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Abstract

A highly accurate pseudospectral solver for the in-
viscid, supersonic flow of a calorically perfect ideal
gas over arbitrary axisymmetric blunt body geome-
tries is verified in its ability to approximate solutions
to the Euler equations to within a dimensionless er-
ror tolerance of 10−12 in predictions of flow quantities
and validated to within a dimensionless error toler-
ance of 10−2 in comparison of its predictions of shock
location with experimental observation. In space, an
exponential grid convergence rate in the L∞[Ω] error
in density is predicted due to fitting of the detached
bow shock and approximation of spatial derivatives
via basis functions with global support; in contrast,
a more standard shock capturing scheme will nec-
essarily converge at only first order due to the cor-
rupting influences of large numerical viscosity in the
vicinity of the shock, rendering verification and val-
idation more difficult. In time, casting the discrete
form of the governing equations in the standard form
dx
dt = q(x) allows the use of a standard algorithm
which enables high accuracy in time integration as
well. Verification is accomplished by comparison with
known exact solutions in appropriate limits, compu-
tation of the alignment of velocity vectors with en-
tropy gradient vectors, computation of deviation of
total enthalpy from its freestream value, as well as
formal grid convergence studies. Validation is given
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by showing that shock shape predictions for flow over
a sphere are in essential agreement with that observed
in experiment. The ability of the method to capture
unsteady flow phenomena, including low-amplitude
high order harmonics, is demonstrated on the prob-
lem of a uni-modal planar acoustic wave interacting
with an attached shock and downstream flow field.

Introduction

As a prerequisite for developing a new technique
for shape optimization of bodies in supersonic flow, 1

not discussed here, we require a highly accurate flow
solution technique. In the present work, a summary
is given of a recently developed spatially pseudospec-
tral, temporally high accurate numerical approxima-
tion to the solution for the supersonic, inviscid flow
of a calorically perfect ideal gas over an axisymmetric
blunt body. 2 The shock is fit since approximation of
discontinuous solutions with high order polynomials
exhibits the Gibbs phenomenon in the form of global
oscillations in the solution. 3 Attempts to remove
the oscillations by spectral filtering or by addition
of artificial viscosity significantly reduces the accu-
racy of the numerical method. The more common
alternative of shock capturing, while generally sta-
ble, non-oscillatory, though in some incarnations of
daunting complexity, yields only first order spatial
accuracy; common adaptive mesh refinement strate-
gies may not always be useful in reducing this error. 4

As a secondary motivation for generating high ac-
curacy solutions, it is noted that there are outstand-
ing questions regarding numerical and physical in-
stabilities in multi-dimensional shock dynamics for
which a solution with high spatial and temporal ac-
curacy has value. Issues of shock stability remain
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controversial 5−12 since it is not clear which effects
are real and which are numerical artifacts. Although
shock stability will be investigated only in a rudi-
mentary way in the current work, the shock fitting
method used here is the most appropriate for address-
ing fundamental stability questions for inviscid flows
due to the intrinsically low level of numerical viscos-
ity inherent in the method. Furthermore, should a
physical instability exist, one would like to have a
numerical method with sufficient robustness to auto-
matically select the time step so as to resolve the dy-
namics; because of the additional dynamic equations
which arise from the unsteady shock wave, a sim-
ple CFL criterion is insufficient in the general case.
Fortunately, the casting of the discretized governing
equations into the form dx

dτ = q (x), as done here, al-
lows the use of standard software packages which have
automatic time step selection, precluding the neces-
sity of an explicit condition for numerical stability.

The literature on solutions to the supersonic
flow over blunt body geometries is briefly reviewed.
Rusanov 13 and Hayes and Probstein 14 have given
thorough reviews of early contributions, of which a
few will be mentioned. Two methodologies for calcu-
lating solutions to the supersonic flow about a blunt
body are the direct and inverse methods. In the
direct method the body shape is specified, and then
the shock shape and flow field are calculated. In the
inverse method the shock shape is specified, and the
body shape which would support that shock shape is
calculated. At first, studies concerning the inverse
problem were based on series expansion of the gov-
erning equations in the vicinity of the shock wave. 15

Later, numerical solutions to the inverse, supersonic
blunt body problem were performed by Garabedian
and Lieberstein 16 and Van Dyke. 17 Evans and
Harlow 18 were the first to generate numerical so-
lutions to the direct problem by integrating the un-
steady Euler equations to a relaxed steady state so-
lution. Moretti and Abbett 19 used finite differences
and fitting of the shock to generate accurate solutions
of the Euler equations about a blunt body; this laid
the foundation for subsequent shock-fitting numeri-
cal schemes. Pseudospectral approximations to the
Euler equations employing shock-fitting with spectral
filtering were first performed by Hussaini, et al. 20 and
without spectral filtering by Kopriva. 21 The numer-
ical technique employed in the current paper builds
on the work by Kopriva, 21,22 Brooks and Powers, 23,2

and Brooks. 24 The novelty of our recent work lies in
1) its use of high accuracy time integration, enabled
by our employment of a new standardized formula-
tion, and 2) its detailed verification and validation
studies.

Next, pseudospectral methods are briefly reviewed.
An early unified mathematical description of the the-
ory of spectral and pseudospectral methods was given
by Gottlieb and Orszag. 3 Significant advances oc-
curred in the late 1970’s and early 1980’s and are
well documented by Canuto, et al., 25 with particu-
lar application to fluid dynamics. For a more recent
review, see Gottlieb and Hesthaven. 26

There does not appear to be complete consensus in
the literature for the definition of pseudospectral; a
definition is adopted here which we believe useful and
consistent with that of Fornberg. 27 We define a pseu-
dospectral method to be a collocation type of method
of weighted residuals, as defined by Finlayson, 28

in which the error in the solution to the governing
equations is driven to zero at collocation points; the
flow quantities are represented in terms of global La-
grange interpolating polynomials defined at the col-
location points. These interpolating polynomials are
not orthogonal. The spatial derivatives of the flow
quantities are then calculated by differentiating the
Lagrange interpolating polynomials. Efficient algo-
rithms for calculating derivatives of Lagrange inter-
polating polynomials on arbitrary grids can be found
in Fornberg; 27 these algorithms were used in the cur-
rent work.

A important property of the pseudospectral
method is that approximations to derivatives have
global support, making it equivalent to a finite dif-
ference or finite element scheme with a stencil that
extends over the entire domain. As the number
of points is increased, the size of the stencil grows,
leading to a higher order accurate solution. In many
cases the spatial accuracy will be equivalent to that
of spectral methods. However, in contrast to spectral
methods, pseudospectral methods need not employ
orthogonal basis functions.

In this paper, formulation of the classical two-
dimensional blunt body problem for a high accuracy
numerical solution will be outlined. The numerical
solution technique is then discussed. The remain-
der of the paper is then devoted to a demonstration
of the verification, which connotes a correct solution
to the underlying mathematical model, and valida-
tion, which connotes that the model’s predictions
are in concordance with experimental observation, of
the model and solution technique. First the solu-
tion is verified for a steady Taylor-Maccoll flow over
a sharp-nose cone for which an independent solution
is available via solution of ordinary differential equa-
tions (ODEs) which result from a standard similarity
transformation. Next a detailed verification and more
limited validation are performed for the steady blunt
body problem for which no independent solution ex-
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ists. Last, the model is exercised in a unsteady mode
by subjecting the Taylor-Maccoll flow to a uni-modal
acoustic freestream disturbance. The inherent non-
linearity of the problem insures that the uni-modal
input will spawn a multi-modal output, and the high
spatial and temporal accuracy of the method allows
detection of high frequency output modes.

Governing Equations

The two-dimensional, axisymmetric Euler equa-
tions for a calorically perfect ideal gas are, in dimen-
sionless form:

∂ρ

∂t
+ u

∂ρ

∂r
+ w

∂ρ

∂z
+ ρ

(
∂u

∂r
+

∂w

∂z
+

u

r

)
= 0, (1)

∂u
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+ u

∂u

∂r
+ w
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+

1

ρ

∂p

∂r
= 0, (2)

∂w

∂t
+ u

∂w

∂r
+ w
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∂z
+

1

ρ

∂p

∂z
= 0, (3)

∂p

∂t
+ u

∂p

∂r
+ w

∂p

∂z
+ γp

(
∂u

∂r
+

∂w

∂z
+

u

r

)
= 0, (4)

where ρ is density, p is pressure, u and w are the ve-
locities in the radial and axial directions, respectively,
r is the radial coordinate, z is the axial coordinate,
t is time, and γ is the ratio of specific heats. The
dimensional form for pressure, p∗, density, ρ∗, and r∗

and z∗ components of velocity, u∗ and w∗ respectively
are recovered by the following equations,

p∗ = pp∗
∞

, (5)

ρ∗ = ρρ∗
∞

, (6)

u∗ = u
√

p∗
∞

/ρ∗
∞

, w∗ = w
√

p∗
∞

/ρ∗
∞

, (7)

where dimensional quantities are denoted by a ∗, and
freestream quantities are denoted by ∞. The dimen-
sional space and time variables are

z∗ = zL, r∗ = rL, (8)

t∗ = tL/
√

p∗
∞

/ρ∗
∞

, (9)

where L is the length of the body. The freestream
flow is at zero angle of attack so that the component
of freestream velocity in the r direction, u∞ = 0.

Next, some secondary variables which will be use-
ful in verification of the numerical solutions are con-
sidered. In this two-dimensional flow, the vorticity
vector has only one non-zero component, which lies
in the θ direction. It is

ωθ =
∂u

∂z
− ∂w

∂r
. (10)

Here the following scaling has been employed

ω∗

θ =
1

L

√
p∗
∞

ρ∗
∞

ωθ. (11)

Next, defining the entropy as s, one has, for a calori-
cally perfect ideal gas with zero freestream entropy,

s = ln

(
p

ργ

)
, (12)

where the entropy is non-dimensionalized by the the
specific heat at constant volume, c∗v,

s∗ = sc∗v. (13)

The total enthalpy Ho for the calorically perfect ideal
gas is

Ho =
γ

γ − 1

p

ρ
+

1

2

(
u2 + w2

)
. (14)

In dimensional terms, the total enthalpy is

H∗

o =
p∗
∞

ρ∗
∞

Ho. (15)

The temperature T is given by the ideal gas law

T =
1

γ − 1

p

ρ
. (16)

In dimensional terms, the temperature is

T ∗ =
p∗
∞

c∗vρ
∗

∞

T. (17)

Last, the Mach number M has its standard definition
for the calorically perfect ideal gas:

M =

√
u2 + w2

γ p
ρ

. (18)

To facilitate the solution to the Euler equations
for time-varying geometry, Eqs. (1 − 4) are rewrit-
ten in terms of a general body-fitted coordinate sys-
tem, ξ(z, r, t), η(z, r, t), and τ (z, r, t) . Employing the
chain rule of differentiation,
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+
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∂
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,

and taking τ (z, r, t) = t, the nondimensional form of
Eqs. (1 − 4) in generalized coordinates is

∂ρ
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r
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where the contravariant velocity components û and
ŵ are

û =
∂ξ
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+ u

∂ξ

∂r
+ w

∂ξ

∂z
, (24)
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+ u
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+ w

∂η
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. (25)

The following standard relations between the metrics
and inverse metrics are also necessary
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J
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where J is the determinant of the metric Jacobian
matrix.

Computational and Physical Coordinates

The physical domain of the blunt body problem,
Fig. 1, is mapped to the computational domain,
ξ ∈ [0, 1], η ∈ [0, 1], in such a way that the body
surface lies along the computational boundary (ξ, 0) ,
the shock lies along the boundary (ξ, 1) , the symme-
try axis is a third boundary at (0, η) , and the fourth
boundary at (1, η) is a supersonic outflow. The trans-
formation between the physical coordinates (r, z) and
computational coordinates (ξ, η) is taken to be

r (ξ, η, τ) = R(ξ) +
η dZ(ξ)

dξ h (ξ, τ)
√(

dR(ξ)
dξ

)2

+
(

dZ(ξ)
dξ

)2
, (27)

z (ξ, η, τ) = Z(ξ) −
η dR(ξ)

dξ h (ξ, τ)
√(

dR(ξ)
dξ

)2

+
(

dZ(ξ)
dξ

)2
. (28)

where the nonlinear function h (ξ, τ) must be speci-
fied to completely determine the mapping, and R(ξ)
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Figure 1: Schematic of shock-fitted high Mach num-
ber flow over an axisymmetric blunt body including
computational (ξ, η) and physical (r, z) coordinates.

and Z(ξ) are known functions. After manipulation,
the transformations in Eqs. (27) and (28) yield the
following identity

h (ξ, τ ) =
√

(z (ξ, 1, τ ) − z (ξ, 0, τ ))2 + (r (ξ, 1, τ ) − r (ξ, 0, τ ))2,

(29)

from which it is seen that the function h (ξ, τ) is the
distance in r − z space between the body surface,
η = 0, and the shock, η = 1, along lines of constant ξ.
The function h (ξ, τ) is subsequently referred to as the
shock distance function. It is seen that Eqs. (27) and
(28) form an implicit algebraic equation for the coor-
dinate transformation. It is apparent from Eqs. (27)
and (28) that the functions R (ξ) and Z (ξ) parame-
terize the blunt body surface, η = 0, i.e.

r (ξ, 0, τ) = R (ξ) , (30)

z (ξ, 0, τ) = Z (ξ) ,

and that the body surface is not a function of time.
The transformations in Eqs. (27) and (28) have been
constructed so that lines of constant ξ are normal to
the body surface and have no curvature in r−z space

The time evolution equations for the physical grid
r(ξ, η, τ), and z(ξ, η, τ) can be found by differentiat-
ing Eqs. (27) and (28) with respect to time as follows,

∂

∂τ
r (ξ, η, τ) =

η dZ(ξ)
dξ v (ξ, τ)

√(
dR(ξ)

dξ

)2

+
(

dZ(ξ)
dξ

)2
, (31)
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∂

∂τ
z (ξ, η, τ) = −

η dR(ξ)
dξ v (ξ, τ)

√(
dR(ξ)

dξ

)2

+
(

dZ(ξ)
dξ

)2
, (32)

where the shock velocity function v (ξ, τ) is

v (ξ, τ) =
∂

∂τ
h (ξ, τ) . (33)

Boundary and Initial Conditions

Formulation of the boundary and initial conditions
is a complex task, fully described in Ref. 2. In brief,
at the body surface one enforces the kinematic con-
straint of zero mass flux. The inviscid model allows
for a finite slip velocity at the body surface. At
the shock, the usual Rankine-Hugoniot jump equa-
tions are enforced; this becomes a highly detailed task
in the unsteady generalized coordinate system which
must be employed for the shock fitting method. On
the centerline, a Dirichlet condition on entropy, ap-
propriate in either the steady state limit or the limit
of an unsteady attached shock, is used. At the out-
flow, no physical boundary conditions are required as
all waves are exiting the domain.

As an initial condition, the shock distance function
is taken to be a constant, whose particular value is not
relevant to the long time results. This allows spec-
ification of the grid coordinates in the initial state.
Specification of an incoming Mach number, unper-
turbed flow quantities, and shock shape allows one
to specify post-shock values of all physical variables
via Rankine-Hugoniot relations. These values at the
initial state are then simply projected as constants
along lines of constant ξ. While the initial value prob-
lem is formally solved, the only concern here will be
with results at times sufficiently long so that initial
transients have relaxed, leaving either steady state or
limit cycle behavior at long time.

Numerical Method

Here, the procedure for formulating this problem
as a system of ODEs is outlined. The Euler equa-
tions, physical grid evolution equations, shock veloc-
ity equation, and boundary conditions defined over
the computational domain

Ω : {ξ ∈ [0, 1] , η ∈ [0, 1]} , (34)

and bounded by S, can be written in the form of the
following coupled system of time-dependent partial
differential and algebraic equations

∂y

∂τ
+ f

(
y,

∂y

∂ξ
,
∂y

∂η

)
= 0, (35)

. . . .  

Outflow

Shock
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η

ξ10.80.6

0.4

0.2

0

1
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0.40.2

Figure 2: Computational grid for the shock-fitted
blunt body.

g

(
y,

∂y

∂ξ
,
∂y

∂η

)
= 0, (36)

along with the initial conditions,

y (ξ, η, 0) = y0 (ξ, η) , (37)

where ξ and η are independent spatial variables in
the computational space, and f and g are nonlinear
functions of the dependent variables y (ξ, η, τ) and its
spatial derivatives. All of the algebraic constraints,
Eq. (36), are boundary conditions and thus apply
only on S. A sketch of the domain in the trans-
formed computational space is shown if Fig. 2. It was
found 24 that the non-uniform grid shown in Fig. 2
gave rise to a more uniform error distribution in inter-
polating known functions, and so a grid of this class
was used in all calculations reported here.

Approximating y (ξ, η, τ) and its spatial derivatives
via global Lagrange interpolating polynomials, as de-
scribed in detail in Ref. 2, the system of partial dif-
ferential and algebraic equations in Eqs. (35) and
(36) reduce to the following system of P2 differential-
algebraic equations

dyp (τ)

dτ
= fp (y1, ..., yP2

) , p = 1, ..., P1, (38)

0 = gp′ (y1, ..., yP2
) , p′ = P1 + 1, ..., P2, (39)

with initial conditions from Eq. (37)

yp (0) = y0p, p = 1, ..., P1. (40)

Here y1 (τ) , ..., yP2
(τ) are the flow quantities, physi-

cal grid coordinates, and shock velocity evaluated at
nodal points on an (N + 1)× (M + 1) mesh. In this
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problem, it is possible through a detailed analysis to
solve for the yp′ (τ) , p′ = P1 + 1, ..., P2, as explicit
functions of the yp, p = 1, ..., P1, i.e.

yp′ (τ) = ĝp′ (y1, ..., yP1
) , p′ = P1 + 1, ..., P2, (41)

so as to transform Eqs. (38) and (39) into the follow-
ing system of P1 ODEs,

dxp (τ)

dτ
= qp (x1, ..., xP1

) , p = 1, ..., P1, (42)

where

qp (x1, ..., xP1
) ≡ fp (y1, ..., yP1

, ĝp′ (y1, ..., yP1
)) ,

p = 1, ..., P1, p′ = P1 + 1, ..., P2, (43)

and
xp (τ) = yp (τ) , p = 1, ..., P1. (44)

The accompanying initial conditions are

xp (0) = x0p, p = 1, ..., P1. (45)

In compact vector notation, Eq. (42) is

dx

dτ
= q (x) , (46)

with accompanying initial conditions

x (0) = x0, (47)

from Eq. (45). After spatial discretization on an
(N + 1)× (M + 1) grid, the equations become a sys-
tem of P1 = 6NM + 2M ODEs.

Solutions have been obtained for Eqs. (46− 47)
with the standard solver LSODA, 29,30 which auto-
matically adjusts the time step to achieve a speci-
fied level of accuracy. It also automatically switches
between an explicit method and implicit method de-
pending on the stiffness of the problem. A typical
steady state calculation on a 17×9 grid took 106 sec-
onds CPU time on a single 800 MHz processor with
512 MB of RAM. For steady state problems, the cri-
teria for stopping the integration is when the L∞[Ω]
error in ρ(ξ, η, τ → ∞) does not change appreciably.

Verification and Validation

Taylor-Maccoll Flow

The self-similar solution to supersonic flow over a
cone, also known as the Taylor-Maccoll solution, 31

will be used to verify the algorithm described in the
previous section. First, a highly accurate ODE
solver is used to calculate the Taylor-Maccoll solu-
tion, which will be subsequently referred to as the
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Figure 3: Schematic of the physical (r, z) and compu-
tational (ξ, η) grids for the Taylor-Maccoll problem.

exact solution. The only modification to the blunt
body problem formulation to generate numerical ap-
proximations to the Taylor-Maccoll flow is to replace
the centerline boundary condition at ξ = 0 with a
Dirichlet boundary condition containing the values
of ρ, u, w, p, r, and z taken from the exact solution.
A schematic of a 40 degree cone including the physi-
cal and computational coordinates is shown in Figure
3 for a 5 × 5 grid for M∞ = 3.5, ρ∞ = p∞ = 1. A
value of ro = 0.1 was chosen for the results presented
in this section. The initial conditions for ρ, u, w,
p, r, and z are taken from the exact solution, and a
sinusoidal distribution is chosen for the initial shock
velocity: v (ξ, 0) = 0.1 sin (2πξ).

In Fig. 4, the time history of the L∞[Ω] differ-
ence between the temporally local ρ (ξ, η, τ) values
and steady, exact, Taylor-Maccoll values over the do-
main, Ω, for the pseudospectral prediction measured
against the exact solution for a M∞ = 3.5 flow over
a 40 degree cone solved on a 5 × 17 grid is shown.
The figure demonstrates a rapid relaxation which is
approaching the exact solution; however, this only
demonstrates relaxation in time, not in spatial grid
resolution. For this grid the residual relaxes to a
steady state value of 10−12, which, since the base so-
lution is exact, represents the true steady state error.

For spatial resolution, a grid convergence test
for the pseudospectral prediction of the Taylor-
Maccoll flow is conducted by refining the grid in the
η−direction for a fixed number of five nodes in the
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Figure 4: Single 5×17 grid L∞[Ω] residual difference
in ρ (ξ, η, τ) measured against steady Taylor-Maccoll
similarity solution as a function of time, τ, for a 40o

cone at M∞ = 3.5.

ξ−direction. In these calculations, the time is suffi-
ciently long so as to relax all transients. The accuracy
of the method is unaffected by grid refinement in the
ξ−direction since all derivatives are zero in that di-
rection. As seen from Fig. 5, there is an ever-steeper
decrease in the error until about 10−12 when the error
flattens, probably due to roundoff effects. Note the
spectral nature of the grid convergence, that is the
slope of the error curve continues to steepen with in-
creasing number of nodes, at least until the roundoff
limit is reached, and does not reach a constant value
for the slope as would be the case for a method with
a fixed order of accuracy. Note also that remarkable
accuracy is achieved with a grid which is extremely
coarse by the standards of typical low-order finite dif-
ference or finite element calculations.

Steady State Flow over a Blunt Body

The following functions were chosen to parameter-
ize the blunt body surface

R(ξ) = ξ, (48)

Z(ξ) = ξ1/b, (49)

where the domain for the geometric parameter b is
restricted to b ∈ (0, 1) . Eliminating the parameter
ξ, it is seen that the body surface is described by
R = Zb. For b = 0.5, M∞ = 3.5, ρ∞ = p∞ = 1,
contour plots of Mach number and pressure are shown
in Figs. 6 and 7. The results are obtained on a grid
of dimension 17 × 9, again coarse by standards of
finite difference or finite element calculations, but due
to the high order of accuracy of the pseudospectral
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] e
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Figure 5: L∞[Ω] error in ρ (ξ, η) measured against a
Taylor-Maccoll similarity solution for a 40o cone in
M∞ = 3.5 flow as grid is refined in the η direction.
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Figure 6: Contours of Mach number, M , for flow over
the blunt body for b = 0.5, M∞ = 3.5, 17 × 9 grid.

7



−0.2 0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

z

r

5.
5

6.
5

7.
5

8.5

10

11.5

13.5

15
16

Figure 7: Contours of pressure p for flow over the
blunt body for b = 0.5, M∞ = 3.5, 17× 9 grid.

method, yields results which are remarkably precise.
The sonic line, M = 1, is predicted in Fig. 6, as
well as the fact that the outflow velocity is indeed
supersonic as required in the derivation of the outflow
boundary condition. In Fig. 7, the pressure at the
stagnation point is seen to be more than sixteen times
the freestream pressure at M∞ = 3.5, and the jump
in pressure across the normal shock at the centerline
is over thirteen times the freestream pressure. The
pressure weakens away from the stagnation point.

Contours of vorticity are shown in Fig. 8. Brooks 24

gives a detailed discussion of vorticity evolution, sum-
marized here. In this flow there are four sources
which induce changes of vorticity of a fluid particle:
shock curvature, density changes of the fluid particle,
baroclinic effects, and geometrical divergence. The
shock curvature source can only be realized after a
standard, but detailed, examination of the Rankine-
Hugoniot jump conditions. The other three are re-
vealed by the Helmholtz vorticity transport equation,
a consequence of the governing mass, momenta, and
energy equations, which reduces here, using the ma-
terial derivative definition of d

dt ≡ ∂
∂t + u ∂

∂r + w ∂
∂z ,

to the following

dωθ

dt
=

ωθ

ρ

dρ

dt
+

1

ρ2

(
∂ρ

∂z

∂p

∂r
− ∂ρ

∂r

∂p

∂z

)
+ ωθ

u

r
. (50)

Because of the complex interplay of these mecha-

Figure 8: Contours of vorticity ωθ for flow over the
blunt body for b = 0.5, M∞ = 3.5, 17 × 9 grid.

nisms, it is difficult to attribute clear causality to all
the effects represented in Fig. 8. It is noticed that in
the far field, the magnitude of vorticity is decreasing.
This is likely due to the diminished far-field body
curvature, which induces diminished far-field shock
curvature, and thus less entropy is generated at the
shock.

While plots of pressure, Mach number, and vor-
ticity are useful for qualitative understanding of the
blunt body flow field, they are not good tools for for-
mal verification of the numerical algorithm. To rem-
edy this, a series of calculations which give a progres-
sively better verification is presented in the following
paragraphs.

As a rough means of verification, a comparison is
made between the numerical results for the pressure
distribution on the body with that of the modified
Newtonian 32 sine squared law,

Cp = Cpo sin2 φ, (51)

where Cpo is the pressure coefficient at the body stag-
nation point and φ is the local surface inclination an-
gle measured with respect to the z axis. The pressure
coefficient, Cp is defined as

Cp =
p∗ − p∗

∞

1
2ρ∗

∞
w∗2

∞

=
p (ξ, 0, τ) − 1

1
2γM2

∞

. (52)
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Figure 9: Blunt body surface Cp distribution predic-
tions at M∞ = 3.5 from modified Newtonian theory
and from the pseudospectral method, where b = 0.5;
17× 9 grid.

The modified Newtonian approximation is a semi-
analytical model for the surface pressure distribution
over blunt bodies. Anderson 33 reports that for a
power law body with b = 0.5 and aspect ratio near
unity, the modified Newtonian approximation does
well in predicting the pressure distribution on the sur-
face of the body. As can be seen from Fig. 9, the
pseudospectral algorithm also predicts close agree-
ment for the pressure distribution on the surface of
the body defined by R =

√
Z.

Simultaneous consideration of entropy and velocity
fields gives a better indication of verification. Con-
tours of entropy along with the velocity vector field
are shown in Fig. 10. Brooks 24 gives a standard dis-
cussion of how, in the limits of this study, the energy
equation can be recast as

ds

dt
= 0. (53)

That is, the entropy of a fluid particle does not change
along a streamline. Equation (53) is valid in smooth
regions of the flow, but not across discontinuities,
through which the second law of thermodynamics de-
mands that entropy must increase. A fluid particle
traveling on the axis of symmetry encounters a purely
normal shock, which relative to other portions of the
shock, is strongest, and is endowed with the maxi-
mum entropy of the flow field. Fluid particles away
from the centerline encounter a weaker shock and ac-
quire less entropy, in some proportion to their dis-
tance from the centerline. This is evident in Fig. 10.
Also evident in Fig. 10 is the fact that the veloc-
ity vectors are parallel to lines of constant entropy.

Figure 10: Contours of entropy s and velocity vectors
for flow over the blunt body for b = 0.5, M∞ = 3.5,
17× 9 grid.

This is consistent with Eq. (53) in the long-time limit,
which holds that the dot product of the velocity vec-
tor with the entropy gradient vector is zero. This
was confirmed formally in a grid refinement study,
not reported here.

Another more rigorous means of verifying the algo-
rithm is by considering the variation of total enthalpy.
In an extended analysis given by Brooks, 24 a relation
is recovered, equivalent to that of Emanuel, 34 that
for an inviscid flow

dHo

dt
= T

ds

dt
+

1

ρ

∂p

∂t
. (54)

This is a general, but not widely used, result. The
less general, related, and widely used Crocco’s equa-
tion, which appears in many forms in many sources,
is insufficient for purposes of this study. Equa-
tion (54) simplifies further in the present problem.
Here, Eq. (53) can be used to eliminate the material
derivative of entropy at all times, and it is assumed
pressure transients relax to zero in the long time limit,
to get

dHo

dt
= 0, as t → ∞. (55)

Equation (55) holds that total enthalpy does not vary
for a fluid particle, but that it may vary from stream-
line to streamline. However, when it is realized that
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Figure 11: Contours of the difference between total
enthalpy and its freestream value, Ho−Ho,∞, for flow
over the blunt body for b = 0.5, M∞ = 3.5, 17 × 9
grid.

the unshocked flow has a spatially uniform value of
total enthalpy, and that the Rankine-Hugoniot jump
equations allow no change in total enthalpy through
a discontinuity, it is seen that the flow of this study
has the remarkable property that the total enthalpy
is a spatially uniform constant in the long time limit.
Thus, as long as the flow is stable, in the long time
limit the difference of the local value of total enthalpy
and its freestream value will formally be zero, and a
plot of the difference gives a measure of the error dis-
tribution. Mathematically, it can be shown that the
in the long time limit, the linear mometa equation
has a first integral, with the constant of integration
given by the unshocked freestream value. This alge-
braic relation, and its connection with total enthalpy
for the calorically perfect ideal gas is found to be

γ

γ − 1

p

ρ
+

1

2

(
u2 + w2

)

︸ ︷︷ ︸
Ho

=
γ

γ − 1
+

γ

2
M2

∞

︸ ︷︷ ︸
Ho,∞

. (56)

Eq. (56) holds that the local value of total enthalpy
Ho always maintains its preshock value of Ho,∞.
Contours of this difference Ho − Ho,∞ are shown in
Fig. 11. For this coarse 17×9 grid, the differences are
on the order of 10−5, a notably small value. Brooks 24

shows that when this grid resolution is increased to
29 × 15, the differences reduce to the order of 10−9,
and the error distribution is striated in bands roughly
parallel to the body and shock surfaces.
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Figure 12: Grid convergence L∞[Ω] error in
ρ (ξ, η, τ → ∞) measured against a baseline, 65 × 33
grid, solution for a b = 0.5, M∞ = 3.5 blunt body.

The most rigorous verification is given by a grid
convergence study for the blunt body with the L∞[Ω]
error over the domain, Ω in ρ (ξ, η, τ → ∞) shown in
Fig. 12, at M∞ = 3.5 and b = 0.5, where the error
is measured against a 65 × 33 or 2145 node numer-
ical solution. For 861 nodes, the L∞[Ω] error over
the domain, Ω in ρ (ξ, η, τ → ∞) has been reduced
to the order of 10−12 and subsequently flattens due
to roundoff error. Like grid convergence plots for
the Taylor-Maccoll solution, the convergence of the
error for the blunt body problem shows a spectral
convergence rate as expected of the pseudospectral
numerical technique.

Last, to validate the model, in Fig. 13 a compari-
son is made of the pseudospectral prediction for the
shock shape for M∞ = 3.5 flow over a sphere with
that of an empirical formula by Billig 35 developed
for flow over spherically blunted cones based on ex-
periment. It is obvious that the predictions match
the experiments closely; here, the dimensionless dif-
ference between the predicted and measured shock
position is roughly 10−2. It is not clear how much er-
ror is present in the experimental results, which could
include error from an imperfect curve fit to the data
as well as intrinsic measurement errors.

Acoustic Interaction with Attached Shock

Here, a fundamentally unsteady problem is consid-
ered: the interaction of an unsteady, planar acoustic
wave with an attached shock, for which the automatic
time step selection in LSODA is critical in enabling
one to have tight control over the error in the solu-
tion. In this case, neither verification nor validation
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Figure 13: Shock shape prediction of the pseudospec-
tral algorithm for a sphere M∞ = 3.5 compared with
an empirical formula by Billig 35 derived from exper-
iments; 17× 9 grid.

will be attempted; instead, results will be examined,
and the accuracy of the method will be exploited to
predict features which are more difficult to discern
with lower order methods. A schematic of the grid
is shown in Fig. 3, where ro = 0.01 is chosen for this
problem. The value of the freestream flow quantities
ρ∞, u∞, w∞, p∞ at the shock are taken to be

ρ∞ = − 1

2
√

γ
(F (ξ, τ) − G (ξ, τ)) , (57)

u∞ = 0, (58)

w∞ =
1

2
(F (ξ, τ) + G (ξ, τ)) , (59)

p∞ = 1 + γ (ρ∞ − 1) , (60)

where

F (ξ, τ) =
√

γ(M∞ − 1), (61)

G (ξ, τ) =
√

γ(M∞ + 1)

×(1 + ε sinκ(z(ξ, 1, τ) −√
γ(M∞ + 1)τ)). (62)

Choosing ε = 0.01, κ = 6π, M∞ = 3.5, and γ = 1.4
in Eqs. (61) and (62), the system of ODEs in Eq. (42)
are integrated in time for τ ∈ [0, 2] on a 33× 17 grid.
The CPU time for the calculation on a single 800 MHz
processor was 7.5 hours. The initial conditions were
set to the Taylor-Maccoll solution of the unperturbed
freestream flow conditions, i.e. ρ∞ = 1, u∞ = 0,
w∞ =

√
γM∞, p∞ = 1. The relative and absolute

error tolerances for the time integration were set to
10−10 and 10−12 respectively in LSODA.
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Figure 14: Frequency spectrum at a single point on
the shock (ξ = 1), of the fluctuations in freestream
density, ∆ρ∞ = ρ∞−1, and the response of the shock,
∆h = h(1, t) − h∞(1). M∞ = 3.5; 33× 17 grid.

Now, analyze the motion of a single point on the
shock located at ξ = η = 1. The power spectrum,
P (f), as a function of reduced frequency for the per-
turbation in freestream density, ∆ρ∞ = ρ∞ − 1, and
shock distance function, ∆h = h(1, t) − h∞(1), at
the point ξ = η = 1 are presented in Fig. 14 as well
as ∆ρ∞|z=−1, which is well upstream of the shock.
Initial transients in the solution are neglected in the
estimation of the power spectrum by considering only
τ ∈ [1.001, 2], so that the time interval is, T = 0.999.

The power spectrum, Fig. 14, clearly shows a large
peak for ∆ρ∞|z=−1 at a reduced frequency of the
driving disturbance of f16 = κ

2π

√
γ(M∞ + 1) = 16.0,

according to Eq. (42). Peaks in the power spectrum
of ∆h, and ∆ρ∞ also appear at f16 = 16.0 in re-
sponse to the frequency of oscillation of ∆ρ∞|z=−1.
In addition, higher harmonics at integer multiples of
the f16 = 16.0 forcing frequency are present in the
power spectrum of ∆h and ∆ρ∞. The high accu-
racy of the current method is critical in capturing
the correct shock dynamics for such small amplitude
fluctuations, and in predicting the higher harmonics
of the shock fluctuations in Fig. 14, where the am-
plitude of the power spectrum drops orders of mag-
nitude with each successive harmonic. The current
method is able to resolve up to the fourth harmonic
of ∆h, whose amplitude in the power spectrum is on
the order of 10−10.

Discussion

In this study, a description has been given of a

11



pseudospectral numerical approximation technique
for the inviscid supersonic flow over a blunt body ge-
ometry in which the discretized form of the governing
equations and boundary conditions are formulated in
terms of a system of ODEs which can be solved using
a standard solver. This formulation takes advan-
tage of the strengths of widely available ODE solvers
to generate time accurate solutions within prescribed
error tolerances through automatic time step selec-
tion. Additionally, fitting of the shock and the use
of basis functions which have global support in the
solution approximation, permit high accuracy steady
state approximations with relatively modest compu-
tational resources; a solution with an error of 10−5

can be obtained in 102 s on a single 800 MHz pro-
cessor. This formulation has important potential ap-
plications such as approximating unsteady shock phe-
nomena with sufficient accuracy to discern between
physical versus numerical instabilities.

In problems such as those considered here, in which
the topology of the discontinuity is simple, a high or-
der of accuracy of convergence can be achieved. In
problems with richer geometry, it is not realistic to
expect to explicitly fit all discontinuities; one must
then be satisfied with capturing the discontinuities
with methods which have first order convergence. For
such problems, even the most exotic technique which
has a high order accuracy for smooth problems will
necessarily converge only at first order. In examining
the compressible aerodynamics literature, it is not al-
ways clear that this point is manifest, but it is clear
that elucidating the results of any calculation in com-
pressible aerodynamics with the techniques of verifi-
cation and validation will yield consequent fruits in
reliability, robustness, and general understanding.

In closing, a comment is given which has obvious
generality beyond compressible aerodynamics. Con-
sistent with the results typical in the discipline of ver-
ification and validation, following the employment of
appropriate techniques, it is possible to verify a solu-
tion to a particular set of model equations, here the
Euler equations, to a much higher degree of accuracy,
here 10−12, than to which it is possible to validate the
model, here 10−2. This does not suggest less accurate
numerical methods should be used; in fact once the
method is in place, it is easy in this case to gener-
ate high accuracy solutions. It simply suggests that
one factor, numerical discretization error, has been
effectively removed from consideration in developing
a theory which explains the discrepancy between pre-
dictions and measurements. The more challenging
problem is to determine which of many potential fac-
tors, e.g. neglect of physical mechanisms, inaccurate
constitutive data, inaccurate measurements, best ex-

plains the discrepancy which remains.
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Technique for Optimization of Geometry of a Blunt
Body in Supersonic Flow,” Ph.D. Dissertation,
University of Notre Dame, Notre Dame, Indiana,
2003.

25 Canuto, C., Hussaini, M. Y., Quarteroni, A., and
Zang, T. A., Spectral Methods in Fluid Dynamics,
Springer-Verlag, New York, 1988.

26 Gottlieb, D., and Hesthaven, J. S., “Spectral
Methods for Hyperbolic Problems,” Journal of
Computational and Applied Mathematics, Vol. 128,
Nos. 1-2, 2001, pp. 83-131.

27 Fornberg, B., A Practical Guide to Pseudospectral
Methods, Cambridge University Press, Cambridge,
1998.

28 Finlayson, B. A., The Method of Weighted Resid-
uals and Variational Principles, Academic Press,
New York, 1972.

29 Hindmarsh, A. C., ODEpack, A Systematized Col-
lection of ODE Solvers, in: Scientific Computing,
R.S. Stepleman, et al. (eds.), North Holland, Am-
sterdam, 1983, pp. 55-64.

30 Petzold, L., “Automatic Selection of Methods for
Solving Stiff and Nonstiff Systems of Ordinary Dif-
ferential Equations,” SIAM Journal on Scientific
and Statistical Computing Vol. 4, No. 1, 1983,
pp. 136-148.

31 Taylor, G. I., and Maccoll, J. W., “The Air Pres-
sure on a Cone Moving at High Speeds, I and II,”
Proceedings of the Royal Society of London, Ser. A
Vol. 139, No. 838, 1933, pp. 278-311.

32 Lees, L., Hypersonic Flow, in: Proceedings of
the Fifth International Aeronautical Conference,
Los Angeles, Institute of the Aeronautical Sciences,
New York, 1955, pp. 241-276.

33 Anderson, J. D., Hypersonic and High Tempera-
ture Gas Dynamics, McGraw-Hill, New York, 1989.

34 Emanuel, G., Analytical Fluid Dynamics, CRC
Press, Boca Raton, Florida, 1994.

35 Billig, F. S., “Shock-Wave Shapes Around Spheri-
cal and Cylinder-Nosed Bodies,” Journal of Space-
craft and Rockets, Vol. 4, No. 6, 1967, pp. 822-823.

13


