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A robust method is developed and used to provide rational estimates of reaction zone

thicknesses in one-dimensional steady gas phase detonations in mixtures of inviscid ideal

reacting gases whose chemistry is described by detailed kinetics of the interactions of N
molecular species constituted from L atomic elements. The conservation principles are cast

as a set of algebraic relations giving pressure, temperature, density, velocity, and L species

mass fractions as functions of the remaining N −L species mass fractions. These are used to

recast the N−L species evolution equations as a self-contained system of non-linear ordinary

differential equations of the form dYi/dx = fi(Y1, . . . , YN−L). These equations are numerically

integrated from a shock to an equilibrium end state. The eigenvalues of the Jacobian

of fi are calculated at every point in space, and their reciprocals give local estimates of

all length scales. Application of the method to the standard problem of a stoichiometric

Chapman-Jouguet hydrogen-air detonation in a mixture with ambient pressure of 1 atm
and temperature of 298 K reveals that the finest length scale is on the order of 10−5 cm; this

is orders of magnitude smaller than both the induction zone length, 10−2 cm, and the overall

reaction zone length, 100 cm. In order to achieve numerical stability and convergence of

the solution at a rate consistent with the order of accuracy of the numerical method as

the spatial grid is refined, it is shown that one must employ a grid with a finer spatial

discretization than the smallest physical length scale.

I. Introduction

I
n recent years there has been great interest in computations of complex multi-scale physical phenomena. In
this work, the simple issue of whether such computations have captured the breadth of length scales they

purport to model is examined, and conditions are found under which such predictions are mathematically
verifiable. The specific purpose of this paper is to give an accurate estimate of what spatial resolution
is necessary for an important paradigm multi-scale problem: gas phase detonation described by detailed
chemical kinetics. The general approach presented here can be extended to a wider range of problems,
including those that are the subject of present intense computational investigations such as laminar flame
propagation, supernovæ dynamics, combustion in reactive solids, flows in jet engines, and flows in rocket
nozzles.

The ever-increasing capabilities of computational hardware and algorithms offer the scientific and en-
gineering communities the opportunity to solve unsteady multi-dimensional problems which only a few
years ago would have been impossible. However, this has necessitated a more complex interplay between
mathematics, computation, and experiment; in order to determine via computation whether the underlying
mathematical model is representative of the observable physics, one must first guarantee that the computa-
tions have fidelity with the underlying mathematics; this is sometimes defined as verification. Only then is it
appropriate to make comparisons with experiment, sometimes defined as validation, which, while critically
important, will not be considered here. Neglecting the process of harmonizing computational predictions
with the underlying mathematics, and thus simply tuning computational results with experiments, gives rise
to the strong possibility that the predictions depend on both the size of the discrete grid and the particular
algorithm used to solve the underlying equations.
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Concerns regarding verification are typically minimal in problems for which the spatial and temporal
scales over which the system evolves are nearly the same order of magnitude. In such cases, errors are
usually obvious and easily corrected. However, in so-called multi-scale problems, in which the range of
spatio-temporal scales may span many orders of magnitude, verification is more difficult. In scenarios where
the coupling across scales is weak, large scale results, readily seen in predictions, may be relatively insensitive
to errors at the small scales. In other problems, typically with stronger non-linearities, the coupling across
scales can be significant, and errors at the small scale can rapidly cascade to the large scale. Since for many
problems it is difficult to obtain clear a priori information of the strength of this coupling, the only way one
can gain confidence in predictions is to guarantee that all scales have been properly captured.

A prototypical multi-scale example is found in gas phase detonation with detailed chemistry. Over the
past decades, the aerospace propulsion community has utilized multi-scale aerothermochemistry models of
increasing complexity for sophisticated problems including flows in and around re-entry vehicles, rocket
nozzles, supersonic combustion ramjets, and pulse detonation wave engines. As the geometries of these
devices are on typical engineering scales and the chemistry typically evolves on a variety of significantly
smaller length scales, it is clear that this is a multi-scale problem. It must be said that in some problems,
such as determination of detonation wave speeds and peak pressures, a posteriori calculations reveal only
a weak dependence on properly capturing fine scale structures. However, other calculations, for instance
those of detonation instability or pollutant formation, can have a strong dependence on the fine structures.
Whatever the case, it is not clear that the finest length scales have been resolved in most studies. Even
in the most careful, it is rare to see a rigorous grid convergence study or an analysis which shows that the
finest scales have been captured. To the contrary, it is more common to find the curious situation in which
an argument is made for the necessity of a detailed kinetics model to capture the true physics of a problem,
only to be followed by either 1) a rationalization as to why it is not necessary to have a fine grid capture
the detailed physics, or more commonly, 2) no recognition that fine scale physics has been overwhelmed by
numerical errors.

To highlight this point, this study focuses on one key issue: determination of the finest length scale
necessary to capture the smallest features present in a routinely-used aerothermochemistry model of detona-
tion. If calculations based on models of this class are to be able to withstand scientific scrutiny with regards
to repeatability, grid- and algorithm-independence, consistent with AIAA standards for computations, they
must, at a minimum, capture this finest scale. Even then, depending on the problem, there may be even
finer length scales present, due to other effects, e.g. high wavenumber instabilities or multidimensionality.

This study considers the issue of length scales by addressing a single paradigm problem: a one-dimensional
steady Chapman-Jouguet (CJ) detonation in an inviscid stoichiometric hydrogen-air mixture whose chem-
istry is described by nine species undergoing nineteen reversible reactions. While there is often controversy
regarding parameter values in detailed kinetics models, especially for high molecular weight hydrocarbons,
the detailed model for hydrogen oxidation is widely regarded as well understood, and parametric uncertainties
are small.1,2

Initially, the mixture is taken to consist of diatomic hydrogen, oxygen, and nitrogen in the molar ratio
of 2H2 + O2 + 3.76N2 at a pressure of 1 atm and temperature of 298 K. Nitrogen is modeled as an inert
diluent. This is precisely the hydrogen-air problem studied by Shepherd3, who reported global reaction
zone structures. It is closely related to the study of Mikolaitis4, who, following a general procedure used
by Westbrook2, used the same kinetics model to give one of the most carefully resolved calculations of the
time variation of all variables within what is known as the induction zone, i.e. the early part of the reaction
process in which pressure, temperature, and velocity are essentially constant and minor species mass fractions
are rapidly growing. Shepherd’s predictions of the variation of variables within the induction zone, while
likely resolved, are difficult to discern in his plots. It will also be possible to compare to the recent results
of Lu, et al.5, who use a similar kinetics model to carefully predict induction zone lengths; however, they do
not report the fine scale details. In a somewhat similar calculation, Fickett and Davis1 give a fully resolved
prediction of a steady CJ detonation in 2H2 + O2 + 9Ar initially at 300 K and 0.1 atm; as the ambient
pressure is lower, the reaction zone is larger.

Of those spatio-temporal studies that exercise care in resolving spatial structures, it is typically the
induction zone length which is deemed to be the smallest length scale to be resolved. Such is the case in the
studies of Oran, et al.6, Eckett, et al.7, Pintgen, et al.8, Sheffer, et al.9,10, and Tsuboi, et al.11 Nevertheless,
as the thermal explosion at the end of the induction zone is the result of the cumulative non-linear effects
of reactions at finer scales, it is natural to suppose accurate prediction of the induction zone depends on
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accurate calculation of more primitive finer scale phenomena. The study of Singh, et al.12 resolved the
induction length scale as well as the finer viscous scale. Their calculations, which took advantage of an
adaptive spatial discretization method, came closest to resolving the finest reaction scales. Other studies
have been less rigorous and give predictions in which it is unclear if even the induction zone has been resolved.
Examples include those of Fedkiw, et al.13, Ebrahimi and Merkle14, and Dudebout, et al.15 Recognizing the
difficulties in resolving the finest scales of detailed kinetics, others take alternate approaches: : 1) one-step
kinetics, cf. He and Karagozian16, or 2) two-step kinetics, cf. Sichel, et al.17, or Kawai and Fujiwara18,
based on the approach of Korobeinikov, et al.19. Both one- and two-step models require some compromises,
described fully by the cited authors, in which the sacrifice of many terms results in a restricted ability to
describe some physical phenomena relative to the detailed models. Moreover, even in two-step studies, the
relative lengths of the individual reaction zone structures are not always clarified; if the smallest is not
resolved, the same concerns one has for detailed kinetics models are realized. That is to say, a small number
of reactions in no way guarantees the computation is easy to perform accurately. In contrast, one could also
have a system with hundreds of reactions, and if by chance they all evolved over a similar length scale, the
computation could be done with both accuracy and efficiency.

The paper is organized as follows. First, a full description of the underlying unsteady reactive Euler
equations is given. This is followed by details of the steps necessary to reduce the system to a set of ordinary
differential equations (ODEs) describing the spatial evolution of a subset of the species mass fractions. Next,
a standard linear analysis is performed to reveal that at a given point in the reaction zone structure, the
local length scales over which the system evolves are given by the reciprocal of each of the eigenvalues of the
local Jacobian matrix of the non-linear function on the right-hand side of the ODEs. This is followed by a
description of the numerical method used to solve the system. Results are then shown for the spatial evolution
of species mole fractions (used so that proper comparisons can be made with results in the literature),
thermodynamic variables, and local length scales for the paradigm CJ detonation. A comparison of the finest
scales to the induction zone length scales is given, followed by a numerical study of accuracy and stability.
Then a summary of some recent predictions given in the literature of hydrogen-air, hydrogen-oxygen, and
hydrogen-oxygen-argon detonations with detailed kinetics is given, and grid sizes used in those models are
compared with the minimum physical length scale predicted by the present analysis. The implications of
the results are reviewed in the concluding section.

II. Mathematical Model

A. Governing Equations

The following equations, written in unsteady conservative form, describe the behavior of a one-dimensional
inviscid mixture of N gaseous molecular species composed of L atomic elements which undergo J reactions:

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (1)

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + p

)
= 0, (2)

∂

∂t

(

ρ

(

e+
u2

2

))

+
∂

∂x

(

ρu

(

e+
u2

2
+
p

ρ

))

= 0, (3)

∂

∂t
(ρYi) +

∂

∂x
(ρuYi) = ω̇iMi, (i = 1, . . . , N − 1). (4)

The independent variables are the distance coordinate, x, and time, t. The dependent variables are density,
ρ, velocity u, pressure, p, specific internal energy e, species mass fractions Yi, i = 1, . . . , N − 1, and molar
production rate per unit volume for species i, ω̇i, i = 1, . . . , N −1. Equations (1-3) describe the conservation
of mixture mass, linear momenta, and energy, respectively. Equation (4) describes the evolution of N − 1 of
the molecular species mass fractions.

The system is completed by the following algebraic equations:

p = ρ<T

N∑

i=1

Yi

Mi

, (5)
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e =

N∑

i=1

Yi

(

href
i +

∫ T

Tref

cpi(T̂ )dT̂ −
<T

Mi

)

, (6)

1 =

N∑

i=1

Yi, (7)

ω̇i =
J∑

j=1

rj
(
ν′′ij − ν′ij

)
, (i = 1, . . . , N − 1). (8)

rj = AjT
βj exp
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)
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(
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, (j = 1, . . . , J), (9)

Kc
j =

(
pref

<T

)
∑

N

m=1
(ν′′

mj−ν′

mj)
exp

(
N∑

m=1

−
(
ν′′mj − ν′mj

)Mmg
ref
m

<T

)

, (j = 1, . . . , J), (10)

Mi =

L∑

l=1

φilml, (i = 1, . . . , N), (11)

N∑

i=1

ν′ijφil =

N∑

i=1

ν′′ijφil, (j = 1, . . . , J), (l = 1, . . . , L). (12)

New dependent variables are the temperature, T , the specific heat at constant pressure of the ith species,
cpi, taken to be a function of temperature, where T̂ is a dummy variable of integration, the mass fraction
of the N th species, YN , the reaction rate of the jth reaction, rj , and the so-called equilibrium “constant”
of the jth reaction Kc

j . Parameters in Eqs. (5-12) are as follows. The universal gas constant is <. The

pressure at the reference state is pref . For each molecular species from i = 1, . . . , N , one has molecular
mass, Mi, and reference state specific Gibbs free energy, gref

i . For each reaction j = 1, . . . , J , one has
frequency factor Aj , exponent characterizing power-law temperature dependency, βj , activation energy Ej ,
and stoichiometric coefficients denoting the number of moles of reactant and product, respectively, of species
i in reaction j, ν′ij , ν

′′

ij . For l = 1, . . . , L, the atomic element mass is ml. For species i = 1, . . . , N , and
atomic element l = 1, . . . , L, the species atomic element index giving number of moles of atomic element l in
species i is φil. Equation (5) is a thermal equation of state for a mixture of ideal gases which obeys Dalton’s
law. Equation (6) is the corresponding caloric equation of state. Equation (7) constrains the species mass
fractions to sum to unity. Equation (8) is an expression for the molar species evolution rate per unit volume
for species i. Equation (9) is an expression of the law of mass action with Arrhenius kinetics for reaction j
constructed so as to insure the forward and reverse reaction rate components satisfy Le Châtlier’s principle as
each individual reaction approaches equilibrium. Equation (10) is an equation for the equilibrium “constant”
for each reaction. Equation (11) defines the molecular mass in terms of its constitutive atomic elements.
Equation (12) is a stoichiometric constraint on atomic element l in reaction j. After use of Eqs. (8-10) to
eliminate ω̇i in Eq. (4), Eqs. (1-7) form 5 +N equations in the 5 +N unknowns, ρ, u, p, e, T , Yi, . . . , YN .

A non-obvious identity is obtained by operating on the N -term version of Eq. (4). One notes that by
summing Eq. (4) from i = 1 to N and employing Eqs. (8, 11-12), one arrives at

∂

∂t

(

ρ

N∑

i=1

Yi

)

+
∂

∂x

(

ρu

N∑

i=1

Yi

)

=

J∑

j=1

rj

L∑

l=1

ml

N∑

i=1

φil

(
ν′′ij − ν′ij

)

︸ ︷︷ ︸

=0

= 0. (13)

Using next Eq. (7) to eliminate the sum of mass fractions in Eq. (13), one finds consistency with Eq. (1).
Additional useful auxiliary equations are as follows:

yl = ml

N∑

i=1

φil

Mi

Yi, (l = 1, . . . L), (14)
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Xi =
Yi

Mi
∑N

j=1
Yj

Mj

, (i = 1, . . . , N), (15)

cvi = cpi −
<

Mi

, (i = 1, . . . , N), (16)

cp =

N∑

i=1

Yicpi, (17)

cv =
N∑

i=1

Yicvi, (18)

γ =
cp
cv
, (19)

c =

√

γ
p

ρ
, (20)

M =
u

c
, (21)

pi = ρ<
Yi

Mi

, (22)

µi = Mig
ref
i + <T ln

(
pi

pref

)

, (23)

1 =

L∑

l=1

yl. (24)

New dependent variables in Eqs. (14-24) are as follows. For each atomic element l = 1, . . . , L, one has the
element mass fraction, yl. For each molecular species, i = 1, . . . , N , one has the mole fraction, Xi, the
specific heat at constant volume, cvi, the partial pressure pi, and the chemical potential µi. One has the
mass-averaged specific heats at constant pressure and volume, respectively, cp, cv, the ratio of specific heats,
γ, the frozen acoustic speed, c, and the Mach number, M . Equations (14-21) are definitions of yl, Xi, cvi,
cp, cv, γ, c, M , pi, and µi, respectively. Lastly, Eq. (24) constrains the atomic element mass fractions and
can be derived from summing Eq. (14) from l = 1 to L and employing Eq. (11).

It is easily shown that Eqs. (1-7) form a hyperbolic system, and thus admit propagating discontinuous
jumps. For a stationary jump, which will be considered here, the equations reduce to

JρuK = 0, (25)q
ρu2 + p

y
= 0, (26)

s
ρu

(

e+
u2

2
+
p

ρ

){
= 0, (27)

JρuYiK = 0, (i = 1, . . . , N). (28)

Substitution of Eq. (25) into Eq. (28) gives the standard result that species mass fractions are frozen through
a discontinuity: JYiK = 0. As a consequence, Eqs. (25-27) combined with Eqs. (5-6) form a set of five algebraic
equations in the five unknowns ρ, u, p, e, and T which admit two physical solutions: the ambient state and
the shock state.

The driving inhomogeneity of the system is the term ω̇i in Eq. (4). Examination of Eq. (9) reveals that
rj and thus ω̇i are driven to zero when

Kc
j (T ) =

N∏

k=1

(
ρYk

Mk

)(ν′′

kj−ν′

kj)

, (j = 1, . . . , J). (29)

A lengthy, but standard, analysis of Eq. (29) utilizing Eqs. (10, 22-23) reveals the equilibrium condition to
be equivalent to

N∑

i=1

(
ν′′ij − ν′ij

)
µi = 0, (j = 1, . . . , J), (30)

which is easily shown to correspond to minimization of the Gibbs free energy.
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B. Reduction of System

The assumptions and operations necessary to reduce the system to N−L ODEs in N−L unknowns are given
next. For each atomic element l = 1, . . . , L, multiply each side of Eq. (4) by the constant term mlφil/Mi,
sum the result from i = 1 to N , and employ Eqs. (12) and (14) to obtain

∂

∂t
(ρyl) +

∂

∂x
(ρuyl) = 0, (l = 1, . . . , L). (31)

This demonstrates that the mass of each atomic element is conserved. Moreover, when Eq. (31) is combined
with Eq. (1), one finds that

∂yl

∂t
+ u

∂yl

∂x
= 0. (l = 1, . . . , L). (32)

That is, for a material fluid particle, there is no time rate of change of atomic element mass fraction. Con-
sequently, atomic element mass fraction distributions in mixtures which are initially spatially homogeneous
remain homogeneous. This study will only be concerned with such mixtures; consequently,

yl(x, t) = ylo, (l = 1, . . . , L), (33)

where the initial value of atomic element mass fractions ylo can be fixed from initial conditions, which, from
Eq. (24), are constrained so that

∑L

l=1 ylo = 1. Here, the subscript “o” represents the undisturbed ambient
state. Thus, one can apply this result to cast Eq. (14) as an underconstrained system of L linear equations
in N unknowns (L < N):

ylo = ml

N∑

i=1

φil

Mi

Yi, (l = 1, . . . L). (34)

Equation (34) can be rewritten into a variety of consistent row-echelon forms. Assuming the variables are
ordered such that the last L entries for Yi have non-zero pivots, one can invert Equation (34) to obtain

YN−l+1 = ψl(Y1, . . . , YN−L; y1o, . . . , yLo,Mi, φi1, . . . , φiL). (l = 1, . . . , L). (35)

Here ψl is a linear function of the firstN−L species mass fractions, parameterized by the atomic element mass
fractions, molecular masses, and species atomic element indices. As a result, it is possible to replace the N
equations given by Eqs. (4), i = 1, . . . , N−1, and (7) by the N equations given by Eqs. (4), i = 1, . . . , N−L,
and (35), l = 1, . . . , L.

It is now demanded that a stationary solution exists so that Eqs. (1-3) and the first N − L of Eqs. (4)
become the following ODEs in the spatial independent variable x,

d

dx
(ρu) = 0, (36)

d

dx

(
ρu2 + p

)
= 0, (37)

d

dx

(

ρu

(

e+
u2

2
+
p

ρ

))

= 0, (38)

d

dx
(ρuYi) = ω̇iMi, (i = 1, . . . , N − L). (39)

Initial conditions are specified so that just before the shock jump at x = 0− one has

ρ(0−) = ρo, u(0−) = D, p(0−) = po, Yi(0
−) = Yio, (i = 1, . . . , N − L). (40)

Here, D represents the ambient fluid velocity. Then, using Eqs. (40) with Eqs. (5-6), one can find consistent
values for

e(0−) = eo, T (0−) = To. (41)
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The homogeneous Eqs. (36-38) can then be integrated to obtain extended Rankine-Hugoniot equations,
and Eq. (39) can be simplified to obtain

ρu = ρoD, (42)

ρu2 + p = ρoD
2 + po, (43)

e+
u2

2
+
p

ρ
= eo +

D2

2
+
po

ρo

, (44)

dYi

dx
=

ω̇iMi

ρoD
, (i = 1, . . . , N − L). (45)

After defining the intermediate function σ(Yi) as

σ(Yi) ≡

N∑

i=1

Yi

Mi

, (46)

a detailed algebraic analysis of Eqs. (5, 42-44) allows one to formulate an explicit expression for ρ(T, Yi):

ρ(T, Yi) = ρo

D2

<Tσ(Yi)



1 +
<Toσ(Yio)

D2
±

√
(

1 +
<Toσ(Yio)

D2

)2

− 4
<Tσ(Yi)

D2



 . (47)

The “+” and “−” branches are associated with perturbations from the shock and inert states, respectively.
Combining Eq. (47) with Eq. (42) gives u(T, Yi). Then, Eq. (43) can be used to obtain p(T, Yi), followed
by use of Eq. (44) to get e(T, Yi). Combining the expression for e(T, Yi) with Eq. (6) as well as employing
Eq. (35) yields an implicit algebraic relation between T and Yi, i = 1, . . . , N − L:

N∑

i=1

Yi

(

href
i +

∫ T

Tref

cpi(T̂ )dT̂ −
<T

Mi

)

− eo +
<Tσ(Yi)

2
−

<Toσ(Yio)

2

(

1 −
<Toσ(Yio)

2D2

)

−
D2

4



1 ±

(

1 +
<Toσ(Yio)

D2

)
√
(

1 +
<Toσ(Yio)

D2

)2

− 4
<Tσ(Yi)

D2



 = 0. (48)

One can use Newton iteration on Eq. (48) to determine T (Yi). Thus for given Yi’s, one gets T , and then ρ,
u, p, and e.

This study will deal exclusively with the shock (“+”) branch, and will consider the fixed shock to be
located at x = 0. A fluid particle approaching from x < 0 encounters the shock, decelerates, and proceeds
at a slower speed in the direction of increasing x. If one were to apply a Galilean transformation to this
system with frame velocity D, it is clear that this also describes a wave traveling at speed D in the direction
of decreasing x into a fluid at rest. So one can interpret D as the classical detonation wave speed. Also, it
is easily shown that below a critical value of D, no real solution exists. This is an extension of the classical
CJ condition.

Endowed with effective representations of dependent variables in terms of theN−L species mass fractions,
one can then use Eq. (8) to obtain ω̇i(Y1, . . . , YN−L). In the same way, one obtains all auxiliary variables
in Eqs. (14-24) as functions of Y1, . . . , YN−L. Consequently, it is possible to write Eq. (45) and the relevant
part of Eq. (40) as a set of non-linear ODEs and initial conditions in the standard form

dYi

dx
= fi(Y1, . . . , YN−L), Yi(0

−) = Yio, (i = 1, . . . , N − L), (49)

where fi is a non-linear function of the dependent variables given by fi = ω̇iMi/(ρoD). While in certain
special cases, e.g. reactions which each preserve the number of molecules so that more conserved variables
exist, in general, Eqs. (49) are the minimal set necessary to describe the steady spatial structure of a gas
phase detonation in a system which is described by detailed kinetics.
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C. Length Scale Analysis

One can apply a standard eigenvalue analysis to Eqs. (49) to accurately estimate the local length scales over
which the system evolves. Defining, for convenience, the column vector y = Yi, i = 1, . . . , N −L, consider a
point x = x∗ at which y = y∗, which may or may not be near an equilibrium state. Assuming that the local
Jacobian matrix of fi, taken to be J = ∂fi/∂Yj |y∗ , is non-singular, one can linearize Eq. (49) to arrive at

dy

dx
= J · (y − y∗) + b, y(x∗) = y∗. (50)

Here, b is a constant column vector of dimension N − L, and J has dimension (N − L) × (N − L). When
b = 0, the state y = y∗ corresponds to an equilibrium state. As described by Fickett and Davis1, one
can expect singular behavior near sonic points. Extreme care must be exercised in such circumstances; it is
often the case that detailed kinetics can induce the true propagation speed of an unsupported detonation to
deviate from that given by a classical CJ analysis. To avoid such concerns, this study only considers waves
which are traveling slightly faster than the CJ speed, which physically suggests the presence of weak piston
support.

Next, define a new dependent variable z such that

z = y − y∗ + J−1 · b. (51)

Eliminating y from Eq. (50) in favor of z, one gets

dz

dx
= J · z, z(x∗) = J−1 · b. (52)

Assuming that J has a complete set of N − L linearly independent eigenvectors, one can decompose J as
J = P · Λ · P−1, where P is the matrix whose columns are populated by the right eigenvectors of J, and
Λ is the diagonal matrix whose diagonal is composed of the eigenvalues, λi, i = 1, . . . , N − L, of J. If an
insufficient number of linearly independent eigenvectors are available, a Jordan decomposition can be used
to obtain an equivalent result. Thus, Eq. (52) can be written as

dz

dx
= P ·Λ · P−1 · z, z(x∗) = J−1 · b. (53)

Applying the locally constant matrix operator P−1 to both sides and defining w = P−1·z, Eq. (53) transforms
to the uncoupled set of equations

dw

dx
= Λ · w, w(x∗) = P−1 · J−1 · b. (54)

Their solutions are
w(x) = eΛ(x−x∗) · P−1 · J−1 · b. (55)

The convenient matrix exponential notation has been utilized, which is described in many standard texts,
cf. Strang20. Obviously, the ith component of w evolves on a local length scale `i given by

`i =
1

|Re (λi) |
, (i = 1, . . . , N − L). (56)

This is the key result which will give the local length scales at all points in the reaction zone up to and
including the equilibrium point. In the bulk of the detonation reaction zone structure, the eigenvalues are
purely real. For the limited regions in which they are complex, the real part gives the length scale of
amplitude growth, and the imaginary part gives an additional length scale of oscillation.

It is generally impossible to associate the evolution of a particular species with a particular eigenvalue
since the species mass fractions depend on local linear combinations of all components of w and thus include
evolution on all of the N − L length scales of the system. This is seen by reconstructing y, from which one
finds that the local evolution of the species mass fractions is described by

y(x) = y∗ +
(

P · eΛ(x−x∗) · P−1 − I
)

· J−1 · b. (57)
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Since this analysis is local, the eigenvalues, and thus the length scales, will vary with x; that is, one has
λi(x) and `i(x) throughout the reaction zone.

The analysis of this section gives the framework for a local description of the evolution of a finite set of
chemical length scales, fixed by kinetic rates and satisfaction of conservation properties. As an aside, one
can ask how the presence of additional mechanisms such as diffusion and unsteadiness would influence the
local length scales. In the one-dimensional steady limit, each additional diffusion mechanism, e.g., species,
momentum, energy, adds a single ODE to the set, and thus a new length scale. This could easily be analyzed
in the manner already presented.

The addition of unsteadiness is more complicated, as such a system is described by a set of partial
differential equations (PDEs). In terms of the analysis of this section, one may consider the system of PDEs
to be, after spatial discretization, a very large set of ODEs in time. A related eigenvalue analysis could be
performed on the system’s Jacobian, and a set of local time scales of evolution is available at each point in
time. These time scales would exhibit, in general, full coupling between reaction, convection, and diffusion.
In fact, one can show in the limit as the spatial discretization approaches zero, that most time scales become
increasingly dominated by diffusion, and the minimum time scale is on the order of the square of the spatial
discretization size. In order for the error in an unsteady calculation which includes diffusion to be converging
to zero, one must have a discretization fine enough to render the diffusive time scales finer than the chemical
time scales. This poses a serious computational challenge for most physically important problems.

III. Computational Method

All calculations were performed on a single processor Sun Blade 1000 with a speed of 900 MHz. Typical
calculations done in double precision were completed within two minutes. A Fortran 90 code that drew upon
standard IMSL routines DNEQNF for Newton iteration, DFDJAC for Jacobian evaluation, and DEVLRG
for eigenvalue computation was used. For evaluation of thermochemical properties, subroutines available in
a double precision version of the public domain edition of the Chemkin21 package were utilized; no other
general Chemkin tools for solving specific physical problems were employed. This package draws upon
a standard thermodynamic data base which contains properties for a wide variety of constituents; these
include coefficients for polynomial curve fits for the variation of specific heats with temperature.

For integration, three methods were used: 1) a first order explicit Euler method, 2) a second order
explicit Runge-Kutta method, and 3) an implicit Adams method with functional iteration as embodied in
the standard code DLSODE22 in which step sizes were adapted to achieve a user-defined absolute error
tolerance, here taken as 10−14. When all methods were run with a spatial discretization smaller than
the smallest physical length scale, the predictions were virtually indistinguishable. The explicit Euler and
Runge-Kutta codes utilized a constant spatial discretization step size which was useful in grid convergence
and numerical stability studies. The implicit Adams method was used in studies to obtain the complete
reaction zone structure; here it was straightforward to adjust the spatial discretization step so as to generate
detailed results in the induction zone, and coarser results near equilibrium. However, even near equilibrium,
it was seen that the number of internal steps taken to achieve the error tolerance was consistent with the
discretization at the spatial scale dictated by the finest physical scale.

IV. Results

Results are presented for hydrogen-air mixtures which are initially in a stoichiometric molar ratio of
2H2 + O2 + 3.76N2. A kinetic model with N = 9 species, L = 3 atomic elements, and J = 19 reversible
reactions, identical to that employed by Shepherd3 in his hydrogen-air calculations, is used, and is reported
in detail in Table 1. Obviously there are many slightly different kinetic models from which to choose, and
the differences in each may become apparent in sensitive regions of the reaction zone structure. However,
analyzing the differences among the various kinetic models is beyond the scope of this study. The nine species
modeled are H , O, H2, O2, OH , H2O, HO2, H2O2, and N2. Nitrogen is regarded as an inert diluent. The
three atomic elements are H , O, and N . Shepherd extracts this model from the more general model reported
by Miller, et al.23 The kinetic model is nearly identical to that reported by Mikolaitis4, who has an obvious
transcription error in his value for A4. As use of this reported value has catastrophic consequences for the
calculation, and Mikolaitis’ results agree with Shepherd’s and those of this study, it is likely that the correct
value for A4 was actually used in Ref. 4.
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A. Stoichiometric CJ Hydrogen-Air Detonation at Standard Conditions

The model was used on a mixture, which in its unshocked state was at po = 1 atm and To = 298 K, under
near-CJ conditions, defined by the state in which the Mach number at the equilibrium state approaches
unity. The CJ state was determined by iteration and was found to be extremely sensitive to the initial
velocity D. As the resulting length scales were relatively insensitive to D, a final state with a Mach number
slightly less than unity was tolerated. A table of values of various thermochemical and dynamic properties
at the initial state, shock state, and equilibrium state is given in Table 2. Here, in order to allow comparison
with Refs. 3 and 4, mole fractions, in addition to mass fractions are reported. All figures, with the exception
of one in which po is varied, are for simulations performed at the conditions of Table 2.

Figure 1 gives a plot of the spatial distribution of species mole fractions throughout the reaction zone.
This calculation was performed with the Adams implicit method embodied in DLSODE. Results can be
directly compared to those of Shepherd, who reports predictions over the reaction zone length scale whose
structures can be discerned down to the induction zone length scale, but not at the finest scales. The use
of log-log scaling in Fig. 1 reveals a variety of scales over which the mole fractions evolve. The shock front
is located at x = 0 cm. Just past the shock, collisions of the major species H2, O2, and N2 commence with
more vigor, and minor species are generated. For very small distances from the shock front 0 < x < 10−4 cm,
the mole fractions of minor species H , O, OH , H2O, HO2, and H2O2 grow at rates which are well modeled
by power laws, while major species mole fractions are essentially unchanged. At x ∼ 10−4 cm, one notices
the slopes of some of the curves, e.g. that for OH , begin to change; this indicates that, at this scale, there is
beginning to be significant chemical interactions of the minor species. For 10−4 < x < 10−2 cm, major species
collisions continue, minor species mole fractions continue to rapidly grow, and the minor species continue to
interact. Just past x = 10−2 cm, a particularly vigorous stage of the reaction ensues in which all species mole
fractions, except the inert N2, undergo significant change. This region is considered to be near the end of the
induction zone, whose boundary is typically defined by the point at which the temperature gradient dT/dx
reaches a maximum value. With this definition, the induction zone thickness is found to be 2.6×10−2 cm. It
is also the beginning of the thermal explosion zone, which extends from roughly 2.6×10−2 < x < 3×10−2 cm.
This is followed by a relatively long recombination zone, 3×10−2 < x < 100 cm, in which radicals recombine
exothermically into the predominant product species, H2O. For x > 100 cm, it is clear from Fig. 1 that the
system has come to an equilibrium, as all spatial gradients are near zero. This is confirmed by calculating
the equilibrium state with an iterative Newton solver for fi(Yi, . . . , YN−L) = 0.

Plots of temperature and pressure in the reaction zone are given in Figs. 2 and 3, respectively. In these
figures the induction zone is clearly shown as a region of essentially constant temperature and pressure.
This seeming tranquility masks the real underlying evolution of species mole fractions which is occurring
within this zone. In contrast, the variation of pressure and temperature in the recombination zone is mild
in comparison.

The multi-scale nature of the problem is most clearly displayed in Fig. 4. Here the length scales `i(x)
predicted by the local eigenvalue analysis described earlier are shown as functions of the distance from the
shock. Each curve corresponds to the reciprocal of the absolute value of the real part of an eigenvalue.
Most importantly, the finest length scale is seen to vary from near 10−4 cm in the induction zone to as low
as 2.3 × 10−5 cm in the recombination zone. Such scales are likely close to mean free path length scales,
and thus this continuum calculation is probably approaching its lower limit of validity. In fact, a simple
independent Navier-Stokes calculation of an comparable inert viscous shock structure reveals that the viscous
length scales are precisely the same order of magnitude as the finest reaction length scales. This is likely
a consequence of both constitutive models for reaction and diffusion having molecular collisions as causal
forces.

It is noted here that the present analysis serves to correct a speculation made in Ref. 12, where it was
inferred, from a time scale analysis that did not include a detailed consideration of species convection, that
length scales would be predicted which would give rise to a violation of the continuum assumption.

The largest length scales range from around 3 × 101 cm in the induction zone to around 3 × 10−1 cm
at equilibrium state. The smallest length scale is consistent with the scale on which mole fractions are seen
to vary in Fig. 1. Moreover, the smallest scale is roughly equal to the internal step size utilized by the
adaptive DLSODE integration subroutine, in which the size of the integration step is automatically chosen
to maintain stability as well as achieve the specified accuracy. The largest length scale is not as critical, but
does provide a useful estimate of the overall length of the reaction zone.

Additional features of Fig. 4 are noteworthy. For the bulk of the domain, there are N − L = 6 real
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and distinct eigenvalues. For x < 3 × 10−2 cm, five of these eigenvalues have negative real parts, and one
has a positive real part, indicating growth of a local eigenmode. For x > 3 × 10−2 cm, the real parts of
all six eigenvalues are negative, indicating a relaxation to equilibrium. The spike in one of the curves near
x = 3 × 10−2 cm indicates one of the eigenvalues has a real part passing through zero; hence, its reciprocal
approaches infinity. In a few isolated regions near the end of the induction zone and in the thermal explosion
zone, some of the eigenvalues are complex conjugates. This is indicative of a local oscillatory behavior and is
seen in Fig. 4 when some of the curves merge in a thin zone. While a few curves appear to cross, a fine scale
calculation shows that they in fact remain distinct, even when up to three orders of magnitude increase in
resolution is employed.

B. Effect of Initial Pressure

A series of calculations in the same mixture held at the same temperature was performed in which the initial
pressure varied from 0.5 to 3.0 atm. Again, detonations which were very near to the CJ state were studied,
and both the finest length scale given by the eigenvalue analysis as well as the induction length scale were
predicted. Results are summarized in Fig. 5. Here it is clearly demonstrated that the smallest length scale
is roughly three orders of magnitude finer than that of the induction zone. The predictions of the induction
zone length compare well with those given in Ref. 5, where the same physical problem was modeled with a
slightly different kinetics model.

C. Verification

Two types of verification of the predictions are given here: 1) a comparison to Mikolaitis’4 detailed induction
zone predictions, and 2) a formal grid convergence study. For the first verification, some small adjustments
are necessary. In Ref. 4 only the induction zone was considered, and p, T , and u were frozen at their
post-shock values. Then the governing equations were integrated numerically in time, and results compared
favorably to those of a detailed asymptotic theory. In order to properly compare predictions, the time
coordinate of a Lagrangian particle must be obtained by numerical integration of the equation for particle
velocity, u = dx/dt. As u(x) is available after solution of Eq. (49), the local time can be found by the
quadrature

t =

∫ x

0

dx̂

u(x̂)
. (58)

Using this result, it is then possible to plot the variation of all thermochemical properties of a fluid particle
as a function of the relative time after which it has passed the shock located at x = 0. Such a plot is given in
Fig. 6 for the mole fractions of all species in the induction zone. The features are roughly the same as those
seen in Fig. 1. A direct comparison to the predictions of Ref. 4 shows excellent agreement for all variables.

For the second verification, a formal grid convergence study is performed over a wide range of spatial
discretization levels: 5×10−11 < ∆x < 10−4 cm. While the finest discretization scales are definitely below the
continuum limit, for purposes of mathematical verification of the numerical method, this is inconsequential.
Conditions were identical to those used to predict Fig. 1. As it was desirable to use a fixed value of ∆x
in an individual calculation, use of the adaptive DLSODE was discarded in favor of a simpler first order
explicit Euler and second order explicit Runge-Kutta method. While both of these methods work well over
the entire reaction zone, it was more efficient to determine the convergence properties by integrating only
to a small final value of distance, here taken to be x = 10−4 cm. As this final value of x is as small as the
finest length scale, it is guaranteed there will be no problems with numerical stability.

Figure 7 shows the results of the grid convergence study. First, results were obtained on a highly refined
grid with ∆x = 10−11 cm for the second order method. These were taken as a benchmark solution to which
comparisons could be made. Next, it was chosen to compare the mole fraction values of a minor species,
XOH , at the final point x = 10−4 cm to the prediction of the benchmark case. For each discretization and
integration method, a value of the relative error, εOH ,

εOH =

∣
∣
∣
∣

XOH,approximate −XOH,benchmark

XOH,benchmark

∣
∣
∣
∣
x=10−4 cm

,

was calculated. Had other variables been chosen or an error norm encompassing a broader domain been
chosen, the convergence rates would not have been affected.

11 of 20

American Institute of Aeronautics and Astronautics Paper 2005-1171



The first order Euler method in fact gives error predictions which converge at a rate of 1.006, effectively
equivalent to its expected value. At the smallest ∆x = 5× 10−11 cm studied, the method is still converging,
and has not yet reached its machine roundoff limit. The second order Runge-Kutta method predicts errors
to converge at a rate of 2.008, again equivalent to its expected value. Its error is always lower than that of
the first order method, and near ∆x = 2 × 10−9 cm, it appears that the machine roundoff limit has been
reached as further refinement results in no improvement in the error. The actual relative error at this limit
is just under 10−10 which indicates that the accuracy exceeds that of single precision. It is likely that the
strict double precision limit of 10−16 is not reached because of the effects of accumulation of roundoff error
after many millions of operations.

D. Numerical Stability

A series of calculations was subsequently performed at discretization levels near the threshold of numerical
instability. Conditions again were identical to those used to predict Fig. 1. Figure 8 shows predictions of
XH over the range 0 < x < 5 × 10−3 cm using a first order explicit Euler integration. Similar results could
have been obtained for other variables or using other integration schemes; it is difficult, however, for the
subroutine DLSODE to generate spatially unstable numerical results as it uses automatic step size selection
to prevent this from happening. Thus, in effect DLSODE is providing an atypical adaptive mesh refinement
(AMR). In more challenging spatio-temporal problems, multi-scale effects often require adaptation in space
and time. In such cases, solvers like DLSODE are confined to adaptation in time; independent algorithms,
such as the Wavelet Adaptive Multilevel Representation (WAMR), see Ref. 12, are required to address the
multi-scaled spatial structures. This extension to adaptation in space and time is non-trivial.

For a value of ∆x = 1.00×10−5 cm, well below the finest physical length scale predicted by the eigenvalue
analysis, the evolution of XH is well-behaved. Increasing ∆x to a value in the neighborhood of the smallest
physical length scale, ∆x = 2.00× 10−4 cm results in a prediction which is oscillatory but stable. Increasing
the discretization length slightly to ∆x = 2.38× 10−4 cm triggers an unstable numerical oscillation.

If one were to model a similar detonation using a computational model which allowed for both time
and space variation and one were to choose a computational grid which did not capture the finest physical
length scale, the following result would be likely. In the steady state limit, the model would be inclined
to predict relaxation to a spatially oscillatory state similar to that shown in the large ∆x case of Fig. 8.
Such oscillations are damped, however, in the unsteady model by artificial diffusion which depends on both
the grid and computational algorithm employed. This may account for the wide disparity in the small scale
structures that one often sees in predictions of identical cases by either the same algorithm on different grids,
different algorithms on the same grid, or even the same algorithm and same grid on different computers.

E. Comparison with Recent Results

Finally, predictions of the current algorithm are compared with some of the best calculations of detonations
in hydrogen-based systems which have appeared in the recent archival literature. The results are summarized
in Table 3, which most importantly, lists the induction zone length, `ind, the finest length predicted by the
eigenvalue analysis, `f , and the grid discretization, ∆x, employed in the study. For each case, the algorithm
presented here was exercised on the published models under the appropriate conditions reported. The
induction length scale obtained for the low pressure H2 + 2O2 + 7Ar case agrees with the result reported in
Ref. 8 but not with that reported in Ref. 6. It is believed that the value reported in Ref. 6 (2 × 10−3 cm)
is a typographical error since agreement is obtained with other reported values from Ref. 6. The key result
found in Table 3 is that none of these independent studies has captured `f , and some do not capture `ind.
While these are some of the best calculations, it is not difficult to find worse cases in the literature.

V. Conclusions

It has been unambiguously shown that the finest length scales predicted by a one-dimensional steady
analysis of a common stoichiometric CJ hydrogen-air detonation model under standard atmospheric condi-
tions are roughly three orders of magnitude finer than the induction zone thickness. Consequently, many
modern calculations using detailed kinetics coupled with a strategy to resolve at most the induction zone
are formally under-resolved. It is also clear that in order to meet the strictest demands of rigorous scientific
computing for detonations with detailed kinetics, one must employ a computational grid with a characteristic
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length at or below the values predicted by the present analysis. In fact when other physics is considered, such
as detonations with curvature24, or those in which high wavenumber instabilities are present25, the demands
of spatial resolution may be even more stringent than those suggested here. Furthermore, as preliminary
calculations indicate the finest reaction zone length scales are of the same order as diffusion length scales in
shocks, it may be the case that a resolved model of detonation which includes detailed kinetics may need to
consider diffusion.

That under-resolved computations often produce plausible results is understandable when one considers
that a wide variety of calculations are driving towards a stable equilibrium state which is fixed by path-
independent thermodynamics. It is often the case that these near-equilibrium properties are the easiest to
predict as well as observe. However, for many classes of problems, such as those with inherent unsteadiness,
the journey is as important as the destination, and agreement with equilibrium wave speeds, pressures,
and temperatures, is a necessary but insufficient requirement. In such cases, the journey is only properly
completed when the spatial structures are properly resolved. Short cuts to equilibrium provided by under-
resolved paths do not reflect the full richness of the process and run the risk of leading the journey to a
non-physical catastrophe.

It is often argued that such fine discretizations are not necessary as the small scales will not influence
the scales of engineering importance. First, such a conclusion cannot be made a priori; indeed, the field of
non-linear dynamics provides many counter-examples in which small scale disturbances ultimately manifest
themselves on a large scale. Lorenz’s26 now-celebrated study of transition to chaos is but one such case.
So, until such calculations are actually made which prove the unimportance of small scales, the possibility
of their relevance cannot be cavalierly dismissed. Second, if it is indeed the case that these small scales
are of no consequence, then it is appropriate for the modeling community to employ only mathematical
models which do not contain such inherently fine scales. To argue on one hand that it is critical that modern
engineering applications require a consideration of detailed chemical kinetics and on the other hand that
fine scale phenomena are of no consequence is scientifically incoherent. That said, the present study is
incapable of answering the critical question of how important the fine scale structures are. It just provides
a simple diagnosis that most computational combustion results in the literature are afflicted with under-
resolution. The prognosis, however, can still be bright, but only if a careful regimen of detailed, resolved
calculations of key physical problems, transparently presented so that a skeptical broader community can
have full confidence in the predictions, is undertaken.
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j Reaction Aj βj Ej

1 H2 +O2 ⇀↽ OH +OH 1.70× 1013 0.00 47780

2 OH +H2 ⇀↽ H2O +H 1.17× 109 1.30 3626

3 H +O2 ⇀↽ OH +O 5.13× 1016 −0.82 16507

4 O +H2 ⇀↽ OH +H 1.80× 1010 1.00 8826

5 H +O2 +M ⇀↽ HO2 +M 2.10× 1018 −1.00 0

6 H +O2 +O2 ⇀↽ HO2 +O2 6.70× 1019 −1.42 0

7 H +O2 +N2 ⇀↽ HO2 +N2 6.70× 1019 −1.42 0

8 OH +HO2 ⇀↽ H2O +O2 5.00× 1013 0.00 1000

9 H +HO2 ⇀↽ OH +OH 2.50× 1014 0.00 1900

10 O +HO2 ⇀↽ O2 +OH 4.80× 1013 0.00 1000

11 OH +OH ⇀↽ O +H2O 6.00× 108 1.30 0

12 H2 +M ⇀↽ H +H +M 2.23× 1012 0.50 92600

13 O2 +M ⇀↽ O +O +M 1.85× 1011 0.50 95560

14 H +OH +M ⇀↽ H2O +M 7.50× 1023 −2.60 0

15 H +HO2 ⇀↽ H2 +O2 2.50× 1013 0.00 700

16 HO2 +HO2 ⇀↽ H2O2 +O2 2.00× 1012 0.00 0

17 H2O2 +M ⇀↽ OH +OH +M 1.30× 1017 0.00 45500

18 H2O2 +H ⇀↽ HO2 +H2 1.60× 1012 0.00 3800

19 H2O2 +OH ⇀↽ H2O +HO2 1.00× 1013 0.00 1800

Table 1. Nine species, nineteen step reversible reaction mechanism for a hydrogen/oxygen/nitrogen mixture
extracted from Ref. 23 and used in Refs. 3 and 4. The value of A4 from Ref. 4 has been corrected to be
consistent with earlier references. Units of Aj are in appropriate combinations of cm, mol, s, and K so that
ω̇i has units of mol/cm3/s; units of Ej are cal/mol. Third body collision efficiencies with M are k5(H2O) = 21,
k5(H2) = 3.3, k12(H2O) = 6, k12(H) = 2, k12(H2) = 3, k14(H2O) = 20.
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Property Units Initial Shock CJ

p atm 1.0000× 100 2.7954× 101 1.6269× 101

T K 2.9800× 102 1.5427× 103 2.9821× 103

u cm/s 1.9797× 105 3.6661× 105 1.0660× 105

ρ g/cm3 8.5523× 10−4 4.6181× 10−3 1.5882× 10−3

γ 1.4009× 100 1.3178× 100 1.2440× 100

M 4.8594× 100 4.0779× 10−1 9.3824× 10−1

YO2
2.2626× 10−1 2.2626× 10−1 1.3755× 10−2

YH 0.0000× 10−0 0.0000× 10−0 2.7105× 10−4

YOH 0.0000× 10−0 0.0000× 10−0 1.4820× 10−2

YO 0.0000× 10−0 0.0000× 10−0 1.7806× 10−3

YH2
2.8522× 10−2 2.8522× 10−2 2.5670× 10−3

YH2O 0.0000× 10−0 0.0000× 10−0 2.2166× 10−1

YHO2
0.0000× 10−0 0.0000× 10−0 2.2350× 10−5

YH2O2
0.0000× 10−0 0.0000× 10−0 3.0765× 10−6

YN2
7.4512× 10−1 7.4512× 10−1 7.4512× 10−1

XO2
1.4793× 10−1 1.4793× 10−1 1.0269× 10−2

XH 0.0000× 10−0 0.0000× 10−0 6.4242× 10−3

XOH 0.0000× 10−0 0.0000× 10−0 2.0818× 10−2

XO 0.0000× 10−0 0.0000× 10−0 2.6588× 10−3

XH2
2.9586× 10−2 2.9586× 10−2 3.0421× 10−2

XH2O 0.0000× 10−0 0.0000× 10−0 2.9395× 10−1

XHO2
0.0000× 10−0 0.0000× 10−0 1.6177× 10−5

XH2O2
0.0000× 10−0 0.0000× 10−0 2.1607× 10−6

XN2
5.5621× 10−1 5.5621× 10−1 6.3544× 10−1

Table 2. Thermochemical and dynamic properties for a mixture of 2H2 + O2 + 3.76N2.

Ref. Mixture To (K) po (atm) `ind (cm) `f (cm) ∆x (cm)

6 2H2 +O2 + 7Ar 2.98× 102 6.58× 10−2 1.47× 10−1 2.17× 10−4 3.88× 10−3 a

8 2H2 +O2 + 7Ar 2.98× 102 b 6.61× 10−2 1.46× 10−1 − c − d

11 2H2 +O2 + 3.76N2
e 2.98× 102 b 1.00× 100 b 1.50× 10−2 1.23× 10−5 5.00× 10−4 a

12 2H2 +O2 + 7Ar 1.20× 103 1.17× 100 1.54× 10−2 2.76× 10−5 8.14× 10−5 f

13 2H2 +O2 + 7Ar 1.20× 103 1.17× 100 1.54× 10−2 2.76× 10−5 3.00× 10−2

14 2H2 +O2 3.00× 102 1.00× 100 5.30× 10−3 7.48× 10−6 1.00× 10−2 a

15 2H2 +O2 + 3.76N2 9.00× 102 2.27× 10−1 1.38× 10−1 g 2.23× 10−4 g 1.00× 100 h

Table 3. Comparison of length scales among various models which use detailed kinetics to describe detonations
in hydrogen-based systems. Unless otherwise indicated, parameters are inferred from those reported by the
original authors and are for CJ detonations. Values for `ind and `f were predicted from the algorithm of the

present study. aSmallest discretization considered. bValue not reported, but presumed. cIntrinsic low dimen-
sional manifold used, finest scale not obvious. dAdaptive mesh refinement method used, grid size not obvious.
ePresumed stoichiometric; detonation overdriven at D = 2.065 × 105 cm. fAdaptive mesh refinement method
used. gEffects of Nitrogen chemistry neglected in estimate. hRough estimate from parameters provided.
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Figure 1. Species mole fraction versus distance.

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

1500

2000

2500

3000

3500

x (cm)

T 
(K

)

Figure 2. Temperature versus distance.

17 of 20

American Institute of Aeronautics and Astronautics Paper 2005-1171



10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

15

20

25

30

x (cm)

p 
(a

tm
)

Figure 3. Pressure versus distance.
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Figure 6. Minor species mole fractions versus time in the induction zone.
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