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Introduction

Motivation and background

• Detailed kinetics are essential for accurate modeling of real

systems.

• Reactive flow systems admit multi-scale solutions.

• Manifold methods provide a potential for computational saving.

• Slow invariant manifolds (SIMs) describe the asymptotic structure

of reactive systems’ invariant attracting trajectories.

• Current manifold construction methods either approximate the

actual SIMs or require a close initial guess.



Long-term objective

Create an efficient algorithm that reduces the computational cost for

simulating reactive flows based on a reduction in the stiffness and

dimension of the composition phase space.

Immediate objective

Construct 1-D SIMs for dynamical systems arising from modeling

unsteady spatially homogenous closed reactive systems.



Slow Invariant Manifold (SIM)

• The composition phase space for closed spatially homogeneous

reactive system:
dz

dt
= f (z) , z ∈ R
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Mathematical Model

For a mixture of mass M confined in volume V containing N

species composed of L elements that undergo J reversible reac-

tions,

dni
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= V

J
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νijrj, i = 1, . . . , N,
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System reduction

• In chemical reactions, atoms are conserved:

N
∑

i=1

φliνij = 0, l = 1, . . . , L, j = 1, . . . , J,

N
∑

i=1

φlin
∗

i =
N

∑

i=1

φlini, l = 1, . . . , L.

• Solutions of the following form exist,

ni = n∗

i + M
R

∑

k=1

Dikzk, i = 1, . . . , N.

• The reactive system is recast as an autonomous dynamical system,

dzk

dt
= fk (z1, . . . , zR) , k = 1, . . . , R.



Method of Construction

Equilibria

• The construction method is based on identifying all the equilibria,

and connecting relevant ones via heteroclinic orbits.

• For isothermal reactive systems, reaction rates depend on com-

binations of polynomials of z.

• The set of equilibria of the full reaction network is complex:

z
e ∈ C

R | f (ze) = 0 .

• This set contains finite and infinite equilibria.

• The system’s equilibria can be positive dimensional continua.



SIM construction

• A 1-D SIM has a maximum of two branches that connect two

equilibria to the unique physical critical point (a sink) tangent to

its slowest mode.

• These equilibria are identified by their special dynamical char-

acter: their eigenvalue spectrum contains only one unstable

direction.

• Heteroclinic orbits are generated tangent to these special equilib-

ria’s unstable directions.

• Check first the finite equilibria, then the infinite ones.



Projective space

• One-to-one mapping of the composition space, R
R → R

R,

Zk =
1

zk

, k ∈ {1, . . . , R},

Zi =
zi

zk

, i 6= k, i = 1, . . . , R.

• This maps equilibria located at infinity into a finite domain.

• To deal with the time singularity, we add the transformation

dt

dτ
= (Zk)

d−1
,

where d is the highest polynomial degree of f(z).



Computational strategy

• We use the Bertinia software (based on a homotopy continu-

ation numerical technique) to compute the system’s equilibria up

to any desired accuracy.

• Thermodynamic data is obtained from Chemkin-II.

• The SIM heteroclinic orbits are obtained by numerical integration

of the species evolution equations using a computationally inex-

pensive scheme.

• Computation time is typically less than 1 minute on a 2.16 GHz

MacBook Pro machine.
aD. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler, Bertini: Software for numerical

algebraic geometry. Available at: www.nd.edu/∼sommese/bertini.



Zel’dovich Mechanism

• The mechanism consists of J = 2 bimolecular reversible re-

actions involving N = 5 species {NO,N,O,O2, N2} and

L = 2 elements {N,O}.

• z ∈ R
2, so selected species are i = {1, 2} = {NO,N}.

• The kinetic data are adopted from Baulch et al.b

• The system is spatially homogenous with isothermal and iso-

choric conditions, T = 4000 K,V = 103 cm3.

• Initial number of moles of all species are n
∗ = 10−3 mol.

bD. L. Baulch et al., J. Phys. Chem. Ref. Data, 34, pp. 757-1326, 2005.



Reactive system evolution
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Dynamical system formulation

• The evolution of the system is described by:

d

dt

0
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0
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@

2.51 × 102 + 1.16 × 107z2 + 6.99 × 108z2

2

−9.98 × 104z1 − 3.22 × 109z2z1

2.51 × 102
− 1.17 × 107z2 − 6.98 × 108z2

2

+8.47 × 104z1 − 1.84 × 109z2z1

1

C

C

C

C

C

A

≡ f(z).

• Employ the projective space mapping with d = 2 and k = 1:
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System’s equilibria
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:

R1 ≡ (ze) =
`

−1.78 × 10−5,−1.67 × 10−2
´

mol/g,

(λ) = (4.18 × 107, 2.35 × 107) 1/s,

R2 ≡ (ze) =
`

−4.20 × 10−3,−2.66 × 10−5
´

mol/g,

(λ) = (−4.64 × 106, 7.11 × 105) 1/s,

R3 ≡ (ze) =
`

3.05 × 10−3, 2.94 × 10−5
´

mol/g,

(λ) = (−1.73 × 107,−1.91 × 105) 1/s.
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:

I1 ≡ (Ze) = (0, 0) ,

(λ) = (−1.84 × 109, 0) g/mol/s2,

I2 ≡ (Ze) = (0, 1.01) ,

(λ) = (2.54 × 109, 1.12 × 109) g/mol/s2,

I3 ≡ (Ze) = (0, 2.60) ,

(λ) = (3.65 × 109,−2.90 × 109) g/mol/s2.



The system’s 1-D SIM
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Detailed Hydrogen-Air Mechanism

• Mechanism: J = 19 reversible reactions involving N = 9

species and L = 3 elements. R = 6, so that z ∈ R
6.

• Kinetic model from Miller et al.c

• Closed and spatially homogenous system with isothermal and

isochoric conditions at T = 1500 K , and V = 10−3 cm3.

• Stoichiometric mixture 2H2 + (O2 + 3.76N2).

• Selected species:

i = {1, 2, 3, 4, 5, 6} = {H2, O2, H, O, OH, H2O}.

cJ. A. Miller, R. E. Mitchell, M. D. Smooke, and R. J. Kee, Proc. Combust. Ins. 19, pp. 181-196,

1982.



Reactive system evolution
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System’s equilibria

• The system has 284 finite and 42 infinite equilibria.

• The set of finite equilibria contains 90 real and 186 complex 0-D,

one 1-D, one 2-D, and six 3-D equilibria.

• The set of infinite equilibria contains 18 real and 18 complex 0-D,

and six 1-D equilibria.

• Only 14 critical points have an eigenvalue spectrum that contains

only one unstable mode.

• Inside the physical domain there is a unique equilibrium:

R19 =
(

1.98 × 10−6, 9.00 × 10−7, 1.72 × 10−9,

2.67 × 10−10, 3.66 × 10−7, 1.44 × 10−2
)

mol/g.



3-D projection of the system’s SIM
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Summary and Conclusions

• Once the difficult task of identifying all equilbria is complete,

constructing the actual SIM is computationally efficient and al-

gorithmically easy; thus, there is no need to identify it only

approximately.

• Identifying all critical points, finite and infinite, plays a major role

in the construction of the SIM.

• The construction procedure can be systematically extended to

construct higher-dimensional SIMs.


