Calculation of Slow Invariant Manifolds for Reactive Systems

Ashraf N. Al-Khateeb Joseph M. Powers Samuel Paolucci
Department of Aerospace and Mechanical Engineering
Andrew J. Sommese Jeffery A. Diller
Department of Mathematics

University of Notre Dame, Notre Dame, Indiana
$47^{\text {th }}$ AIAA Aerospace Science Meeting
Orlando, Florida
8 January 2009

Outline

- Introduction
- Slow Invariant Manifold (SIM)
- Method of Construction
- Illustration Using Model Problem
- Application to Hydrogen-Air Reactive System
- Summary

Introduction

Motivation and background

- Detailed kinetics are essential for accurate modeling of real systems.
- Reactive flow systems admit multi-scale solutions.
- Severe stiffness arises in detailed gas-phase kinetics modeling.
- Computational cost for reactive flow simulations increases with the spatio-temporal scales' range, the number of species, and the number of reactions.
- Manifold methods provide a potential for computational saving.

Partial review of manifold construction in reactive systems

- ILDM, CSP, and ICE-PIC are approximations of the system's slow invariant manifold.
- MEPT, RCCE, and similar methods are based on minimizing a thermodynamic potential function.
- Iterative methods may not converge.
- Davis and Skodje, 1999, present a technique to construct the 1-D SIM based on global phase analysis.
- Creta et al. and Giona et al., 2006, extend the technique to slightly higher dimensional reactive systems.

Long-term objective

Create an efficient algorithm that reduces the computational cost for simulating reactive flows based on a reduction in the stiffness and dimension of the composition phase space.

Immediate objective
Construct 1-D SIMs for dynamical system arising from modeling unsteady spatially homogenous closed reactive systems.

Slow Invariant Manifold (SIM)

- The composition phase space for closed spatially homogeneous reactive system:

$$
\frac{d \mathbf{z}}{d t}=\mathbf{f}(\mathbf{z}), \quad \mathbf{z} \in \mathbb{R}^{3}
$$

- An invariant manifold is defined as a subset $\mathcal{S} \subset \mathbb{R}^{N-L-Q}$ if for any solution $\mathbf{z}(t), \mathbf{z}\left(t_{0}\right) \in \mathcal{S}$, implies that for any $t_{f}>t_{0}$, $\mathbf{z}(t) \in \mathcal{S}$ for all $t \in\left[t_{0}, t_{f}\right]$.
- Not all invariant manifolds are attracting.
- SIMs describe the asymptotic structure of the invariant attracting trajectories.
- Attractiveness of a SIM increases as the system's stiffness increases.
- On a SIM, only slow modes are active.
- SIMs can be constructed by identifying all critical points, finite and infinite, and connecting relevant ones via heteroclinic orbits.

Mathematical Model

For a mixture of mass m confined in volume V containing N species composed of L elements that undergo J reversible reactions,

$$
\frac{d n_{i}}{d t}=V \dot{\omega}_{i}, \quad i=1, \ldots, N
$$

where,

$$
\begin{aligned}
\dot{\omega}_{i} & =\sum_{j=1}^{J} \nu_{i j} \mathrm{k}_{j}\left(\prod_{i=1}^{N}\left(\frac{n_{i}}{V}\right)^{\nu_{i j}^{\prime}}-\frac{1}{K_{j}^{c}} \prod_{i=1}^{N}\left(\frac{n_{i}}{V}\right)^{\nu_{i j}^{\prime \prime}}\right), \quad i=1, \ldots, N, \\
\mathrm{k}_{j} & =A_{j} T^{\beta_{j}} \exp \left(\frac{-E_{j}}{\Re T}\right), \quad j=1, \ldots, J, \\
K_{j}^{c} & =\left(\frac{p^{o}}{\Re T}\right)^{\sum_{i=1}^{N} \nu_{i j}} \exp \left(-\frac{\sum_{i=1}^{N} \bar{\mu}_{i}^{o} \nu_{i j}}{\Re T}\right), \quad j=1, \ldots, J .
\end{aligned}
$$

System reduction

- In chemical reactions, the total number of moles of each element is conserved,

$$
\sum_{i=1}^{N} \phi_{l i} n_{i}^{*}=\sum_{i=1}^{N} \phi_{l i} n_{i}, \quad l=1, \ldots, L
$$

- Additional Q constraints can arise in special cases.
- The reactive system is recast as an autonomous dynamical system,

$$
\frac{d z_{i}}{d t}=f_{i}\left(z_{1}, \ldots, z_{N-L-Q}\right), \quad i=1, \ldots, N-L-Q
$$

where,

$$
\mathrm{z}=\mathcal{L}(\mathbf{n}) \mid \mathcal{L}:\left(\mathbb{R}^{N} \rightarrow \mathbb{R}^{N-L-Q}\right)
$$

Method of Construction

- For isothermal reactive systems, reaction speeds depend on combinations of polynomials of \mathbf{z}.
- The set of equilibria of the full reaction network is complex: $\left\{\mathbf{z}^{e} \in \mathbb{C}^{N-L-Q} \mid \mathbf{f}\left(\mathbf{z}^{e}\right)=\mathbf{0}\right\}$.
- The set consists of several different dimensional components and contains finite and infinite equilibria.
- A 1-D SIM has a maximum of two branches that connect the unique physical critical point (a sink) to two equilibria.
- These equilibria are identified by their special dynamical character: their eigenvalue spectrum typically contains only one unstable direction.

Sketch of SIM construction

Projective space

- One-to-one mapping of the composition space, $\mathbb{R}^{N-L-Q} \rightarrow$ \mathbb{R}^{N-L-Q},

$$
\begin{aligned}
Z_{k} & =\frac{1}{z_{k}}, \quad k \in\{1, \ldots, N-L-Q\} \\
Z_{i} & =\frac{z_{i}}{z_{k}}, \quad i \neq k, \quad i=1, \ldots, N-L-Q
\end{aligned}
$$

- This maps equilibria located at infinity into a finite domain.
- To deal with the time singularity, we add the transformation

$$
\frac{d t}{d \tau}=\left(Z_{k}\right)^{\mathrm{d}-1}
$$

where d is the highest polynomial degree of $\mathbf{f}(\mathbf{z})$.

Computational strategy

- We use the Bertini software (based on a homotopy continuation numerical technique) to compute the system's equilibria up to any desired accuracy.
- Thermodynamic data is obtained from Chemkin-II.
- The SIM heteroclinic orbits are obtained by numerical integration of the species evolution equations using a computationally inexpensive scheme.
- Computation time is typically less than 1 minute on a 2.16 GHz Mac Pro machine.

Simple Hydrogen-Oxygen Mechanism

- The kinetic model is adopted from Michael, 1992, Prog. Energy Combust. Sci. 18(4), p. 327.
- The mechanism consists of $J=8$ bimolecular elementary reactions involving $N=6$ species $\left\{\mathrm{H}, \mathrm{H}_{2}, \mathrm{O}, \mathrm{O}_{2}, \mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right\}$ and $L=2$ elements $\{H, O\}$. In addition, since the total number of moles is constant, $Q=1$. Subsequently, $\mathbf{z} \in \mathbb{R}^{3}$.
- The system is spatially homogenous with isothermal and isochoric conditions, $T=1200 \mathrm{~K}, V=10^{3} \mathrm{~cm}^{3}$.
- Selected species are $i=\{1,2,3\}=\left\{H_{2}, O, O_{2}\right\}$.
- Initial number of moles of all species are $n_{i}^{*}=10^{-3} \mathrm{~mol}$.

Reactive system evolution

Dynamical system

$$
\left.\begin{array}{rl}
\frac{d z_{1}}{d t}= & 3.45 \times 10^{4}-1.68 \times 10^{11} z_{1}-3.47 \times 10^{16} z_{1}^{2} \\
& -1.35 \times 10^{10} z_{2}+6.27 \times 10^{16} z_{1} z_{2}+1.40 \times 10^{10} z_{3} \\
& +1.11 \times 10^{17} z_{1} z_{3}-1.35 \times 10^{16} z_{2} z_{3}-2.04 \times 10^{16} z_{3}^{2}, \\
\frac{d z_{2}}{d t}= & 7.69 \times 10^{5}+2.66 \times 10^{11} z_{1}+2.25 \times 10^{16} z_{1}^{2} \\
& -1.29 \times 10^{12} z_{2}-2.47 \times 10^{17} z_{1} z_{2} \\
& +3.91 \times 10^{17} z_{2}^{2}-8.66 \times 10^{11} z_{3}-1.51 \times 10^{17} z_{1} z_{3} \\
& 7.49 \times 10^{17} z_{2} z_{3}+2.46 \times 10^{17} z_{3}^{2} \\
\frac{d z_{3}}{d t}= & 6.84 \times 10^{11} z_{2}+1.37 \times 10^{17} z_{1} z_{2}-2.74 \times 10^{17} z_{2}^{2} \\
& -4.10 \times 10^{17} z_{2} z_{3}-2.24 \times 10^{15} z_{3}\left(10^{-6}-z_{1}+z_{3}\right),
\end{array}\right\} \equiv \mathbf{f}(\mathbf{z}) .
$$

Finite equilibria

$$
\begin{aligned}
R_{1} \equiv\left(z_{1}^{e}, z_{2}^{e}, z_{3}^{e}\right) & =\left(-5.84 \times 10^{-2}, 6.85 \times 10^{-4},-3.52 \times 10^{-4}\right) \mathrm{mol} / \mathrm{g} \\
\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) & =\left(5.93 \times 10^{6} \pm i 5.10 \times 10^{5},-1.18 \times 10^{6}\right) 1 / \mathrm{s} \\
R_{2} \equiv\left(z_{1}^{e}, z_{2}^{e}, z_{3}^{e}\right) & =\left(4.65 \times 10^{-2}, 0,3.49 \times 10^{-2}\right) \mathrm{mol} / \mathrm{g} \\
\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) & =\left(-1.01 \times 10^{7},-3.35 \times 10^{6}, 7.93 \times 10^{5}\right) 1 / \mathrm{s}, \\
R_{3} \equiv\left(z_{1}^{e}, z_{2}^{e}, z_{3}^{e}\right) & =\left(3.73 \times 10^{-3}, 6.32 \times 10^{-3}, 1.61 \times 10^{-2}\right) \mathrm{mol} / \mathrm{g} \\
\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) & =\left(-1.02 \times 10^{7},-1.23 \times 10^{6},-4.30 \times 10^{5}\right) 1 / \mathrm{s} \\
R_{4} \equiv\left(z_{1}^{e}, z_{2}^{e}, z_{3}^{e}\right) & =\left(6.33 \times 10^{-3},-1.86 \times 10^{-3}, 2.49 \times 10^{-2}\right) \mathrm{mol} / \mathrm{g} \\
\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) & =\left(6.88 \times 10^{6}, 3.51 \times 10^{6}, 1.57 \times 10^{6}\right) 1 / \mathrm{s}, \\
R_{5} \equiv\left(z_{1}^{e}, z_{2}^{e}, z_{3}^{e}\right) & =\left(1.28 \times 10^{-3},-5.98 \times 10^{-2}, 6.00 \times 10^{-2}\right) \mathrm{mol} / \mathrm{g} \\
\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) & =\left(5.65 \times 10^{7}, 3.56 \times 10^{6},-1.06 \times 10^{4}\right) 1 / \mathrm{s} \\
R_{6} \equiv\left(z_{1}^{e}, z_{2}^{e}, z_{3}^{e}\right) & =\left(1.43 \times 10^{-3},-7.58 \times 10^{-2}, 7.08 \times 10^{-2}\right) \mathrm{mol} / \mathrm{g} \\
\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) & =\left(7.19 \times 10^{7}, 4.47 \times 10^{6}, 1.05 \times 10^{4}\right) 1 / \mathrm{s}
\end{aligned}
$$

Infinite equilibria

- Employ the projective space mapping with $\mathrm{d}=2$ and $k=2$:

$$
\begin{aligned}
& \frac{d}{d \tau}\left(\begin{array}{c}
t \\
Z_{1} \\
Z_{2} \\
Z_{3}
\end{array}\right)=Z_{2}^{2} \cdot\left(\begin{array}{c}
Z_{2}^{-1} \\
f_{1}\left(Z_{1}, Z_{2}, Z_{3}\right)-Z_{1} f_{2}\left(Z_{1}, Z_{2}, Z_{3}\right) \\
-Z_{2} f_{2}\left(Z_{1}, Z_{2}, Z_{3}\right) \\
f_{3}\left(Z_{1}, Z_{2}, Z_{3}\right)-Z_{3} f_{2}\left(Z_{1}, Z_{2}, Z_{3}\right)
\end{array}\right) \equiv \mathbf{F}(\mathbf{Z}), \\
& I_{1} \equiv\left(Z_{1}^{e}, Z_{2}^{e}, Z_{3}^{e}\right)=(-9.77,0,-4.59) \\
&\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\left(-5.74 \times 10^{12} \pm i 7.83 \times 10^{12}, 6.10 \times 10^{12}\right) \\
& I_{2} \equiv\left(Z_{1}^{e}, Z_{2}^{e}, Z_{3}^{e}\right)=(0.60,0,-0.48) \\
&\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\left(-1.19 \times 10^{13}, 7.35 \times 10^{11}, 6.32 \times 10^{11}\right) \\
& I_{3} \equiv\left(Z_{1}^{e}, Z_{2}^{e}, Z_{3}^{e}\right)=(-0.01,0,-0.67) \\
&\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\left(-1.12 \times 10^{13},-6.50 \times 10^{11}, 7.62 \times 10^{9}\right)
\end{aligned}
$$

The system's 1-D SIM

Detailed Hydrogen-Air Mechanism

- A kinetic model is adopted from Miller et al., 1982, Proc. Combust. Ins. 19, p. 181.
- The mechanism consists of $J=19$ reversible reactions involving $N=9$ species, $L=3$ elements, and $Q=0$, so that $\mathbf{z} \in \mathbb{R}^{6}$.
- Closed and spatially homogenous system with isothermal and isochoric conditions at $T=1500 \mathrm{~K}$, and $p^{*}=10^{7} \mathrm{dyne} / \mathrm{cm}^{2}$.
- Stoichiometric mixture $2 \mathrm{H}_{2}+\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right)$.
- Selected species are

$$
i=\{1,2,3,4,5,6\}=\left\{H_{2}, O_{2}, H, O, O H, H_{2} O\right\} .
$$

Reactive system evolution

System's equilibria

- The system has 284 finite and 42 infinite equilibria.
- The set of finite equilibria contains 90 real and 186 complex $0-D$, one $1-D$, one $2-D$, and six $3-D$ equilibria.
- The set of infinite equilibria contains 18 real and 18 complex $0-D$, and six 1-D equilibria.
- Only 14 critical points have an eigenvalue spectrum that contains only one unstable direction.
- Inside the physical domain there is a unique equilibrium:

$$
\begin{aligned}
& R_{19}=\left(1.98 \times 10^{-6}, 9.00 \times 10^{-7}, 1.72 \times 10^{-9}\right. \\
& \left.\quad 2.67 \times 10^{-10}, 3.66 \times 10^{-7}, 1.44 \times 10^{-2}\right) \mathrm{mol} / \mathrm{g}
\end{aligned}
$$

3-D projection of the system's SIM

Summary and Conclusions

- Once the difficult task of identifying all equilbria is complete, constructing the actual SIM is computationally efficient and algorithmically easy; thus, there is no need to identify it only approximately.
- Identifying all critical points, finite and infinite, plays a major role in the construction of the SIM.
- The construction procedure can be systematically extended to construct higher-dimensional SIMs.

Simple Reactive System

$$
\begin{array}{rll}
A+A & \rightleftharpoons B & k^{f}=1, k^{b}=10^{-5} \\
B & \rightleftharpoons C & k^{f}=10, k^{b}=10^{-5}
\end{array}
$$

- A reactive system adopted from D. Lebiedz, 2004, J. Chem. Phys. 120 (15), p. 6890.
- Model consists of $J=2$ reversible reactions involving $N=3$ species $\left\{c_{A}, c_{B}, c_{C}\right\}$
- Conservation of mass, $c_{A}+c_{B}+c_{C}=1$, so that $\mathbf{z} \in \mathbb{R}^{2}$.
- Major species are $i=\{1,2\}=\{A, B\}$,

The system's global phase space

The projective space.

Projection from Poincaré's sphere.

The 1-D SIM vs. MEPT

Idealized Hydrogen-Oxygen

- Kinetic model adopted from Ren et al. ${ }^{\text {a }}$
- Model consists of $J=6$ reversible reactions involving $N=$ 6 species $\left\{\mathrm{H}_{2}, \mathrm{O}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}, \mathrm{OH}, \mathrm{N}_{2}\right\}$ and $L=3$ elements $\{H, O, N\}$, with $Q=0$, so that $\mathbf{z} \in \mathbb{R}^{3}$.
- Spatially homogenous with isothermal and isobaric conditions with $T=3000 \mathrm{~K}, p_{o}=1 \mathrm{~atm}$.
- Major species are $i=\{1,2,3\}=\left\{H_{2}, O, H_{2} O\right\}$,
- Initial conditions satisfying the element conservation constraints are identical to those presented by Ren et al.

[^0]The system's 1-D SIM

The system's 1-D SIM

[^0]: ${ }^{\text {a }}$ Z. Ren, S. Pope, A. Vladimirsky, J. Guckenheimer, 2006, J. Chem. Phys. 124, 114111.

