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A study of inviscid reactive flows in BZT (Bethe-Zel’dovich-Thompson) gases with anomalous
waves is introduced. BZT gases are non-ideal gases that may present anomalous waves such as
isentropic compressions, discontinuous rarefactions, and split or composite waves comprised
of connected continuous and discontinuous waves. Exact solutions for discontinuous shocks
and continuous isentropic fans in a van der Waals gas are computed for inert flows, and some
features of anomalous waves are discussed. Thermodynamics predicts that a piston moving
into an ideal gas at rest may induce a discontinuous compression shock. When the gas reacts,
the resulting structure of the reaction zone is well known for an ideal gas. A BZT gas in the
anomalous region of state space will instead form a continuous isentropic compression fan
or split compression wave. Modeling the flow with a non-ideal gas equation of state affects
the sound speed, wave speed, and reaction rate. The effect of the non-ideal van der Waals
parameters on the reaction rate and wave speed will be shown.

I. Nomenclature

A = reaction rate multiplier
𝑎, 𝑏 = van der Waals parameters
𝑐 = sound speed
𝑐𝑣 = specific heat at constant volume
𝐷 = shock speed
𝑒 = specific internal energy
𝑓 = flux function
𝑓 = numerical flux function
G = fundamental derivative
𝑝 = pressure
𝑝𝑐 = critical pressure
𝑝𝑜 = reference pressure
𝑞 = heat release per unit mass
𝑅 = particular gas constant
𝑟 = reaction rate
𝑠 = specific entropy
𝑠𝑜 = reference entropy
𝑇 = temperature
𝑇𝑐 = critical temperature
𝑇𝑜 = reference temperature
𝑡 = time
Δ𝑡 = time step size
𝑢 = 𝑥-velocity
𝑣 = specific volume
𝑣𝑜 = reference specific volume
𝑥 = Cartesian spatial coordinate
Δ𝑥 = spatial step size
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𝛼 = flux splitting weight
𝛿 = 𝑐𝑣/𝑅
E = activation energy
𝛾 = ratio of specific heats for an ideal gas
𝜆 = reaction progress variable
𝜌 = density
𝜔 = WENO scheme weights

II. Introduction

Modeling of inviscid reactive flows in non-ideal gases with anomalous waves has yet to see a thorough investigation.
Reactions behind classical discontinuous compression shocks are well understood [1]. We consider non-ideal gas

flows where anomalous waves, namely discontinuous rarefactions, continuous compressions, and split or composite
waves, are present. The first studies on the existence and theory of anomalous waves were done by Bethe [2], Zel’dovich
[3], and later Thompson [4]. It was established that given a particular set of conditions, anomalous waves may exist
in single-phase gases in the neighborhood of the critical point [3]. In this anomalous region, sometimes called the
BZT (Bethe-Zel’dovich-Thompson) region, the isentropes in the pressure-specific volume plane are non-convex, and
discontinuous rarefaction shocks and continuous compression fans are admissible. It is straightforward to prove that
these anomalous waves satisfy the second law of thermodynamics.
Since Bethe, Zel’dovich, and Thompson’s original discussions of anomalous waves, a number of fluid classes have

been determined to meet the criteria to exhibit anomalous waves as a single phase gas. These include hydrocarbons and
fluorocarbons ([5], [6], [7]), and siloxanes ([8], [9], [10]). Further investigation of these candidate BZT fluids has been
conducted by Colonna and Guardone [11] and Harinck et al. [12]. These studies discerned that a key parameter is the
molecular complexity of the fluid, primarily the number of active degrees of freedom of the molecule.
Many studies have sought to better understand the anomalous wave structures possible in BZT fluids. Cramer

and Sen [13] investigated shock formation in an arbitrary inviscid van der Waals gas, demonstrating the formation of
composite waves resulting from changes in convexity of the isentrops. Cramer and Crickenberger [14] studied the
structure of expansion shocks, confirming that when an isentrope changes convexity, the sound speed no longer changes
monotonically. Cramer [15] also gave detailed descriptions of the conditions under which shock splitting occurs. Like
isentropes, shock adiabats may also exhibit changes in convexity, and as a result Rayleigh lines may intersect the shock
adiabat at more than two points. The Rankine-Hugoniot jump conditions have more than two solutions, but only between
neighboring roots are these solutions valid. Cramer concludes that split shock structures, where discontinuities and fans
travel as one, evolve dynamically from inadmissable initial configurations. More recently, Guardone, et al. [16] and
Zamfirescu, et al. [17] have investigated the maximum intensity and admissibility region for rarefaction shock waves. It
was determined that this region is slightly larger than the BZT region.
No previous study has been identified that considers anomalous wave dynamics in detonating BZT gases. Here, we

will consider detonations in a model fluid with the behavior of BZT gases, and study the influence of non-ideal effects on
detonation dynamics. We will begin with specification of the governing equations and constitutive realations. The van
der Waals equation of state is chosen, and conditions for anomalous waves are introduced, including the fundamental
derivative. Exact solutions for compression and rarefaction shocks and fans in inert van der Waals gases are presented,
and key features are highlighted. A description is given of the numerical scheme. Finally, some effects of non-idealities
on the reaction behind a compression shock are presented, and the difficulties in extending this study to reactions behind
anomalous compression waves are discussed.

III. Governing Equations
The inviscid one-dimensional unsteady reactive Euler equations for a general equation of state with a one step

irreversible reaction are given in conservative form.
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𝜕𝜌

𝜕𝑡
+ 𝜕

𝜕𝑥
(𝜌𝑢) = 0, (1)

𝜕

𝜕𝑡
(𝜌𝑢) + 𝜕

𝜕𝑥
(𝜌𝑢2 + 𝑝) = 0, (2)

𝜕

𝜕𝑡

(
𝜌

(
𝑒 + 1
2
𝑢2

))
+ 𝜕

𝜕𝑥

(
𝜌𝑢

(
𝑒 + 1
2
𝑢2 + 𝑝

𝜌

))
= 0, (3)

𝜕

𝜕𝑡
(𝜌𝜆) + 𝜕

𝜕𝑥
(𝜌𝑢𝜆) = 𝜌𝑟, (4)

𝑒 = 𝑒(𝜌, 𝑇, 𝜆), (5)
𝑝 = 𝑝(𝜌, 𝑇, 𝜆), (6)

𝑟 (𝑇, 𝜆) = A(1 − 𝜆) exp
(
E
𝑅𝑇

)
. (7)

Independent variables are 𝑡 and 𝑥, time and the Cartesian space coordinate respectively. Dependent variables are density
𝜌, particle velocity 𝑢, pressure 𝑝, specific internal energy 𝑒, reaction progress 𝜆, and temperature 𝑇 . Parameters are the
particular gas constant 𝑅, the reaction rate constant A, and the activation energy E.
Equations (1-3) represent the conservation of mass, linear momentum, and energy. Equation (4) represents the

species evolution, with an irreversible reaction A→B where the molecular mass and specific heats are identical for
both species. The mass fractions are related to the reaction progress variable by 𝑌𝐴 = 1 − 𝜆 and 𝑌𝐵 = 𝜆; therefore, 𝜆
varies from 0 to 1. Equations (5) and (6) are general constitutive relations for the caloric and thermal equations of state
respectively. Anomalous waves can be predicted by a non-ideal equation of state with regions where the fundamental
derivative G is negative (see [4], [13], and [18] ). For this work the van der Waals equation of state has been chosen,
and the constitutive relations are now

𝑒(𝜌, 𝑇, 𝜆) = 𝑐𝑣𝑇 − 𝑎𝜌 − 𝜆𝑞, (8)

𝑃(𝜌, 𝑇, 𝜆) =
𝜌𝑅𝑇

1 − 𝜌𝑏
− 𝑎𝜌2. (9)

The van der Waals constants 𝑎 and 𝑏 are defined by 𝑎 = 27𝑅2𝑇2𝑐 /64/𝑝𝑐 and 𝑏 = 𝑅𝑇𝑐/8/𝑃𝑐, where 𝑇𝑐 and 𝑝𝑐 are the
critical temperature and pressure respectively. Additional useful expressions include the sound speed

𝑐2 =
𝑅𝑇

(1 − 𝑏/𝑣)2

(
1 + 𝑅

𝑐𝑣

)
− 2𝑎

𝑣
, (10)

where the specific volume 𝑣 is related to the density by 𝑣 = 1/𝜌, and the specific entropy

𝑠 − 𝑠𝑜

𝑐𝑣
= ln

(
𝑇

𝑇𝑜

)
+ 𝑅

𝑐𝑣
ln

(
𝑣 − 𝑏

𝑣𝑜 − 𝑏

)
, (11)

with specific heat at constant volume 𝑐𝑣 and reference parameters 𝑠𝑜, 𝑇𝑜, and 𝑣𝑜.
Introduced formally by Thompson [4], the non-dimensional fundamental derivative of gasdynamics G is defined by:

G(𝑠, 𝑣) ≡ −
𝑣
2

𝜕2 𝑝

𝜕𝑣2

���
𝑠

𝜕𝑝

𝜕𝑣

���
𝑠

=
𝑣3

2𝑐2
𝜕2𝑝

𝜕𝑣2

����
𝑠

. (12)

Because 𝑣3/2𝑐2 is always positive, the sign of G is determined by (𝜕2𝑝/𝜕𝑣2)𝑠. The fundamental derivative gives a
measure of the convexity of isentropes in the 𝑝-𝑣 plane. The sign of G determines the types of waves that may form:
when G > 0, only discontinuous compressions and continuous rarefactions will form, and when G < 0, only anomalous
waves will form. Using Eqs. (12, 9, 10, 11), we can write the fundamental derivative for a van der Waals gas as

G(𝑣, 𝑠) = 𝑣3

2𝑐2

(
−6𝑎
𝑣4

+ 𝑅𝑇𝑜

𝑐𝑣

(
𝑅

𝑐𝑣
+ 2

)
𝑅 + 𝑐𝑣

(𝑣 − 𝑏)3
exp

(
𝑠 − 𝑠𝑜

𝑐𝑣

) (
𝑣 − 𝑏

𝑣𝑜 − 𝑏

)−𝑅/𝑐𝑣 )
. (13)
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The upper boundary on the region of state space where anomalous waves may occur is bounded by the curve G = 0,
below which G < 0. This can be found by converting G(𝑠, 𝑣) to G(𝑝, 𝑣), setting the resulting function equal to zero,
and solving for pressure as a function of specific volume. For a van der Waals gas the resulting function is

𝑝(𝑣) = 6𝑐𝑣𝑎
𝑣4

(𝑣 − 𝑏)2
(𝑅 + 𝑐𝑣) (𝑅/𝑐𝑣 + 2)

− 𝑎

𝑣2
. (14)

The region of negative fundamental derivative in the gas phase is typically found in the neighborhood of the critical
point, and anomalous, or BZT, regions are often limited to a small area of state space.

IV. Anomalous Waves - Examples
Some examples of anomalous waves in an inert gas are given; exact solutions for isentropic waves in van der Waals

gases have been found using an adaption of the ideal gas solution from von Mises [19] and Courant and Friedrichs [20].
Classically, the isentropic fan is a rarefaction and the discontinuous shock is a compression; however, the solutions
admit isentropic compressions and discontinuous rarefaction shocks as well. The exact solutions for discontinuous
shocks, either a rarefaction or compression, are straightforward with the required substitution of the van der Waals
equation of state. In the steady frame traveling with a shock of speed 𝐷, the Rankine-Hugoniot jump conditions for a
general equation of state can be written as

𝜌2𝑢̂2 = 𝜌1𝑢̂1, (15)

𝜌2𝑢̂
2
2 + 𝑝2 = 𝜌1𝑢̂

2
1 + 𝑝1, (16)

𝑒2 +
1
2
𝑢22 +

𝑝2

𝜌2
= 𝑒1 +

1
2
𝑢21 +

𝑝1

𝜌1
, (17)

𝜆2 = 𝜆1, (18)

𝑒 = 𝑒(𝜌, 𝑝, 𝜆). (19)

The 𝑢̂ indicates the velocity in the wave frame, and the velocity in the lab frame can be recovered with 𝑢̂ = 𝑢 − 𝐷.
Equations (15-19) form a system of five equations for the five unknowns: 𝜌2, 𝑢̂2, 𝑝2, 𝑒2, and 𝜆2. Across a shock, the
reaction progress does not change, and these equations hold for an inert system as well as with reaction. Additionally,
these jump equations hold for both rarefaction and compression shocks. Figures (1) and (2) show exact solutions of a
discontinuous compression shock and rarefaction shock respectively; arrows indicate the direction the wave travels,
and accompanying arrows indicate the wave speed relative to the leading edge of the wave. The compression shock,
traveling to the right, behaves as expected of a discontinuous shock, raising the density. The rarefaction shock, traveling
to the right, decreases the density, but raises the sound speed, resulting in a discontinuous rarefaction that does not
decay into a continuous rarefaction wave.

Dimensionless Position, x/x
max

0.3 0.5

1.20

1.10

D
im

en
si

on
le

ss
 D

en
si

ty
, 
Ú
/Ú

o 

0.4

→1.00

→1.00

Fig. 1 Conventional compression shock, fundamental derivative G > 0; arrows indicate the direction the wave
travels, accompanying numbers indicate the wave speed, normalized by its maximum value on the wave. Density
and sound speed increase across the shock.
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Dimensionless Position, x/x
max

-0.3-0.4 -0.2 -0.1

1.00

0.95

0.85

D
im

en
sion

less D
en

sity, 
Ú
/
Ú

o  

0.90

→

-1.00

→

-1.00

Fig. 2 Rarefaction shock, fundamental derivate G < 0; arrows indicate the direction the wave travels,
accompanying numbers indicate the wave speed, normalized by its maximum value on the wave. Sound speed
increases across the shock, even though the density has decreased.

The isentropic solutions were computed using Riemann invariants for a centered simple wave, as described by
Courant and Friedrichs [20] and von Mises [19]. Assuming isentropic flow, characteristic analysis can be used to arrive
at the following equations:

𝑢 + 𝑙 (𝜌) = 2𝑟 (𝛽𝑟 ), (20)

𝑢 − 𝑙 (𝜌) = −2𝑠(𝛼𝑠), (21)

where 𝑟 (𝛽𝑟 ) and 𝑠(𝛼𝑠) are arbitrary functions, called Riemann invariants, and 𝑙 (𝜌) is defined by:

𝑙 (𝜌) =
∫ 𝜌

𝜌
′

𝑐( 𝜌̂)
𝜌̂

𝑑 𝜌̂. (22)

If this integration is possible analytically, functions for 𝑢(𝑥) and 𝑢(𝑡) can be written. Using the characteristics

𝑑𝑥

𝑑𝑡
= 𝑢 ± 𝑐(𝜌), (23)

and isentropic relations, a full solution for an isentropic wave, either a rarefaction or compression, can be found.
However, for the van der Waals equation of state, the isentropic sound speed 𝑐(𝜌) is given by

𝑐(𝜌) =

√︄
−2𝑎𝜌 − 𝑐(1 − 𝑅/𝑐𝑣) (1/𝜌 − 𝑏)−𝑅/𝑐𝑣

𝜌2
, (24)

where 𝑐 is a constant. Substituting Eq. (24) into (22), the integral cannot be computed analytically. An additional step is
required, and using a numerical quadrature, a functional form of 𝑢(𝜌), containing an integral, can be constructed. If we
set 𝑢 to be the velocity of a piston, 𝑢𝑝 , the characteristics can be written as:

𝑑𝑥

𝑑𝑡
= 𝑢𝑝 ± 𝑐(𝜌(𝑢𝑝)), (25)

where we can now find the density as a function of the piston velocity, and from there the sound speed. Isentropic
relations for van der Waals are used to find the remaining flow variables. Solutions for both forward and backward
facing, as well as compression and rarefaction, isentropic fans can be computed in this way.
We first have a rarefaction fan, traveling to the left, in Fig. 3, where density decreases continuously across the

wave. This corresponds to a decrease in sound speed, as expected of classical wave behavior. In regions where the
fundamental derivative is negative, rarefactions increase the sound speed, resulting in the discontinuous rarefactions as
seen previously. Similarly, compressions are continuous fans rather than discontinuous shocks, as shown in the right
moving wave in Fig. (4). Across such a continuous compression, the sound speed decreases, so the leading edge of the
wave moves at a larger speed than the trailing edge, and the wave does not collapse to a discontinuity.
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Dimensionless Position, x/x
max

-0.3-0.4 -0.2 -0.1

1.00

0.95

0.85

D
im

en
sion

less D
en

sity, 
Ú
/
Ú

o  

0.90

→

-1.00

→

-0.77

Fig. 3 Rarefaction fan traveling to the left, fundamental derivative G > 0; arrows indicate the direction the
wave travels, accompanying numbers indicate the wave speed, normalized by its maximum value on the wave.
The leading edge of the fan travels faster than the trailing edge, and the fan continues to spread as it travels.

Dimensionless Position, x/x
max

0.3 0.5

1.25

1.15

D
im

en
si

on
le

ss
 D

en
si

ty
, 
Ú
/Ú

o 

0.4

1.05

0.2

→1.00

→0.91

Fig. 4 Compression fan traveling to the right, fundamental derivative G < 0;arrows indicate the direction the
wave travels, accompanying numbers indicate the wave speed, normalized by its maximum value on the wave.
The leading edge of the fan travels faster than the trailing edge, and the fan continues to spread as it travels,
rather than collapsing into a discontinuity.

Anomalous waves may also be observed through the Sod shock tube problem, where one or both of the initial states
can be placed within the anomalous region. When both initial states have G > 0, the familiar rarefaction fan, contact
discontinuity, and discontinuous compression shock are observed, as in Fig. (6. When both initial states have G < 0, the
shock tube instead develops a discontinuous rarefaction shock, a contact discontinuity, and a continuous compression
fan, as in Fig. (7.

V. Numerical Method
To solve detonation problems, a numerical scheme is used to solve the governing equations with a piston moving

into an ambient fluid. The numerical method that has been chosen is a third order Runge-Kutta method in time and
a fifth order weighted essentially non-oscilliatory scheme with mapped weights in space, henceforth referred to as
WENO5M; full details are given in Henrick, et al. [21]. The WENO5M method is summarized in one dimension with
uniform grid spacing, where nodes 𝑗 = 0, 1, . . . , 𝑁𝑥 have positions 𝑥 𝑗 , the flux values are given by 𝑓 𝑗 , and half indices
are denoted by subscripts of 𝑖 ± 1/2. The final form is given by

𝑑𝑓

𝑑𝑥

����
𝑥=𝑥 𝑗

≈
𝑓 𝑗+1/2 − 𝑓 𝑗−1/2

Δ𝑥
, (26)
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Dimensionless Position, x/x
max

0.3 0.5

1.00

0.90
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d
, 
c/

c o
 

0.4

0.80

0.2

→1.00

→0.91

Fig. 5 Change in sound speed across a compression fan with the fundamental derivative G < 0; arrows indicate
the direction the wave travels, accompanying numbers indicate the wave speed, normalized by its maximum value
on the wave. Although the density increases across the compression, the sound speed decreases.

Dimensionless Position, x/x
max

0-0.4 -0.2 0.2

1.60

1.40

D
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en
si

on
le

ss
 D

en
si

ty
, 
Ú
/Ú

o 

0.4

1.20

→

→

→

Fig. 6 Shock tube with both initial states having G > 0, arrows indicate the direction each wave travels. The
resulting solution is comprised of a left traveling rarefaction fan, a contact discontinuity, and a right traveling
compression shock.

Dimensionless Position, x/x
max

0-0.4 -0.2 0.2

1.30

1.10

D
im

en
si

on
le

ss
 D

en
si

ty
, 
Ú
/Ú

o 

0.4

1.20 → →

→

Fig. 7 Shock tube with both initial states having G < 0, arrows indicate the direction each wave travels. The
resulting solution is comprised of a left traveling rarefaction shock, a contact discontinuity, and a right traveling
continuous compression fan.
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where

𝑓 𝑗±1/2 =
2∑︁

𝑘=0
𝜔

(𝑀)
𝑘

𝑓 𝑘
𝑗±1/2. (27)

where 𝜔 (𝑀)
𝑘
are the mapped weights of the 𝑘th stencil, with WENO5M using three stencils 𝑘 = [0, 1, 2].

The WENO5M scheme as it has been described forces information to propagate from left to right, as a result of
the stencil bias. The scheme can be reversed to propagate information from right to left, and is thus constructed by
reflecting indices across the ( 𝑗 + 1/2) interface:

ℎ̂[ 𝑓 ] 𝑗+1/2 =
{
F ( 𝑓 𝑗−2, 𝑓 𝑗−1, . . . , 𝑓 𝑗+2)
F ( 𝑓 𝑗+3, 𝑓 𝑗+2, . . . , 𝑓 𝑗−1).

(28)

where F represents the functional form of the WENO method, Eq. (27) for WENO5M. However, we require a scheme
that allows for propagation of information in both directions, left to right and right to left. To achieve this, a flux splitting
scheme is necessary, as the split fluxes allow the information propagating to the left and the right to be accounted for;
the scheme that has been chosen is a global Lax-Friedrichs flux splitting scheme.

VI. Reactions in Non-Ideal Gases
Using the previously described numerical method, along with the parameters and nondimensionalization set by

Henrick, et al. [22], first an ideal gas solution to the governing equations was produced. Then, a set of values for the van
der Waals parameters, 𝑎 and 𝑏, were selected in order to assess their effect on the solutions. These values were chosen
to be arbitrary, nondimensionalized values of the van der Waals parameters in order to determine how the non-idealities
affect the reaction. Initial runs were done with values that keep the fundamental derivative positive, so a conventional
compression shock is produced by a piston. Figure (8) shows the pressure profile behind the compression shock,
first with an ideal gas equation of state 8(𝑎), and then with a van der Waals equation of state 8(𝑏), where parameters
were chosen to be 𝑎 = 1 and 𝑏 = 0.001. The differences between the ideal gas and van der Waals solutions are not
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(a) Ideal Gas (b) van der Waals Gas

Fig. 8 Pressure behind a shock with reaction. An ideal gas solution is given on the left, and a van der Waals
solution, with a = 1 and b = 0.001, is given on the right. Differences are not immediately recognizable here, and
the solution seems largely unchanged.

immediately obvious just from the pressure profiles.
Looking instead to the reaction progress, the ideal gas solution was subtracted from the van der Waals solution, and

both 𝑎 and 𝑏 were varied. The results are shown in Fig. 9. First, 𝑏 was held at 0.001, while values of 𝑎 = [1, 10, 100]
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Fig. 9 Reaction progress, ideal gas solution subtracted from the van der Waals solution. In (a), the value of the
van der Waals parameter a was varied; small increases in the resulting wave speed were observed, indicated by
the "jumps" in the difference. In (b), the value of the van der Waals parameter b was varied; larger increases in
the resulting wave speed, as well as the reaction rate, were observed.

were used. As 𝑎 was increased, the wave in van der Waals solution travels faster than in the ideal gas solution, resulting
in the apparent "jump" in the difference. Holding 𝑎 at 1, values of 𝑏 = [0.001, 0.01, 0.05] were used. Different values
in 𝑏 resulted in much larger increases in the wave speed, evident by the significant increase in reaction progress as 𝑥
increases. We look now to the reaction rate itself as the van der Waals parameters 𝑎 and 𝑏 are varied, shown in Fig. 10.
The difference between the reaction rate at 𝜆 = 0.5 predicted by the ideal gas equation of state was subtracted from
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(a) a = 1, b = 0.001 (b) a = 10, b = 0.001
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(c) a = 1, b = 0.01

Fig. 10 Reaction rate at 𝜆 = 0.5, ideal gas rate subtracted from van der Waals rate. (a) is the base case of
a = 1, b = 0.001, and differences in the reaction rate vary primarily with density. In (b) the value of a has been
increased to 10; the reaction rate still differs primarily with density, but varies more quickly with increasing
density than for a = 1. For (c), the value of b has been changed to 0.01; this actually results in a decrease in the
difference between the ideal and van der Waals rates, varying more slowly with increasing density.

that predicted by the van der Waals equation of state. First, Fig. 10(𝑎) is the base case of 𝑎 = 1, 𝑏 = 0.001, and shows
differences in the reaction rate vary primarily with density. In Fig 10(𝑏) the value of 𝑎 has been increased to 10; the
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reaction rate still differs primarily with density, but varies more quickly with increasing density than for 𝑎 = 1. Looking
back to Fig. 9(𝑎), this coincides with the increased magnitude of the reaction progress difference as the value of 𝑎 is
increased, even though the compression wave has not traveled significantly faster. For Fig. 10(𝑐), the value of 𝑏 has been
changed to 0.01; this actually results in a slight decrease in the difference between the ideal and van der Waals rates,
varying more slowly with increasing density. As a result, the differences seen in Fig. 9(𝑏) can be primarily attributed to
the increased speed of the wave.

VII. Conclusions
We have discussed a number of differences in the reaction behind a piston driven compression shock, resulting from

changes in both van der Waals parameters 𝑎 and 𝑏. Comparing the ideal gas and van der Waals solutions, obtained
with the numerical method described in Section V, it is shown that the non-idealities accounted for by the van der
Waals equation of state affect the solution. The parameter 𝑎, providing a correction for the intermolecular forces, has
a greater effect on increasing the reaction rate as the density increases with respect to the reaction rate for an ideal
gas. Changing the value of 𝑎 has little effect on the speed at which the wave moves through the gas. However, the
parameter 𝑏, adjusting for the volume occupied by a gas molecule, contributes to much larger increases in the wave
speed, as shown in Fig. 9(𝑏). Understanding these changes in the reaction, and how they are brought about by non-ideal
parameters of the van der Waals equation, is a key step towards predicting a piston driven detonation into an ambient
state where the fundamental derivative G is less than zero. Starting from the model fluid used by Henrick, et al. [22],
adjustments must then be made to achieve the desired region of nonconvexity to simulate detonations behind continuous
compression fans and split compression waves. The tuning of these parameters is very particular, given the limited
nature of regions where G < 0, but will allow for a comparison of reaction properties and detonation stability between
the ideal gas model and anomalous waves in the van der Waals model in future work.
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