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An inviscid model for deflagration-to-detonation transition in granular energetic materials is
extended by addition of explicit intraphase momenta and energy diffusion so as to~1! enable the use
of a straightforward numerical scheme,~2! avoid prediction of structures with smaller length scales
than the component grains, and~3! have a model prepared to describe long time scale transients that
are present in some slow processes which can lead to detonation. The model is shown to be
parabolic, frame invariant, and dissipative. Consideration of the characteristics for cases with and
without intraphase diffusion indicate what boundary conditions are necessary for a well posed
problem. A simple numerical method, based on a method of lines applied to the nonconservative
form of the equations, is shown to predict convergence at the proper rate to unique solutions which
agree well with known solutions for an unsteady inviscid shock tube and a steady piston-driven
viscous shock. A series of simulations of inert piston-driven subsonic compaction waves in which
the additional mechanisms of interphase compaction, drag, and heat transfer are systematically
introduced at an order of magnitude suggested by experiments reveals that interphase drag and heat
transfer equilibrate velocities and temperatures, and that compaction equilibrates solid and
configurational stresses. At higher piston velocities, supersonic shock and compaction waves are
induced; comparison of predictions with and without viscosity demonstrate some of the
computational advantages of explicit inclusion of diffusion. The local dissipation rates for each
mechanism are quantified, and it is seen that dissipation due to compaction dominates that due to
intraphase and interphase transport of linear momenta and energy, suggesting that compaction is the
key mechanism in inducing the transition to detonation in piston-driven experiments. ©2004
American Institute of Physics.@DOI: 10.1063/1.1764951#

I. INTRODUCTION

Common heterogeneous energetic solids such as the
Plastically Bound eXplosive PBX 9501, composed of granu-
lar crystalline HMX ~cyclotetramethylene-tetranitramine!
embedded within a polymeric binder, contain grains with
length scales on the order 100mm. A computational model
which captures the grain scale details thus requires cell sizes
on the order of 1mm, as well as complex models for
grain/binder interfaces. Such an approach is clearly imprac-
tical for systems whose length scales are typical for engi-
neering applications; these are on the order of 10 cm or
greater. However it is also well known that features of mac-
roscale engineering interest, such as susceptibility to detona-
tion, are strong functions of the microscale granularity.1,2

Consequently, given the resources of present computational
technology, a successful theory to predict the behavior of
these granular materials at engineering length scales will
most likely need to employ a continuum theory with special-
ized nontraditional constitutive models which capture effects
present at the granular scale.

Inviscid continuum mixture theories have been used for
over two decades to model compaction and the transition to
detonation in granular energetic materials.3–21 Following the

work of Baer and Nunziato,5 most studies now focus on
models which are formally hyperbolic. Such models are well
posed for initial value problems and admit a variety of dis-
continuous waves. However, most incarnations of these mod-
els cannot be written in full conservation form, which gives
rise to difficulties in properly capturing the discontinuities
with standard numerical methods.19 Moreover, as noted by
Powerset al.,9 common constitutive models for interphase
mass, momenta, and energy transport can predict, when care-
fully resolved, flow structures with length scales that are en-
croaching those for which the continuum assumption is in-
valid for the granular mixtures. These models have typically
been applied to predict results of experiments in which a
piston is driven at high velocity into an ambient bed of
tightly packed granular material. In such experiments, it is
presumed that diffusion will have insufficient time to act on
the macroscales and is thus not modeled. However, it is clear
that somemechanism must be included in the continuum
mixture theory to model the subcontinuum effects of granu-
larity. Commonly used algebraic interphase transport terms
have appeal, but as they are represented as source terms and
not diffusion terms, they have limited ability to suppress
fine-scale physical and numerical instabilities, such as the
Kelvin–Helmholtz instability, which is present near slip
lines. Moreover, there is another important class of problems
in which a granular energetic solid is subjected to a slowa!Electronic mail: powers@nd.edu
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incubation, which could be on the order of hours, in which
diffusion plays a key role. In this process, known as cookoff,
it is conjectured that the material goes through stages in
which first diffusion, then slow convection, granular com-
paction, and lastly acoustic wave steepening lead finally to
catastrophic detonation. In order to have a robust model,
amenable to straightforward numerical analysis, which is
able to account for all of these mechanisms, as well as to
provide a mechanism to suppress subcontinuum length scales
predicted by common inviscid models, a viscous extension
of the earlier models is studied here.

The new viscous model is most directly extended from
the inviscid model given by Bdzilet al.,14 which will be
called here the BMSKS model. As detailed in their article,
the BMSKS model has several subtle but compelling advan-
tages over related models, most importantly embodied in its
careful analysis of the second law of thermodynamics, espe-
cially as related to the process of compaction of the granular
material, as well as its thermodynamically consistent use of a
solid equation of state with explicit dependence on volume
fraction. BMSKS employ an overly general form for inter-
phase transport terms in order to demonstrate that the second
law admits a wider class of constitutive theories than had
been demonstrated previously. We have made specific
choices, admitted by the BMSKS model, so as to~1! include
so-called nozzling effects, which helps insure second law
satisfaction and admits the plausible, albeitad hoc, physical
justification given by BMSKS,~2! assign all so-called com-
paction work to the solid,~3! deposit all energy released by
reaction to the gas phase,~4! require Galilean frame invari-
ance,~5! assign all dissipation from interphase drag to the
gas phase, and~6! neglect dissipation introduced by velocity
changes associated with interphase mass transport, These
choices correspond, in the notation described by BMSKS, to
w51, b50, n51, f 51, a50, anda50.

As discussed by BMSKS, inclusion of nozzling effects
introduces an asymmetry in the two-phase equations which
renders it impossible to cast the equations in a fully conser-
vative form. This has important implications for analytic and,
consequently, computational solutions involving discontinui-
ties, as has been extensively discussed in the literature; a
recent summary is given by Kapilaet al.19 Importantly, a
so-called regularization is needed to fully specify shock
jumps. Computation of end states of jumps by standard nu-
merical methods constructed to be flux conservative is easily
corrupted by numerical errors, in contrast to models which
are formally conservative. The study of Abgrall and Saurel20

most completely addresses this issue within the context of
traditional flux-conservative numerical methods; however,
the fundamental nonconservative nature of the underlying
theory removes the foundation upon which most common
high resolution shock capturing schemes are based. Conse-
quently, in that extreme care must be used in constructing a
numerical method for such models, it is reasonable to ex-
plore alternatives. Kapilaet al.19 suggest three viable rem-
edies: ~1! asymptotic analysis of inner layers to yield the
appropriate jumps,~2! development of a physically based
model for grain-scale phenomena, or~3! careful imposition
of a simple diffusion model, motivated in part by the work of

Sainsaulieu,22 to simulate the grain-scale physics, and focus
their efforts on the first. Here, we will consider the third.

We have extended the BMSKS model in three ways.
First, the equations are written in a general three-dimensional
tensorial form, and are thus suited to arbitrary geometries.
Second, relatively simple, thermodynamically consistent
state equations with sufficient nonideality to capture gross
features observed in acoustic and compaction wave dynam-
ics experiments have been selected. And third, intraphase
momenta and energy diffusion effects have been included in
a simplistic fashion, motivated by traditional diffusion in
gas-phase systems; these models amount to the assumption
of materials which behave as Newtonian fluids which satisfy
Fourier’s law. In the same sense that molecular collision
theory can be used to predict values for diffusion coefficients
in gaseous systems, one can imagine that a granular-scale
submodel could be used to give rational estimates for mac-
roscale diffusion in these systems. We are at present devel-
oping such a theory, which is not reported here. In the
present study, a simple and practical choice for diffusion co-
efficients is made so as to insure that the finest length scales
predicted by the model are large enough to encompass sev-
eral grains. Once this choice of diffusion coefficients is
made, it is adhered to. One is then obliged to include a suf-
ficient number of computational cells to insure that the dif-
fusion induced by the physical mechanism dominates the
diffusion induced by the chosen numerical method. Further,
one need not then be concerned if the computational cell size
approaches or is less than the grain size, since the actual
viscous structure encompasses many grains.

An advantage of choosing a simple model for diffusion
is that it is easy to design to prevent grain-scale structures
from being predicted. The disadvantage of this choice is that
the diffusion coefficients necessary to achieve this result are
significantly higher than those appropriate to describe mac-
roscale diffusion in a slow cookoff process, not simulated
here. However, one can imagine a straightforward extension
to craft a grid-independent, grain size-dependent diffusion
model in which the diffusion coefficients had strain rate de-
pendency so as to guarantee ordinary diffusion at low strain
rates found in cookoff, and high values in regions of steep
gradients near shocks.

It is appropriate to give an extended comment on nu-
merical diffusion, i.e., pseudodiffusion proportional to the
grid discretization length scale and an intrinsic property of
the discretization scheme. Here the term ‘‘numerical diffu-
sion’’ is used loosely and actually encompasses all numerical
noise-generating mechanisms, the most prominent typically
being diffusion and dispersion. It is often argued that inviscid
models are sufficient because numerical diffusion, harnessed
wisely at a super-granular scale, will be sufficient to properly
smear subcontinuum effects. However, when one realizes
that the amount of numerical diffusion present in all stable
shock capturing schemes is highly dependent on the particu-
lar method chosen, and that it is often difficult to quantify the
amount of numerical diffusion, one concludes that alterna-
tives have some clear advantages. First, models with explicit,
grid-independent diffusion are more likely to converge when
subjected to grid resolution tests. Grid resolution tests ap-
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plied to inviscid models soon bring the model to the sub-
granular level, where it is unphysical. Furthermore, in mul-
tidimensional inviscid calculations, it is obvious that grid
resolution in the neighborhood of structures such as Kelvin–
Helmholtz instabilities can never converge, as ever-finer
grids reveal ever-finer fractal-like structures. Consequently, it
is more reliable to employ explicit, grid-independent diffu-
sion so as to provide a clear mechanism to suppress non-
physical high frequency instabilities, as well as to provide a
means by which the solution to which one converges is in-
dependent of the particular numerical method chosen. Lastly,
the diffusion added here differs from the explicitly added
so-called ‘‘artificial viscosity,’’ commonly employed in com-
putational models since its introduction by von Neumann
and Richtmyer.23 Traditional artificial viscosity has explicit
dependence on the size of the discretization, and thus suffers
similar defects as intrinsic numerical viscosity. While one
might be tempted to classify the diffusion added in the
present study as ‘‘artificial,’’ one must realize that is distinct
from typical artificial viscosity or numerical diffusion in that
it is dependent on the physical scales rather than the discreti-
zation scales of the problem.

In the body of this paper, the extended BMSKS model
will first be presented in a nominally conservative and then
fully nonconservative form. After specification of common
constitutive models, it will be impossible to express the gov-
erning equations in a fully conservative form. In an analysis
similar to that for single phase materials, diffusion will be
shown to be dissipative, and the entropy generation terms for
each individual phase will be explicated. A simple set of
fully conservative mixture equations is given with a rational
set of mixture variables. In the one-dimensional limit, results
from a standard characteristic analysis are presented which
gives indication as to what conditions are necessary for a
well posed problem in the presence of diffusion.

Numerical solutions are then presented to exercise the
model. Because diffusion has been explicitly modeled, no
exotic numerical methods are necessary; second order central
differencing of spatial gradients has been applied to a non-
conservative formulation of the equations to convert them to
a large system of ordinary differential equations which are
solved with a standard implicit time advancement scheme. In
the limiting case of a mixture of two noninteracting ideal
gases in a shock tube, the method is able to match well the
results of an exact unsteady inviscid solution. Moreover, the
solution is shown to be converging at a rate consistent with
the method’s order of accuracy. Next the unsteady model is
shown to give predictions of the structure of viscous shocks
in two noninteracting ideal gases which match well with the
independent predictions of a steady Navier–Stokes model.
Lastly, a series of problems with inert compaction waves in
an interacting nonideal gas and solid HMX system is studied
in such a way that the effects of intraphase diffusion, inter-
phase compaction, momenta transfer, and energy transfer, as
well as the irreversibility they induce, are quantified. At pis-
ton velocities sufficiently low so as to induce subsonic com-
paction waves, the effects of intraphase diffusion on compac-
tion are small. At piston velocities sufficiently high to induce
a coupled shock and compaction wave, intraphase diffusion

suppresses spurious oscillations predicted by a complemen-
tary inviscid model.

Simple constitutive models with parameters appropriate
for typical heterogeneous energetic material are adopted.
While these simple models may not be appropriate to match
all known experimental observations, it has been shown17

that similar approaches can properly capture correct orders of
magnitude of most relevant phenomena. The models em-
ployed, including notably an interphase drag suggested by
the experiments and analysis of Asayet al.,24 demonstrate
that for problems in which significant compaction occurs,
interphase transport rapidly equilibrates solid and gas veloci-
ties and temperatures; compaction equilibrates solid pres-
sures and configurational stress. Quantitative consideration
of the dissipation in this problem shows conclusively that
compaction is overwhelmingly dominant over all other inter-
phase and intraphase mechanisms.

The novelty of this work lies in its~1! systematic exten-
sion of a two-phase reactive flow model to include diffusion
of linear momenta and energy,~2! quantitative predictions of
compaction wave phenomena using a solid equation of state
with explicit volume fraction dependency in the manner first
suggested by BMSKS, and~3! quantitative predictions of a
budget of irreversibility generated by each mechanism, so
that the relative importance of each can be gauged.

II. MODEL EQUATIONS

In this section, the extended BMSKS model is presented.
Inasmuch as possible, an identical nomenclature is imposed.

A. Nominally conservative form

The nominally conservative form of the model equations
is given here. Note that the later specification of the BMSKS
constitutive theory will render this system to be inherently
nonconservative.

]

]t
~rsfs!1“•~rsfsus!5C, ~1!

]

]t
~rgfg!1“•~rgfgug!52C, ~2!

]

]t
~rsfsus!1“•@rsfsusus

T1fs~psI2ts!#5M, ~3!

]

]t
~rgfgug!1“•@rgfgugug

T1fg~pgI2tg!#52M, ~4!

]

]t FrsfsS es1
1

2
us•usD G1“•FrsfsusS es1

1

2
us•usD

1fsus•~psI2ts!1fsqsG5E, ~5!
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]t FrgfgS eg1
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2
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2
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]rs

]t
1“•~rsus!52

rsF
fs

, ~7!

]

]t
~rsfshs1rgfghg!1“•~rsfsushs1rgfgughg!
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1

fgqg
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D . ~8!

The subscriptss andg denote solid and gas phases, respec-
tively; r, f, u, p, t, e, q, h, andT represent intrinsic den-
sities, volume fractions, velocity vectors, pressures, viscous
stress tensors, internal energies, heat flux vectors, entropies,
and temperatures, respectively. The termsC, M, E, and F
represent interphase transport of mass, linear momenta, and
energy, and a source term for material compaction, respec-
tively. Equations~1!–~6! describe the evolution of mass, lin-
ear momenta, and energy in the solid and gas, respectively.
Equation ~7! is a relation modeling material compaction,
widely used in the detonation community, albeit nontradi-
tional. It is a usefulad hoc relation which allows volume
fraction to evolve in response to interphase mass transfer as
well as stress nonequilibrium. While lacking a rigorous jus-
tification based on averaging from the microstructural scale,
it has proved able to~1! capture observed compaction
phenomena,6,7 ~2! prevent initial and initial/boundary value
problems from being ill posed in the sense of Hadamard, and
~3! be useful in satisfying an entropy inequality. Equation~8!
is the entropy inequality, extended for systems with in-
traphase energy diffusion. No consideration is given here to
an angular momenta axiom; however, a complete theory for
multidimensional motion, not studied here, will need to in-
clude this principle.

Equations~1!–~6! have been constructed to insure that
whatever form the phase interaction termsC, M, andE take,
appropriate mixture quantities are formally conserved. In
fact, if the following mixture variables, denoted by the sub-
script m, and relative velocities, denoted by the subscriptr
are defined as

rm[rsfs1rgfg , ~9!
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rsfsus1rgfgug

rsfs1rgfg
, ~10!

urs[us2um , ~11!

urg[ug2um , ~12!

pm[fs~ps1
1
3 rsurs•urs!1fg~pg1 1
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rsfs1rgfg
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1fgFrgurgS eg1

urg•urg

2 D1urg•~pgI2tg!1qgG ,
~16!

then the sum of the mass, linear momenta, and energy evo-
lution equations can be represented in a fully conservative
form as

]rm

]t
1“•~rmum!50, ~17!

]

]t
~rmum!1“•~rmumum

T 1pmI2tm!50, ~18!

]

]t FrmS em1
um•um

2 D G1“•FrmumS em1
um•um

2 D
1um•~pmI2tm!1qmG50. ~19!

This is precisely the form of the classical compressible
Navier–Stokes equations. While the derivation of the appro-
priate mixture and relative quantities given by Eqs.~9!–~16!
is detailed, the results are easily verified by direct substitu-
tion into Eqs.~17!–~19! and comparison with the appropriate
sums of evolution Eqs.~1!–~6!. It is also seen that when the
velocities of the components relative to that of the mixture
are zero (urs5urg50), the mixture pressure, energy, shear
stress, and heat flux reduce to simple mass- or volume-
averages of the components. The relative velocities, analo-
gous to fluctuation velocities of turbulence theory, induce
corrections to pressure, energy, stress, and heat flux in an
analogous fashion to Reynolds stresses in turbulence.

B. Constitutive equations

The system of Eqs.~1!–~7! is closed by specification of
constitutive equations, designed in such a fashion to guaran-
tee satisfaction of the entropy inequality, Eq.~8!:

fg1fs51, ~20!

cs5ĉs~rs ,Ts!1B~fs!, ~21!

cg5cg~rg ,Tg!, ~22!

ps5rs
2 ]cs

]rs
U

Ts ,fs

, ~23!

pg5rg
2 ]cg

]rg
U

Tg

, ~24!

hs52
]cs

]Ts
U

rs ,fs

, ~25!

hg52
]cg

]Tg
U

rg

, ~26!
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F5
fsfg
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New variables in Eqs.~20!–~37! are c, the Helmholtz free
energy andbs , a configuration stress for the solid. The func-
tion B(fs) will be needed to account for the free energy
associated with the configurational stress, whileĉs accounts
for the classical free energy of the solid. New parameters
introduced arem, a coefficient of viscosity,k, a coefficient of
thermal conductivity,mc , a so-called compaction viscosity,

d, an interphase drag parameter, andH, an interphase heat
transfer parameter. For simplicity,d andH are taken here to
be constants; it is common to allow both to have a depen-
dency on the local state of the system.

Equation~20! requires that the mixture be saturated by
solid and gas; the mixture contains no voids with vacuums.
Equations~21! and ~22! are canonical equations of state for
the solid and gas, which will later be specified. Equations
~23!–~29! are standard thermodynamic relations for pressure,
entropy, and energy. Equations~30! and ~31! are classical
Newtonian relations between viscous stress and strain rate
for an isotropic compressible material which satisfies Stokes’
assumption. Equations~32! and~33! are Fourier’s law for the
solid and gas. Equation~27! is a definition of the configura-
tional stress as detailed in BMSKS. Equations~34!–~37! are
special forms of the interphase transport equations as re-
ported in BMSKS, constructed to insure frame invariance
and second law satisfaction. It is the termpg“fs in Eq. ~35!
which models nozzling and renders the system nonconserva-
tive.

As much of the analysis which will follow in later sec-
tions will be independent of the particular form of the ther-
modynamic state equations, the forms reported have been
general. When numerical calculations are made later, specific
state equations will be required, and they are reported here.
Relatively simple choices are made which have been shown
to accurately capture compaction and detonation wave
speeds in heterogeneous energetic materials.17

BMSKS suggest a canonical form for state equations for
granular materials, and application of their prescription to the
Tait equation,25 modified for compaction effects,7 yields

cs~rs ,Ts ,fs!5cvsTsF12 lnS Ts

Ts0
D1~gs21!lnS rs

rs0
D G1

1
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rs0

rs
«s1q

1
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~12fs!
22fs S 22fs

22fs0
D (22fs)(22fs0)G

rs0~22fs!fs0 lnS 1

12fs0
D . ~38!

Herecvs is the constant specific heat at constant volume of the solid,gs is a constant related to the ratio of specific heats,«s

is a constant with units of energy per mass fixed by matching to compaction wave speed data,rs0 andTs0 are the reference
density and temperature for the solid,ps0 andpg0 are reference solid and gas pressures, which are calculated such that they are
consistent with the reference states for density and temperature,fs0 is the ambient solid volume fraction, andq is the chemical
energy of the solid. Applying Eqs.~23!, ~25!, ~28!, and~27! to the canonical form~38! yields

ps5~gs21!cvsrsTs2
1

gs
rs0«s , ~39!

hs5cvs lnS Ts

Ts0
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For the gas, a virial equation of state is adopted, which
has canonical form

cg~rg ,Tg!5cvgTgH 12 lnS Tg

Tg0
D1~gg21!F lnS rg

rg0
D

1bg~rg2rg0!G J . ~43!

Herecvg is the constant specific heat at constant volume of
the gas,gg is a constant related to the ratio of specific heats,
bg is the virial coefficient, andTg0 and rg0 are reference
states for the gas. Applying Eqs.~24!, ~26!, and ~29! to the
canonical form~43! yields
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eg5cvgTg . ~46!

C. Fully nonconservative form

A detailed analysis of the type given by Powerset al.8

and BMSKS allows Eqs.~1!–~8! to be written in a fully
nonconservative form. This analysis involves systematic
elimination of terms involving mass and linear momenta
from the energy equations, and elimination of terms involv-
ing mass from the linear momenta equations. Doing this as
well as ~1! directly invoking constitutive models for inter-
phase momenta and energy transport and compaction~35!–
~37!, and ~2! defining material derivatives for the solid and
gas, respectively, asd/dts [ ]/]t 1us•“, d/dtg [ ]/]t
1ug•“, one obtains
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It is noted that in this fully nonconservative form, veloci-
ties only appear as differences; consequently, it is easy to
show that the equations are invariant under a Galilean
change of reference frame.

D. Dissipation

It is now possible to determine what conditions are nec-
essary for Eqs.~47!–~53! to satisfy the second law~54!. First
one must consider the rate of entropy change in each phase.
To do this, first consider thermodynamic Gibbs identities

Ts
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2
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2
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2
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dts
, ~55!

Tg

dhg
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5
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dtg
2
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rg
2

drg

dtg
, ~56!

consequences of Eqs.~22!–~29! and ~27!, developed in full
by BMSKS. Next use Eqs.~55! and~56! to eliminate energy
derivatives in favor of entropy derivatives in Eqs.~51! and
~52! to get alternate expressions for the first law of thermo-
dynamics for the solid and gas:
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rsfsTs

dhs

dts
5H~Tg2Ts!2fs“"qs2qs•“fs

1fsts :“us1
fsfg

mc
~ps2bs2pg!2

1bs

~2C!

rs
, ~57!

rgfgTg

dhg

dtg
52H~Tg2Ts!2fg“"qg2qg•“fg

1fgtg :“ug1d~us2ug!•~us2ug!

1Fes2eg2pgS 1

rg
2

1

rs
D G~2C!. ~58!

It is obvious from Eq.~57! that terms related to material
compaction, those involvingmc , are inducing positive
semidefinite changes in the solid entropy only. It is also ob-
vious that interphase drag is inducing positive semidefinite
changes in the gas entropy only. The BMSKS model has
additional degrees of freedom to partition this dissipation
among the phases, though they give arguments for recom-
mending these choices. One also notes that the entropy of an
individual phase can rise or fall in response to general inter-
phase and intraphase transport; the second law only provides
restrictions when the entire mixture is considered.

Substitution of the modified energy Eqs.~57! and ~58!
into the second law~54! yields, after simplification,

1

Ts
FH~Tg2Ts!2

fs

Ts
qs•“Ts1fsts :“us

1
fsfg

mc
~ps2bs2pg!21bs

~2C!

rs
G1

1

Tg
H 2H~Tg2Ts!

2
fg

Tg
qg•“Tg1fgtg :“ug1d~us2ug!•~us2ug!

1Fes2eg2pgS 1

rg
2

1

rs
D G~2C!J 1~2C!~hg2hs!>0.

~59!

Now consider entropy changes induced by intraphase
momenta diffusion. First define the standard viscous dissipa-
tion functionsF as

Fs5ts :“us , Fg5tg :“ug . ~60!

By employing the Newtonian assumption~30! and~31!, after
some effort involving the use of quadratic forms, the viscous
dissipation functions can be cast in a positive semidefinite
form involving the squares of the portions of the strain rates
that deviate from the mean strain rates.

~61!

~62!

Because the materials have been chosen to be Newtonian,
which implies the viscous stress varies linearly with the
strain rate, and satisfy Stokes’ assumption, which implies the
mean total stress is equal to the thermodynamic stress, cer-
tain consequences arise. First, it can be shown that the vis-
cous stress is entirely deviatoric, and that it is induced only
by deviatoric strain rates. Moreover, the viscous dissipation
is induced only by deviatoric strain rates. The deviatoric
strain rates are volume preserving. Mean strain rates are
equivalent to volumetric deformations and here are associ-
ated entirely with mean stresses, in this case the thermody-
namic stressesps and pg . As here the mean stresses and
mean strain rates do not induce entropy changes while doing
work, it is concluded they induce only reversible energy
changes.

Substituting Eqs.~61! and ~62! as well as Eqs.~32! and
~33! into Eq. ~59! and rearranging, one finds a result equiva-
lent to that of BMSKS for the extended system:

I[~2C!S bs

rsTs
1

es2eg2pg~1/rg21/rs!

Tg
1hg2hsD

1d
~us2ug!•~us2ug!

Tg
1H ~Tg2Ts!

2

TgTs

1
fsfg

mc

~ps2bs2pg!2

Ts
1

fsFs

Ts
1

fgFg

Tg

1
ksfs“Ts•“Ts

Ts
2 1

kgfg“Tg•“Tg

Tg
2 >0. ~63!
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Here the irreversibility production rateI has been defined.
With this form, it is easy to see how each transport mecha-
nism contributes to the irreversibility, which enables one to
make a quantitative calculation of the relative importance of
each mechanism. The so-called strong form of the second
law is satisfied provided each term in Eq.~63! is positive
semidefinite, thus requiringC<0, d>0, H>0, mc>0, ms

>0, mg>0, ks>0, kg>0, and

eg2es1pg~1/rg21/rs!

Tg
<

bs

rsTs
1hg2hs . ~64!

BMSKS provide a plausible argument why the final nonclas-
sical condition is likely to be satisfied.

E. Characteristics

In order to determine what boundary conditions are nec-
essary to constitute a well posed problem, it is helpful to
consider a characteristic analysis of the unsteady system in
the one-dimensional limit. As discussed by Drew and
Passman,26 the issue of well-posedness for general two-phase
systems remains controversial. Common inviscid systems
without dynamic compaction equations such as Eq.~7! are
known to be ill posed for initial value problems. And as
discussed in recent work by Kreiss and Ystro¨m,27 the com-
mon technique of relying on diffusion, numerical or physical,
to stabilize models which are ill posed in the zero diffusion
limit is questionable.

In the one-dimensional limit, withx as the spatial coor-
dinate, Eqs.~47!–~53! coupled with constitutive Eqs.~20!–
~37! can be cast as a system of first order partial differential
equations of the form

A•

]w

]t
1B•

]w

]x
5c. ~65!

Here w is a vector of lengthn containing the dependent
variables,c is a vector of lengthn, andA and B are n3n
matrices all of which are functions ofx, t, and w. In a
standard analysis, such as that described by Zauderer,28 one
seeks curves inx-t space described bydx/dt 5l along
which Eq.~65! can be cast as ordinary differential equations.
In so doing, one is led to the generalized eigenvalue problem

g•~lA2B!50, ~66!

whereg is a generalized eigenvector, andl, often called a
characteristic, is a generalized eigenvalue. The characteris-
tics are found by satisfying the condition

ulA2Bu50. ~67!

The system is defined as hyperbolic if all generalized eigen-
values are real andn linearly independent generalized eigen-
vectors can be identified. If all the generalized eigenvalues
are real and there are fewer thann linearly independent gen-
eralized eigenvectors, the system is defined as parabolic. If
all of the generalized eigenvalues are complex, the system is
elliptic. If some are real and some are complex, the system is
of mixed type, and has some of the features of elliptic sys-
tems. Deciding how to formulate problems which are well
posed in the sense of Hadamard is in general difficult. As a
rule of thumb, hyperbolic systems are well posed when ini-
tial values are provided on a curve which is not a character-
istic curve of the system. This constitutes an initial value
problem. Parabolic problems typically require initial data;
these are supplemented with boundary value data to consti-
tute an initial and boundary value problem. Elliptic problems
typically do not evolve in time; conditions are required at all
geometrical boundaries to constitute a well posed boundary
value problem.

1. No diffusion
In the limit of zero diffusion,mg5ms50, kg5ks50, it

is well known that the system~47!–~53! is hyperbolic. In a
calculation first reported for this class of systems by Baer
and Nunziato,5 the dimension of the system isn57, and it is
found that

l5us ,us ,us6cs ,ug ,ug6cg . ~68!

Herecs andcg are the isentropic sound speeds of the solid
and gas, respectively, defined by

cs5A]ps

]rs
U

hs ,fs

, cg5A]pg

]rg
U

hg

. ~69!

The seven generalized eigenvalues are real, though only six
are distinct. However, it is easy to show that there are seven
linearly independent generalized eigenvectors; hence, the full
system can be projected onto these vectors, and the full sys-
tem is hyperbolic, and thus well posed for initial value
problems.

2. Energy diffusion
Consideration of energy but not momentum diffusion,

while perhaps not physically important, yields a result with
an interesting interpretation. Inclusion of Fourier heat con-
duction here raises the dimension of the system ton59.
After a detailed analysis involving standard thermodynamic
derivative manipulations, the generalized eigenvalues are
found to be

l55
us ,

us6A]ps
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]ps

]Ts
U

rs ,fs

S Ts

rs
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]ps

]Ts
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~70!
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Here, there are five generalized eigenvalues, and they are all
real and distinct. In the limit of two calorically perfect ideal
gases, these equations simplify considerably to forml
5us ,us6cs

T ,ug6cg
T , wherecs

T andcg
T are the so-called iso-

thermal sound speeds, cs
T[ ]ps /]rs uTs ,fs

, cg
T

[ ]pg /]rg uTg
. Consequently in this limit, Newton’s isother-

mal theory to predict acoustic propagation speeds is correct,
though never realized in practice.

In this case while five generalized eigenvectorsg can be
found for each of the five generalized eigenvalues, there are
not enough generalized eigenvectors to transform the entire
system into characteristic form. Thus the system is parabolic,
and it appears reasonable to assume that should appropriate
Dirichlet, Neumann, or Robin boundary conditions onTs and
Tg be provided, the initial and boundary value problem is
well posed. Thus with four boundary conditions~two at each
end of the one dimensional domain! on temperature and five
initial conditions on other variables, there are enough condi-
tions for the nine equations.

3. Momentum and energy diffusion

Consideration of simultaneous energy and momentum
diffusion is more typical in nature, especially in gas systems.
Inclusion of Fourier heat conduction and viscous stresses
here raises the dimension of the system ton511. Another
detailed but straightforward calculation reveals that the gen-
eralized eigenvalues are simply

l5us ,us ,ug . ~71!

For each of the three generalized eigenvalues, of which two
are indistinct, three generalized eigenvectorsg can be found.
Once again, there are not enough generalized eigenvectors to
transform the entire system into characteristic form. Thus the
system is not hyperbolic; it is, however, parabolic, and
should appropriate Dirichlet, Neumann, or Robin boundary
conditions onTs , Tg , us , andug be provided, it is reason-
able to suppose that the initial and boundary value problem
is well posed. Thus with eight boundary conditions~four at
each end! on Ts , Tg , us , andug and three initial conditions
on other variables, there are enough conditions for the eleven
equations.

III. NUMERICAL METHOD

The one-dimensional form of Eqs.~47!–~53! is solved
with a straightforward numerical technique. Because thin,
but finite, diffusion layers in shocks have been explicitly
modeled and will be fully resolved, there is no compelling
need to resort to more complicated numerical schemes. So-
lutions are considered on the domainxP@0,L#, tP@0,̀ ),
whereL is the domain length. A set ofN points is uniformly
distributed on the domain, where all variables, with the ex-
ception of heat fluxes and viscous stresses, will take their
values. Heat fluxes and viscous stresses are assigned values
halfway between each of theN points. Next the spatial gra-
dient operators in Eqs.~47!–~53! are approximated by a cen-
tral difference scheme of second order spatial accuracy. Only
boundaries atx50 andx5L which are no-slip and adiabatic
are considered, and so, consistent with the detailed discus-

sion of Poinsot and Lele,29 it is required that the following
eight boundary conditions be satisfied:

ug~0,t !5ug~L,t !5us~0,t !5us~L,t !50, ~72!

qg~0,t !5qg~L,t !5qs~0,t !5qs~L,t !50. ~73!

At these boundaries, second order one-sided difference
schemes are employed to maintain the overall accuracy of
the method. Appropriate extrapolation techniques are used to
account for the fact that heat fluxes and viscous stresses are
defined at the midpoints of the primary grid.

At this point the system is represented by a large system
of coupled nonlinear ordinary differential equations. These
are then solved with an implicit Adams method as embodied
in the widely available Fortran code,DLSODE.30 This code
provides automatic time step selection prescribed in such a
manner to achieve a user-defined error tolerance. This error
tolerance was set well below the level of truncation error for
the spatial discretization.

All calculations were done using aFORTRAN90code run-
ning on a Macintosh PowerBook G4 laptop computer oper-
ating at 667 MHz. Depending on the numerical stiffness of
the source terms, calculations forN51001 grid points re-
quired anywhere from 5 min to 1 h. The longest calculation
on a highly refinedN510 001 grid took approximately 7 h.

IV. VERIFICATION OF NUMERICAL METHOD

Two cases were calculated for which known benchmark
solutions existed in order to verify the numerical method: a
shock tube and a piston-driven shock. Intraphase diffusion
was present in all cases, with coefficients selected so that the
viscous zone enveloped several grain diameters, and so that
the Prandtl number,Pr5gmcv /k, for both solid and gas
was of order unity, thus rendering momentum and energy
diffusion to be of similar importance. To achieve this end,
values form andk are significantly higher than they are for
single phase materials, and thus this simple model cannot at
the same time describe ordinary slow macroscale diffusion.
For problems such as cookoff where slow diffusion is impor-
tant, a more sophisticated constitutive theory could be em-
ployed in which the diffusion coefficients had strain-rate de-
pendency.

A. Case A: Shock tube

In the classical shock tube problem, two halves of the
domain are held at the same temperature, with the left side
held initially at an elevated density, given byr̂s0 and r̂g0 ,
and consequent pressures. Att50, the system is set into
motion, and a shock propagates to the right, a material dis-
continuity to the left, and a rarefaction to the left. In the limit
of a single inviscid calorically perfect ideal gas, a closed
form analytic solution is known, as given, for example, by
Shapiro.31

Using parameters of Table I, the motion of two viscous
uncoupled calorically perfect ideal gases propagating at dif-
ferent speeds in a shock tube is calculated. In this simulation
all interphase transport is suppressed. In order to keep the
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waves relatively close to one another for a good comparison,
the parametergg has been set to a higher value,gg52.70,
than is typical for gases. For compaction wave studies, its
value is returned to a more typicalgg51.35.

In Fig. 1, part A1, predictions of temperature at a final
time tmax560 ms are shown along with the predictions of
the inviscid theory. The agreement is remarkably good, with
the main difference being that the viscous model predicts
waves with finite thickness, due to physical diffusion. No
phenomena typically associated with numerical noise, such
as Gibbs phenomena or dispersion effects are seen at these
scales, primarily because the physical diffusion is of a suffi-
ciently high magnitude to render them indistinguishable. As
the method is formally not flux conservative, there is a very
small evolution of total mass and total energy in the system,
which can be made as small as one likes with grid refine-
ment.

In Fig. 1, part A2, predictions of how an error norm for
temperature behaves as the grid is refined is given. Here a
1-normed errorL1 is defined as representative of the average
error of the combination of the solid and gas temperature:

L15
1

2N (
i 51

N

~ uTsi2Tsi
e u1uTgi2Tgi

e u!. ~74!

HereTsi andTgi are the approximations for the solid and gas
temperatures at thei th grid point, andTsi

e and Tgi
e are the

values of the exact solution at the corresponding grid points.
The exact solution is estimated from a highly refined solution

FIG. 1. Results for case A.~A1! Analytic ~dotted lines! and computational
~solid lines! solutions for the shock tube problem,~A2! behavior of error
norm of temperature as the grid is refined.

TABLE I. Parameter values for~A! shock tube,~B! simple piston,~C! piston with subsonic compaction,~D!
piston with subsonic compaction and drag,~E! piston with subsonic compaction, drag, and heat transfer, and~F!
piston with supersonic compaction, drag, and heat transfer.

Parameter Units Case A Case B Case C Case D Case E Case F

tmax s 631025 1.231024 631024 631024 631024 131025

N ¯ 1001 1001 1001 1001 1001 5001
L m 531021 531021 531021 531021 531021 531021

Dx m 531024 531024 531024 531024 531024 131024

up
max m/s 0 13102 13102 13102 13102 13103

t rise s 0 131026 131026 131026 131026 131026

mg N s/m2 13100 13100 13100 13100 13100 13100i0
ms N s/m2 13103 13103 13103 13103 13103 13103i0
kg W/m/K 13103 13103 13103 13103 13103 13103 uu 0
ks W/m/K 13106 13106 13106 13106 13106 13106i0
mc N s/m2 ` ` 13103 13103 13103 13103

d kg/m3/s 0 0 0 13108 13108 13108

H W/m3/K 0 0 0 0 131010 131010

C kg/m3/s 0 0 0 0 0 0
q J/kg 0 0 0 0 0 0

gg ¯ 2.703100 2.703100 1.353100 1.353100 1.353100 1.353100

cvg J/kg/K 2.43103 2.43103 2.43103 2.43103 2.43103 2.43103

bg m3/kg 0 0 1.131023 1.131023 1.131023 1.131023

Tg0 K 33102 33102 33102 33102 33102 33102

Ts0 K 33102 33102 33102 33102 33102 33102

rg0 kg/m3 13100 13100 13100 13100 13100 13100

r̂g0 kg/m3 1.13100 13100 13100 13100 13100 13100

gs ¯ 53100 53100 53100 53100 53100 53100

«s J/kg 0 0 8.983106 8.983106 8.983106 8.983106

cvs J/kg/K 1.53103 1.53103 1.53103 1.53103 1.53103 1.53103

rs0 kg/m3 1.93103 1.93103 1.93103 1.93103 1.93103 1.93103

r̂s0 kg/m3 2.03103 1.93103 1.93103 1.93103 1.93103 1.93103

fs0 ¯ 7.331021 7.331021 7.331021 7.331021 7.331021 7.331021
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with N510 001. Figure 1, part A2, clearly shows thatL1 is
converging to zero. For very coarse grids, the convergence
rate isO(Dx0.75), while for fine grids, the convergence rate
is O(Dx1.95), which is approaching the order of the inherent
truncation error of the second order discretization. Examina-
tion of the solution at coarse resolution shows many effects
of numerical noise dominating the unresolved physical dif-
fusion; numerical artifacts become unrecognizable when the
grid is refined such that the physical viscous layers are
resolved.

B. Case B: Piston-driven shocks

In case B, a simulation of a piston driving into two non-
interacting calorically perfect viscous ideal gases is pre-
sented. In this case, the motion of a piston, located atx50
when t50, and having velocityup of

up~ t !5up
maxF12expS 2

t

t rise
D G , ~75!

is modeled. Hereup
max is the maximum piston velocity, and

t rise is the rise time for the piston acceleration, here set to be
t rise51 ms. To achieve this effect, Eqs.~47!–~53! were sub-
jected to an appropriate transformation to the accelerating
reference frame in which the transformed velocity at the pis-
ton face was zero. This is achieved by effecting

x̃5x2up
maxH t1t riseFexpS 2

t

t rise
D21G J , ~76!

t̃ 5t. ~77!

The velocities and accelerations in the accelerating frame are
then given by

ũs5us2up
maxF12expS 2

t

t rise
D G , ~78!

ũg5ug2up
maxF12expS 2

t

t rise
D G , ~79!

dũs

d t̃s

5
dus

dts
2

up
max

trise

expS 2
t

t rise
D , ~80!

dũg

d t̃g

5
dug

dtg
2

up
max

trise

expS 2
t

t rise
D . ~81!

As the simulation time was sufficiently short to prevent
wave interactions atx5L, no special modifications were re-
quired at that boundary. The well-known net effect of this
non-Galilean transformation is simply to introduce a source
term due to frame acceleration into the linear momentum
equations. Upon completion of calculation, the results were
transformed back into the laboratory frame, which is what is
reported in Fig. 2. The equations of state are such that the
shock moves faster in the solid as seen in Fig. 2, part B1.
Once again, a high value ofgg has been employed to allow
simultaneous visualization of the wave dynamics. In Fig. 2,
parts B2 and B3, expanded views are focused on the viscous
shock layers. Here independent solutions of viscous shock

waves predicted by a steady state theory,32 obtained from a
numerical shooting method, are superposed. Again the re-
sults are remarkably good. In that the piston has translated
away from its initial condition atx50, the laboratory frame
predictions are slightly displaced away from the origin. The
preshock and postshock temperatures are nearly in exact
agreement. The steady theory predicts wave speeds of
3153.74 m/s and 1847.85 m/s in the solid and gas, respec-
tively. Rough estimates from the unsteady calculation ob-
tained calculating the ratio of thex coordinate of the mid-
point of the viscous structure to the local time yield
predictions of 3125 m/s and 1917 m/s. The differences may
be due to the effects of the finite rise time as well as diffi-
culty in estimating the location of the smeared wave. The
results also indicate that the unsteady model is capturing the
correct length scales of diffusion. Both shocks in the gas and

FIG. 2. Results for case B, piston driving into two noninteracting calorically
perfect viscous ideal gases.~B1! Full spatial domain,~B2! expanded view of
viscous shock in solid showing steady~dotted line! and unsteady~solid line!
solutions,~B3! expanded view of viscous shock in gas showing steady~dot-
ted line! and unsteady~solid line! solutions.
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solid are relaxing to the steady solution; the solid shock is
relaxing at a faster rate, which explains why the gas shock
shows a greater difference. Importantly, it is seen that the
diffusion coefficients employed give rise to a gas shock
thickness of roughly 6 cm and a solid shock thickness of
roughly 3 cm. Consequently, roughly 300 particles of diam-
eter 100mm fit into the smallest length scale admitted by the
continuum theory. It is noted that the simple diffusion model
employed predicts a thinning of the shock width as the shock
strength increases. This is consistent with the predictions of
an experimentally validated Navier–Stokes model for
gases.33 Determination of whether such a result can be vali-
dated for granular materials would require consideration of a
microstructural model not done here.

V. COMPACTION WAVE RESULTS

Next a series of simulations was performed for inert
compaction waves. These results are similar to previously
reported inviscid results for the solid phase only7 and the
solid and gas phases.17 In these calculations, both solid and
gas equations of state are nonideal with parameters appropri-
ate to describe common heterogeneous materials. Three
cases are studied to quantify the effects of the mechanisms of
~C! compaction,~D! compaction and interphase drag, and
~E! compaction, interphase drag, and interphase heat transfer.
In each case the mixture with initial solid volume fraction of
fs050.73 is driven by the same accelerating piston which
quickly relaxes to a final velocity of 100 m/s, similar to that
used in experiments.1,34 Here the piston velocity is suffi-
ciently small so as to induce waves which are subsonic with
respect to the solid. A fourth calculation, F, considers a sce-
nario nearly identical to E, except that the driving piston
accelerates to a velocity of 1000 m/s. This induces a wave
which is supersonic with respect to the solid. In order to
resolve the finer structures induced by this more potent
driver, five times as many computational cells are employed
relative to all other cases.

A. Case C: Subsonic compaction

The mechanism of interphase compaction is activated by
reducing the compaction viscositymc to a finite value of
103 N s/m2. Interphase drag and heat transfer are not acti-
vated. Predictions of pressures and configuration stress, solid
volume fraction, velocities, and temperatures are shown in
Fig. 3. Here clearly distinct disturbances in the solid and gas
are predicted. In the solid, the disturbance is traveling at
approximately 415 m/s and is associated with a increase in
the volume fraction to a nearly completely packed solid with
fs;1. The pressure in the solid rises from an ambient value
of near 10 MPa to a compacted value of over 50 MPa. After
a short delay in the compaction zone, the configurational
stressbs relaxes to a value close to that of the solid pressure,
while the gas pressure is significantly lower. The thickness of
the compaction zone is about 6 cm, thus it encompasses
about 600 particles of 100mm diameter. These values are
quite close to values observed in experiment, as discussed in
detail by Powerset al.7 This wave, known as a compaction
wave, is traveling at a much slower speed than the ambient

sound speed in the solid, which is around 3000 m/s, and as
such it is not the limiting case of a shock wave. In fact, as
demonstrated by corresponding inviscid theories, the struc-
ture of the compaction zone is dictated by the magnitude of
mc , which despite its common name of ‘‘compaction viscos-
ity,’’ is in fact not associated with classical diffusion. In con-
trast, the precursor wave in the gas is traveling at a speed of
around 830 m/s; its structure, which has thickness of about 4
cm, is dictated by the gas viscosity. As the ambient gas phase
sound speed is 583.9 m/s, this wave is clearly a supersonic,
viscous shock.

It is noted that the compaction wave speed is lower than
the ambient sound speed in both phases. This is qualitatively
consistent with well-known results obtained in special limit
of pressure, temperature, and velocity equilibria,26 but the
quantitative agreement here is not strong. The quantitative
disagreement is not surprising, as in this study, the two
phases do not have equilibrated pressures.

The gas velocity is quite distinct from that of the solid,
except that both relax to the piston velocity at the locus of
the piston. Such velocity differences are not observed in
experiment24 and can be attributed to the neglect of inter-
phase drag. The gas and solid temperatures are distinctly
different as well, with large fluctuations noted in the gas
phase temperature. The dynamics of the problem are such
that the compaction induces the gas temperature to fall to a
very low value in the compacted region of near 100 K. It is
reasonable to attribute this to the neglect of interphase heat
transfer.

B. Case D: Subsonic compaction and drag

In case D, the mechanisms of interphase compaction and
drag are activated. A drag parameter ofd5108 kg/m3/s, of
the same order of magnitude as suggested by experiment,24 is
employed, and results are shown in Fig. 4. Results for the
solid phase are similar to those for case C. However, for the
gas phase the introduction of drag has effectively equili-
brated the gas velocity to that of the solid, brought the pres-
sures much closer, and increased the temperature to around
330 K in the postcompaction zone. The shock wave is no
longer discernible in the gas phase. While it appears that
there is a temperature gradient and consequent heat flux at
the piston face, examination of the results on a magnified
scale reveals there is in fact a thin relaxation layer where the
heat flux approaches zero for both phases.

C. Case E: Subsonic compaction, drag, and heat
transfer

In case E, the mechanisms of interphase compaction,
drag, and heat transfer are activated. By making a so-called
Reynolds analogy that interphase drag and heat transfer are
of the same order of magnitude, the heat transfer coefficient
is estimated atH;duc

2/Tc , where the characteristic velocity
and temperature are estimated to beuc;100 m/s andTc

;100 K. This gives rise to an estimate ofH
51010 W/m3/K. Results are shown in Fig. 5. The results are
essentially identical to those of case D, except that the solid
and gas temperatures have relaxed to nearly identical values.
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FIG. 3. Results for case C~piston-driven subsonic compaction!: ~C1! Solid and gas pressure and configuration stress profiles,~C2! solid volume fraction
profile, ~C3! velocity profiles,~C4! temperature profiles.

FIG. 4. Results for case D~piston-driven subsonic compaction with interphase drag!: ~D1! Solid and gas pressure and configuration stress profiles,~D2! solid
volume fraction profile,~D3! velocity profiles,~D4! temperature profiles.
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As discussed in detail by Asayet al.,24 these equilibration
phenomena have important consequences when considering
mechanisms which are likely to induce a transition to deto-
nation in a reacting material. In particular, this model pre-
dicts that the compaction wave crushes the material to the
extent that it would be difficult for reaction product gases to
permeate ahead of the compaction wave to any significant
degree. However, there remains a small amplitude of gas
velocity which may be potentially important in a slow
cookoff scenario. This rapid equilibration has motivated re-
cent studies which replace evolution equations with algebraic
constraints which force solid–gas equilibrium in order to re-
duce the computational stiffness associated with resolving
thin layers.19

Predictions of an instantaneous budget of irreversibility
production rateI are given for case E in Fig. 6. Here Eq.~63!
is employed to calculateI as well as the magnitude of each
of its constituents. In this case the peak entropy production
rates for the various processes are all located in the region
near x50.3 m, and have the following approximate peak
magnitudes, given in rank order: interphase compaction,

1.753108 W/m3/K; solid momentum diffusion, 2.2
3107 W/m3/K; solid energy diffusion, 1.33105 W/m3/K;
interphase momentum transfer, 3.43104 W/m3/K; gas mo-
mentum diffusion, 4.83103 W/m3/K; interphase energy
transfer, 1.43103 W/m3/K; gas energy diffusion, 3.3
3101 W/m3/K. Obviously the bulk of the dissipation is fo-
cused in the solid phase, and the bulk of that is attributable to
compaction. Momentum diffusion in the solid phase is the
only other mechanism which makes a contribution of suffi-
cient magnitude to be discerned in Fig. 6.

D. Case F: Supersonic compaction, drag, and heat
transfer

In this case, each of the mechanisms active in case E
remains active, and the same parameter values are employed,
except the piston is driven ten times faster at 1000 m/s. A
detailed steady inviscid analysis7 reveals that at such speeds,
compaction waves are described by a steady shock wave
propagating faster than the ambient sound speed in the solid
followed by an attached compaction zone in which all vari-
ables relax to their equilibrium values.

Predictions of solid pressure versus distance are shown
in Fig. 7. In order to clearly display the structure of the wave,
only a small portion,xP@0.020 m,0.032 m#, of the entire
domain xP@0 m,0.5 m# is depicted. The model predicts a
wave of approximate thickness 0.0024 m propagating at an
approximate velocity of 3250 m/s in which the pressure re-
laxes to a final value of 4566 MPa. Such a wave structure
admits roughly 24 particles of size 100mm within its relax-
ation zone. Other variables behave in a qualitatively similar
manner as they did in case E in that solid and gas velocities
as well as solid and gas temperatures are effectively equili-
brated. The distinction between the shock and compaction
zone is not apparent in Fig. 7. Had smaller diffusion coeffi-
cients been employed, this distinction would become dis-
cernible at the expense of rendering diffusive relaxation
length scales to be smaller than the grain size.

FIG. 5. Results for case E~piston-
driven subsonic compaction with in-
terphase drag, and heat transfer!: ~E1!
Solid and gas pressure and configura-
tion stress profiles,~E2! solid volume
fraction profile,~E3! velocity profiles,
~E4! temperature profiles.

FIG. 6. Results for case E~piston-driven subsonic compaction with inter-
phase drag and heat transfer!: Total irreversibility production rateI and
contributions from major components: interphase compaction and solid mo-
mentum diffusion.
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Superposed onto Fig. 7 are the predictions of an equiva-
lent theory with all diffusion coefficientsms , mg , ks , kg set
to zero. Here, the same simple second order spatial discreti-
zation scheme was used. As this discretization does not re-
duce to a first order scheme in the neighborhood of discon-
tinuities, it is susceptible to pronounced dispersion effects
which depend critically on the numerical resolution. These
undesirable effects are readily seen in Fig. 7. For models
which do not include nozzling and thus have a fully conser-
vative form, the use of Godunov-based techniques for invis-
cid flows reduces the discretization to first order in the neigh-
borhood of discontinuities and is able to crisply capture them
without spurious oscillation.10,17 For models which include
nozzling, similar techniques can crisply capture jumps,20 but
questions remain as to whether the method has captured the
correct jumps.19

Predictions of an instantaneous budget of irreversibility
production rateI are given for case F in Fig. 8. In this case
the peak entropy production rates for the various processes
are all located in the region nearx50.028 m, and have the
following approximate peak magnitudes, given in rank order:
interphase compaction, 1.931012 W/m3/K; solid momen-
tum diffusion, 3.231011 W/m3/K; solid energy dif-
fusion, 1.231011 W/m3/K; interphase energy trans-
fer, 1.53108 W/m3/K; gas momentum diffusion,

8.83107 W/m3/K; gas energy diffusion, 2.53107 W/
m3/K; interphase momentum transfer, 1.63107 W/m3/K.
Again, the bulk of the dissipation is focused in the solid
phase, and the bulk of that is attributable to compaction.
Momentum and energy diffusion in the solid phase are the
only other mechanisms which makes a contribution of suffi-
cient magnitude to be discerned in Fig. 8. One also notes that
the dissipation due to diffusion is at the leading edge of the
disturbance, while that due to compaction trails slightly. This
is consistent with the predictions of an inviscid theory which
has a leading shock followed by a compaction zone.

VI. DISCUSSION

This study has shown that it is possible to introduce
diffusion in a rational manner to models of heterogeneous
energetic solids. With this extension, it has been demon-
strated that real advantages exist relative to inviscid models.
First, at the expense of computing on a sufficiently fine grid
to resolve all diffusive structures, one can apply relatively
simple numerical methods to nonconservative formulations
of the governing equations. Second, the presence of a small
finite length scale on which dissipation occurs can prevent
unphysical instabilities predicted by inviscid models when
they are subjected to grid resolution. Third, as these calcula-
tions were resolved with modest modern computational re-
sources with no adaptive mesh refinement, it may be appro-
priate for the modeling community to reconsider if the
traditional reasons for routinely neglecting diffusion are al-
ways applicable. Fourth, the modeler has gained control, in-
dependent of the particular numerical method chosen, over
the width of the small scale structures, which should never
be below that of the grain scale, as they can be for inviscid
models.

Exercise of this model has demonstrated that it is con-
verging at the proper order, and that appropriate boundary
conditions have been imposed to guarantee the initial bound-
ary value problem is well posed. Predictions of compaction
wave structures demonstrate good agreement with known re-
sults and verify the critical role of compaction in introducing
irreversible energy transfer, which could induce combustion,
into the solid phase.

A challenge which is unmet, however, is to provide a
rigorous granular subscale physical justification for the the
critical constitutive theories required by this and all con-
tinuum mixture models in a fashion similar to that which has
been provided from the kinetic theory of gases. All present
macroscale models of deflagration-to-detonation transition
are validated by tuning model parameters so as to be able to
replicate limited experimental data sets. While this approach
has value in interpolating within the confines of the experi-
mental data base, it may not work well outside the bounds of
the experiments. Consequently, without a more fundamental
theory, the best of ongoing and important national efforts to
improve both computational hardware and algorithms pro-
vide a necessary, but insufficient, step towards a theory
which truly predicts the behavior of energetic granular ma-
terials.

FIG. 7. Results for case F~piston-driven supersonic compaction with inter-
phase drag, and heat transfer!: Solid pressure predictions of the viscous
theory ~solid line! and corresponding inviscid equivalent~dashed line!.

FIG. 8. Results for case F~piston-driven supersonic compaction with inter-
phase drag and heat transfer!: Total irreversibility production rateI and
contributions from major components: interphase compaction, solid momen-
tum diffusion, and solid energy diffusion.
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