­
tion of the strain rate for an isotropic material which 
obeys Stokes' assumption. Equations (9-10) express 
the heat flux and mass diffusion flux by Fourier's and 
Fick's Laws, respectively. Heat flux due to concen­
tration gradients is neglected along with Dufour and 
Soret effects. 

Density, pressure and temperature are scaled by 
their constant pre-shock values. Velocities are scaled 
by a number closely related to the pre-shock acoustic 
speed. Since a steady, one-dimensional, inviscid ZND 
wave is chosen as the initial detonation profile, an in­
!rinsic length scale is the half reaction length scale, 
l112· It is the distance between the detonation front 
and the point at which the reaction is halfway to com­
pletion, and can be computed by numerical quadra­
ture. The time scale is determined by the velocity 
and length scales. In terms of dimensional (indicated 
by the notation " - ") variables, parameters, and pre­
shock ambient conditions (indicated by the subscript 
"O"), the dimensionless variables are defined by 

p p t 
p=-:-, P=-=-, T=-=-, 

Po Po T0 

u= V'fu. - , 
Co 

'Y -e = -=2e, 
co 

'Y -
T = -::-T, 

Po 
(12) 

V'Y- . V'f-; 
q = Poeo q, J = fJoeoJ' 

l112./'Y -w= -_-_-w, 
Po Co 

x fj Co -
x = ---, y = ---, t = -_--t. 

l112 l112 l112./'Y 

The dimensionless parameters are defined by the fol­
lowing relations: 

K = l112./'Y k Re = fJof1/2Co 
- ' - ' Co µ 

P 
- µc.p 

r - - , 
k 

(13) 

µ 
Sc= - , 

fJo'DAB 

:vhere the dimensional pre-shock sound speed Co and 
l1/2 are given by 
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- fif>o Co = - - , 
Po 

(14) 

- - -11/2 d.A 
l112 = poD - _ _ . 

o K[JJ(.A)(l - .A) exp ( .:...E/T1(.A)) 
(15) 

Here p1(.A) and T1(.A) are functions of the reaction 
progress variable .A. They can be obtained by solving 
explicitly for the temperature and density from alge­
braic Rankine-Hugoniot jump conditions which result 
in the inviscid limit, represented by the subscript I. 

The d~mensional parameters are ij0 the heat of re­
action, E the activation energy, cp the specific heat 
at constant pressure, C,, the specific heat at constant 
volume, k t~e kinetic rate constant, µ the coefficient 
of viscosity, k the thermal conductivity, i5 AB the co­
efficient of species diffusion, and fJ the steady ZND 
wave speed. 

Numerical Method 

In two space dimensions, Eqs. (1-4) can be written 
as 

oQ o ( o ) at+ ox F(Q) - ox (V1(Q)) - V2(Q, Qy) + 

:y (G(Q)-:y(W1(Q))-W2(Q,Q.:)) ='ll(Q), 

(16) 
where 

Q 

F 

G 

[p,pu,pv,p (e+ ~(u2 +v2
)) ,p.x.]T, 

[pu, pu2 + p, puv, 

pu(e+~(u2 +v2)+~) ,pu.x.]T 

[pv, puv, pv2 + p, 

pv (e + ~(u2 + v2
) + ~) ,pv.X.]T 

[o, ~µu,µv, 

µ ( ~ u 2 + ~ v2
) + kT, Vp z] T 

[o,µu, ~µv, 
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µ ( ~ u 2 + ~ v2
) + kT, '.Dp z] T, 

v2 = [o,o,~µuy,µ(-~uvy+vuy),or 

W2 = [o, ~µVx,O,µ (-~VUx + UV:z:) ,o]T' 

'It = [o,o,o,o,Kp(l-.X)exp(-~)]r (17) 

Here F and G are convective flux vectors in x and y 
directions, respectively; derivatives of V 1 , V 2 , W 1, 
and W 2 represent the diffusive terms in such a way 
that mixed derivatives are separated from other sec­
ond order derivatives; 'It is the source term vector. 

Equation (16) is solved by two methods. The 
Beam-Warming algorithm is used to solve the re­
active Navier-Stokes equations at fine grid reso­
lution. Conservation LAWs PACKage15 (CLAW­
PACK) based on Roe's method is used to compare 
the solutions of reactive Euler equations and reactive 
Navier-Stokes equations. 

Beam-Warming Algorithm 

Implicit time stepping is implemented by using 
Beam-Warming algorithm. The numerical approxi­
mation of all the spatial derivatives is done using a 
second-order central difference approximation. A de­
tailed discussion of the algorithm can be found in Ref. 
14. The Beam-Warming algorithm, which is an ADI 
scheme, is implemented for Eq. (16) in the following 
three steps: 

Step 1: 

(I+ ~1+AO: [ :x (A)n - ::2 (R)n]) AQ* = ~. 
(18) 

Step 2: 

Step 3: 
(20) 

where 

At [ a n 
(1+02) '11+ 8x(-F+V1+V2) 

+ ~ (-G+ W1 +W2t] 
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01A t [!... (An-1y ) !.__ (An-1w )] 
+ (1 + 02) ax 2 + ay 2 

+ 02 AQn-1 (21) 
(1+02) 

Here AQn = qn+l - qn. The superscript n refers 
to the value at time tn. The time step is given by 
At. The matrices A, B, Rand S are the Jacobian 
matrices 8F/8Q, aG/aQ, 8Vif8Q and 8Wif8Q, 
respectively. The identity matrix is represented by 
I. The appropriate choice of the parameters 01 and 
02, represent various standard difference schemes for 
time stepping. For example, the fully implicit scheme 
is given by 01 = 1, 02 = O; the trapezoidal scheme 
is given by 01 = 1/2, 02 = O; and the three-point 
backward scheme is given by 01 = 1, 02 = 1/2. 

The main advantage of using this implicit scheme 
is that we can take much larger time steps. Al­
though more computational effort is required every 
time step compared to an explicit scheme, the over­
all time required to obtain a solution may be less. 
The extra computational effort is required in solv­
ing the block tridiagonal system of linear equations 
in Eq. (18) which sweeps in the x direction, and in 
Eq.(19) which sweeps in the y directions, alternately 
every time step. For two-dimensional reactive Navier­
Stokes equations the matrix blocks 5 x 5. Another 
thing to note is that the mixed-derivatives in the 
viscous terms have been treated explicitly without 
any loss of accuracy. This is done to preserve the 
block tridiagonal form of Eqs.(18-19). In this work, 
we make use of the trapezoidal scheme (01 = 1/2, 
02 = 0) which yields second-order temporal accuracy 
in our calculations. 

Roe's Method 

Roe's method is a general technique for discretizing 
hyperbolic conservation laws. One of its attractive 
features is its ability to capture discontinuities within 
a small number of computational cells while minimiz­
ing spurious oscillations which arise from numerical 
discretization. We use the CLAWPACK routines to 
implement Roe's method. CLAWPACK is a general 
package of Fortran 77 subroutines for solving time­
dependent systems of conservation laws in one, two 
and three dimensions. The multidimensional algo­
rithms used in CLAWPACK are primarily the exten­
sion of one-dimensional wave propagation methods 
described in detail by Le Veque16 . The algorithms 
are based upon upwind Godunov's17 method and re­
quire the exact or approximate solution of a Riemann 
problem at computational cell interfaces in order to 
advance the solution in time. Our equations, with the 
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initial condition of an inviscid ZND wave, admit dis­
continuous solutions, which are captured effectively 
and oscillation free using CLAWPACK without re­
sorting to artificial dissipation even at coarse grid 
resolutions. 

Equation (16) is numerically solved on the compu­
tational grid using the method of fractional steps by 
Strang18 

Qn+l = e,At/2 e,At e,At/2Qn (22) 
s+v c s+v ' 

where Qn+l and qn are numerical approximations 
for Q at the times tn + 6.t and tn (tn = n6.t), respec­
tively. With subscripts c for convection, s for source, 
and v for viscous terms, respectively, £,~t and £,~~11 
are the solution operators for Eq. (23) and Eq. (24), 
respectively: 

8Q 8 8 at+ ax (F(Q)) + ay (G(Q)) = 0, (23) 

+ :y (-:y (W1(Q)) - W2(Q, Qx)) = w(Q). 

(24) 
Strang splitting retains second-order temporal accu­
racy if individual time steps have second-order tem­
poral accuracy. The time interval 6.t is chosen based 
upon the following stability conditions 

6.t 
. [ (CFL)6.x (CFL)6.y 

mm (JuJ + c)ma:z:' (JvJ + c)ma:z:' 
(25) 

Pmin6.X2 Pmin6.y2
] 

2<5 ' 2<5 

where p, u, v and c are density, velocity components 
in x and y directions, and the sound speed, respec­
tively. The grid spacings in x and y directions are 
given by 6.x and 6.y. The subscripts max and min 
refer to the respective maximum and minimum values 
in the computational domain. CFL is the Courant­
Friedrichs-Lewy number which is chosen to be 0.4 in 
our computations. The largest diffusion coefficient is 
<5 =max[µ, k, V]. The smallest 6.t obtained from the 
above constraints is used as the time interval at every 
time step. 

CLAWPACK is used to solve the convective step in 
Eq. (23). The approximate Riemann solver used for 
our problem is Roe's13 solver. The numerical approx­
imation of the convective fluxes at the cell interfaces, 
is determined from the approximate solution of the 
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Riemann problem. Second-order spatial accuracy is 
obtained as a correction to the fluxes, based on stan­
dard flux-limiter methods. The other flux corrections 
employed are for "entropy fix" of any transonic rar­
efaction wave, transverse wave propagations and their 
second-order corrections, and transverse propagation 
of the second order corrections. These are discussed 
in detail by Le Veque16 . The second-order temporal 
accuracy is achieved by a predictor/ corrector Runge­
K utta integration. 

Before and at the end of each convective step 
CLAWPACK calls a subroutine where the source and 
viscous terms are solved for explicitly as in Eq. (24). 
For the reactive Euler equations the viscous terms 
are neglected. Central difference approximation of 
second-order is used for the numerical approxima­
tion of the viscous terms. Again second-order Runge­
K utta integration is used for second-order temporal 
accuracy. 

Results and Discussion 

In our numerical study, we consider a detonation 
wave propagating in an infinite width rectangular 
channel. The initial state is taken to be the steady 
solution of the one-dimensional reactive Euler equa­
tions. The initial one-dimensional profile is spatially 
perturbed in the transverse direction. The pertur­
bation is sinusoidal with a wavelength equal to that 
predicted by Short and Stewart4 for a case in which 
only one unstable mode was found in their linear sta­
bility analysis. Since periodic perturbations are used, 
periodic boundary conditions are imposed in the di­
rection transverse to the direction of wave propaga­
tion. Our computational domain is of finite length 
and is translated every time step in such a way that 
the rightmost 15% of the domain contains only gas 
which is essentially unreacted. This is done in order 
to prevent the detonation wave from traveling out of 
the computational domain. The boundary conditions 
imposed at left and right side of the computational 
domain are fixed and are same as the left and right 
states of the initial inviscid ZND wave. 

We choose parameters equivalent to those of Short 
and Stewart4 . The non-dimensional heat release pa­
rameter q0 and activation energy E are taken to be 
50, and the ratio of specific heats 'Y is taken to be 
6/5. The dimensional parameters were chosen to be 
Po = 105 Pa, Po = 1.161 kg/m3 , To = 300 K, ijo = 
4.305 x 108 J /kg, E = 4.305 x 108 J /kg, cp = 1722 
J/(kg K), c11 = 1435 J/(kg K), k = 1.329 x 107 s-1

, 

µ = l.846x10-5 (N-s)/m, k = 3.179x10-2 (N-m)/(s­
K), Vab = 1.590 x 10-5 m2 /s, and fJ = 2.963 x 103 

m/s. The coefficient of viscosity fl is chosen to be 
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that of air at 300 K. The thermal conductivity k is 
chosen by taking the Prandtl number Pr to be 1. 
The diffusion coefficient Dab is chosen to render the 
Schmidt number Sc to be 1. Consequently, the Lewis 
number, Le= Sc/Pr, is also 1. With these choices 
the dimensionless transport coefficients take on the 
values µ = 0.01, k = 0.06, and D = 0.01. The steady 
ZND wave speed D is chosen such that the square of 
the ratio of D to the Chapman Jouguet speed DcJ, 
defined as the overdrive factor f = (D/DcJ) 2

, has 
a value of f = 2.2. The half reaction length scale 
i1; 2 is 5.416 x 10-5 m and the sound speed Co is 
321.4 m/s for the given parameters. This determines 
the remaining non-dimensional parameters, the re­
action constant I< = 72 and the Reynolds number 
Re = 109.5. The initial ZND profile based on the 
above parameters is shown in Fig. 1. 

The wavelength of the transverse disturbance is 
chosen based on the study by Short and Stewart4 , in 
which it is shown that for f = 2.2 and Qo = E = 50, 
there is only a single mode of instability present in 
the ZND wave. A wavelength of slightly less than 
10 has the maximum growth rate of the instability 
and hence emerges as the dominant feature as reg­
ular detonation cells of size 10 in two-dimensional 
detonations. Bourlioux and Majda8 have done com­
putations for the similar case for the reactive Euler 
equations. Hence our computational domain is cho­
sen to have 0 :'.S y :'.S 10. We also choose a local 
domain length in the x direction of 14; this domain 
propagates with the wave. The shock front of the ini­
tial ZND wave is positioned at x = 12 as seen in Fig. 
1. 

The computations are done for varying grid resolu­
tions. In all calculations, the computational cells are 
square. The grid resolutions used are 2, 5, 12, 19 and 
24 grid points for every half reaction length scales, 
as predicted by inviscid theory. At fine grid resolu­
tions of 1/12, 1/19 and 1/24, the computations for 
reactive Navier-Stokes equations are done with the 
Beam-Warming method when the oscillations due to 
the use of central difference approximations are mini­
mal. Roe's method is used to compare the solutions of 
reactive Euler equations and reactive Navier-Stokes 
equations at the grid resolutions of 1/2, 1/5, and 
1/12. All the calculations are done on a Sun Ultra 30 
workstation. The highest resolution case, solved with 
the Beam-Warming method, takes approximately 30 
hours to solve. 

First the comparison between the reactive Euler 
equations and the reactive Navier Stokes equations 
are presented. All figures show a contour plot of iso­
choric lines for the values of p = 1, 1.25, 1.5, 1.75, ... 
Figures (2a - 2c) depict the solutions of reactive Euler 

6 

AIAA-99-0966 

equations for increasing grid resolutions at times t = 
40, 80, 120. Figures (3a - 3c) depict the solutions of 
reactive Navier-Stokes equations using Roe's method 
for increasing grid resolutions at times t = 40, 80, 120. 
We observe familiar structures of regular detonation 
cells. The cell size is found to be same as the trans­
verse wavelength. Computations, not shown here, 
were also done for a domain width of 0 :'.S y :'.S 20, 
which still generated cellular structures of size of the 
order of 10. Hence we compute for a domain width 
of 10 and show it twice in our results. 

It is found that the results are similar at a coarse 
grid resolution of 1/2 for both reactive Euler equa­
tions and reactive Navier-Stokes equations. For 
higher grid resolutions of 1/5 and 1/12, we predict 
that the solutions of reactive Euler equations and re­
active Navier-Stokes equations are very different. As 
we increase the grid resolution we observe that more 
and more fine structures are predicted by the Euler 
model, thereby we conclude that the two-dimensional 
cellular structures in reactive Euler equations depend 
on the grid resolution. However, as we increase the 
grid resolution, the predictions of the Navier-Stokes 
equations using Roe's method appear to converge. 
The reactive Na vier-Stokes equations have two phys­
ical length scales associated with them: a relatively 
large length scale associated with the reaction zone 
and a relatively small diffusion length scale which is 
of the order of 1/5 half reaction length scale. For 
a coarse grid size of 1/2, the diffusion length scale 
is completely unresolved and the numerical diffusion 
dominates over the physical diffusion making the re­
active Euler and reactive Navier-Stokes solutions ap­
pear similar. But for finer grid sizes of 1/5 and 1/12, 
as the viscous length scales are resolved, the reactive 
Euler and reactive Navier-Stokes solutions begin to 
differ. Hence as we go to higher resolutions, both 
the viscous and reaction zone length scales are re­
solved simultaneously, and the solution of the reactive 
Navier-Stokes equations using Roe's method appears 
to converge. 

Figures ( 4a - 4c) depict the solutions of reactive 
Navier-Stokes at fine grid sizes of 1/12, 1/19 and 1/24 
obtained by the Beam-Warming method. Again we 
can see the solution appears to converge as we in­
crease the grid resolution. There appear to be some 
oscillations for the grid size 1/12 but for the grid sizes 
1/19 and 1/24 the oscillations are non-existent. Also 
the comparison between Fig. 3c and Fig. 4a, which 
are the solutions of reactive Navier Stokes equations 
by Roe's method and Beam-Warming method, re­
spectively, at same grid resolution of 1/12, shows 
that the two methods yield identical results. The 
time steps taken in these computations were up to ten 
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times more than the time steps taken in the explicit 
methods due to their relaxed stability restrictions. 
The main advantage of using this method was that 
for the cases run, this method was up to five times 
faster than the Roe's method. In fact the run time 
for the Beam-Warming method at the grid resolution 
1/19 was same as the run time of Roe's method at 
grid resolution of 1/12. The convergence of the solu­
tion as grid resolution is increased was also better. 

Summary 

Our numerical study of reactive Navier-Stokes 
equations has shown the importance of the physi­
cal diffusion terms for detonation wave solutions. At 
fine grid resolutions, when the numerical diffusion be­
comes negligible, we predict non-physical structures 
appearing in the solution of reactive Euler equations. 
Hence it became necessary to solve the full reactive 
Navier-Stokes equations for true detonation wave so­
lutions. We have also shown that the grid size should 
be small enough to resolve both length scales associ­
ated with chemistry and physical diffusion. Due to 
the requirement of small grid sizes, we used simple 
central differences to approximate spatial gradients 
as the oscillations are minimal for very high resolu­
tions. Finally an efficient Alternating Direction Im­
plicit scheme of Beam-Warming was used to advance 
in time. This reduced the computational time by up 
to five times, relative to Roe's method conventionally 
used for detonation solutions, while preserving accu­
racy. Subsequently, such elaborate and computation­
ally expensive upwind schemes are not necessary. 
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Figure 1: Inviscid ZND profiles for density, velocity, pressure and mass fraction used as 
initial conditions for viscous calculations. 
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Figure 2: Isochoric lines for the solutions of reactive Eu­
ler equations at times t = 40, 80, and 120; using Roe's 
method. 
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Figure 3: Isochoric lines for the solutions of reactive N­
S equations at times t = 40, 80, and 120; using Roe's 
method. 
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Figure 4: Isochoric lines for the solutions of reactive N-S 
equations at times t = 40, and 120; using Beam-Warming 
method. 
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