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Motivation and Background

Detailed kinetics are essential for
accurate modeling of reactive systems

Reactive systems induce a wide range
of spatial and temporal scales, and
subsequently severe stiffness occurs

The spatial and temporal scales are
coupled by the underlying physics of
the problem

Verification of a simulation’s accuracy
requires resolution of all scales
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“Research needs for future internal
combustion engines,” Physics Today, Nov.

2008, pp. 47–52.

The computational cost for reactive flow simulations increases
with the range of scales present, the number of reactions and
species, and the size of the spatial domain.

Manifold methods provide a potential for computational savings.
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Motivation and Background

Manifold methods are typically
spatially homogeneous, yet most
engineering applications require
spatial variation.

Diffusion is often modeled with a
correction to the spatially
homogeneous methods in the long
wavelength limit.
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However, for thin regions of flames, reaction is fast relative to
diffusion, and the short wavelength limit is more appropriate.

Al-Khateeb, et al. 2009, Journal of Chemical Physics, provides
details on construction of spatially homogeneous SIMs.
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Assumptions

Model a system of N species reacting in J reactions with diffusion in
one spatial dimension

Ideal mixture

Ideal gases

Isochoric

Isothermal

Negligible advection

Single constant mass diffusivity
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Balance Laws

Evolution of species

ρ
∂Yi

∂t
+

∂jm
i

∂x
= Miω̇i(Yn, T ), for i, n ∈ [1, N ]

Boundary conditions

∂Yi

∂x

∣
∣
∣
∣
x=0

=
∂Yi

∂x

∣
∣
∣
∣
x=ℓ

= 0, for i ∈ [1, N ]

Initial conditions

Yi(x, t = 0) = Ỹi(x), for i ∈ [1, N ]
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Constitutive Equations

Fick’s law of diffusion

jm
i = −ρD

∂Yi

∂x
, for i ∈ [1, N ]

Ideal gas equation of state

P = ρR̄T

N∑

i=1

Yi

Mi
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Constitutive Equations

Molar production rate

ω̇i =

J∑

j=1

νijrj , for i ∈ [1, N ]

rj = kj

(
N∏

i=1

(
ρYi

Mi

)ν′

ij

−
1

Kc
j

N∏

i=1

(
ρYi

Mi

)ν′′

ij

)

, for j ∈ [1, J ]

kj = ajT
βj exp

(
−Ēj

R̄T

)

, for j ∈ [1, J ]

Kc
j = exp

(

−
∑N

i=1 ḡo
i νij

R̄T

)

, for j ∈ [1, J ]
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Generalized Shvab-Zel’dovich

Certain linear combinations of molar production rate sum to zero,

∂

∂t

(
N∑

i=1

ϕli

Yi

Mi

)

= D
∂2

∂x2

(
N∑

i=1

ϕli

Yi

Mi

)

, for l ∈ [1, L]

Some evolution PDEs can be integrated to yield algebraic
constraints if these quantities are

Initially spatially homogeneous, and
Not perturbed at the boundaries,

N∑

i=1

ϕli

Yi

Mi

=

N∑

i=1

ϕli

Ỹi

Mi

, for l ∈ [1, L]
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Reduced Variables

The L algebraic constraints can be used to reduce N PDEs to
N − L PDEs

Transform to reduced variables: specific mole concentrations

zi =
Yi

Mi

, for i ∈ [1, N − L]

Evolution of remaining L species are coupled to these reduced
variables by the algebraic constraints

∂zi

∂t
=

ω̇i(zn, T )

ρ
+ D

∂2zi

∂x2
, for i, n ∈ [1, N − L]
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Galerkin Reduction to ODEs

Assume a spectral decomposition

zi(x, t) =

∞∑

m=0

zi,m(t)φm(x), for i ∈ [1, N − L]

Orthogonal basis functions, φm(x), are eigenfunctions of diffusive
operator that match boundary conditions

∂2φm

∂x2
= −µ2

mφm

Complete orthogonal basis,

φm(x) = cos
(mπx

ℓ

)

, for m ∈ [0,∞)
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Galerkin Reduction to ODEs

∂

∂t

(
∞∑

n=0

zi,nφn

)

=
ω̇i

(
∑

∞

n̂=0 zî,n̂φn̂

)

ρ
+ D

∂2

∂x2

(
∞∑

n=0

zi,nφn

)

Finite system of ODEs for amplitude evolution are recovered by
taking the inner product with φm, and truncated at M

dzi,m

dt
=

〈

φm, ω̇i

(
∑

∞

n̂=0 z
î,n̂

φn̂

)

/ρ
〉

〈φm, φm〉
︸ ︷︷ ︸

Ω̇i,m

−Dµ2
mzi,m,

for i ∈ [1, N − L],
and m ∈ [0,M ]

Projection modifies reaction eigenvalues, λi,m = λ0,m −Dµ2
m

Diffusion time scales defined as τD,m ≡
1

µ2
mD
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Example Problem

Oxygen dissociation reaction:

O2 + M ⇌ O + O + M

N = 2 species

J = 1 reaction

L = 1 constraint

N − L = 1 reduced variable
z = YO

MO

Isochoric,
ρ = 1.6 × 10−4 g/cm2

Isothermal,
T = 5000 K
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Spatially Homogeneous System

For domain lengths small enough that diffusion is much faster than
reaction

Galerkin truncation at M = 0 is appropriate

Spatially homogeneous system is recovered

dz

dt
=

(

249.8
mol

g s

)

−
(

7.473 × 104 g

mol s

)

z2 −

(

1.724 × 105 g2

mol2 s

)

z3

︸ ︷︷ ︸

Ω̇
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SIM Construction

Identify equilibria

Characterize equilibria by
eigenvalues of their Jacobian
matrix (slopes)

Jij =
∂Ω̇i

∂zj

Reaction time scale is the
reciprocal of the eigenvalue

τR = |λ|−1

SIM is a heteroclinic orbit
from R2 to R1
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Spatially Homogeneous Evolution

Use z to reconstruct mass
fractions of O and O2

Only one time scale present
τR ∼ 10−4 s

Time scale corresponds to
reciprocal of equilibrium
eigenvalue
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Reaction-Diffusion System

For larger domain lengths where diffusion is not much faster than
reaction

Additional terms in Galerkin projection are retained

We examine the truncation at M = 1

dz0

dt
=

(

249.8
mol

g s

)

−
(

7.473 × 104 g

mol s

)(

z2
0 +

z2
1

2

)

−

(

1.724 × 105 g2

mol2 s

)(

z3
0 +

3z0z
2
1

2

)

dz1

dt
= −

(

7.473 × 104 g

mol s

)

2z0z1

−

(

1.724 × 105 g2

mol2 s

)(

3z2
0z1 +

3z3
1

4

)

−
π2D

ℓ2
z1
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Local Timescales

Time-scale coupling between
reaction and diffusion

1

τC
=

1

τR
+

1

τD

R3 is a sink; diffusion keeps it
stable 0.02 0.05 0.1 0.2
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R2 is a source, diffusion changes its stability

Critical wavelength, ℓc, where stable diffusion time-scale is equal
to unstable reaction time-scale
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Poincaré Sphere

Map variables into a space where infinity is on the unit circle

We can see the dynamics of the entire system

What changes occur in the SIM as we very ℓ?

η0 =
z0

√
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Poincaré Sphere

Map variables into a space where infinity is on the unit circle
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Poincaré Sphere

Map variables into a space where infinity is on the unit circle

We can see the dynamics of the entire system

What changes occur in the SIM as we very ℓ?
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Bifurcation

The change is stability of the combined Fourier mode at the
critical wavelength, ℓc, is indicative of a bifurcation

Bold branches are saddles;
dashed branch is source

This bifurcation changes the
starting point of the SIM

Subsequently, the slow
dynamics of the entire system
are modified
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Reaction-Diffusion Evolution

Use z0 and z1 to reconstruct
spatial distributions of mass
fractions of O and O2

For ℓ = 0.0334 cm < ℓc,
diffusion is faster than reaction

Difficult to segregate into
reaction and diffusion
contributions
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Reaction-Diffusion Evolution

Project spatial evolution of
mass fractions onto Y − t plane
to see diffusion time scale.

Bold line is spatially
homogeneous SIM

Two time scales present:

τR ∼ 10−4 s

τD =
ℓ2

π2D
∼ 10−5 s

Slow dynamics change from
reaction to diffusion at ℓc
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Reaction-Diffusion Evolution

Project spatial evolution of
mass fractions onto Y − t plane
to see diffusion time scale.

Bold line is spatially
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Reaction-Diffusion Evolution

Project spatial evolution of
mass fractions onto Y − t plane
to see diffusion time scale.

Bold line is spatially
homogeneous SIM

Two time scales present:

τR ∼ 10−4 s

τD =
ℓ2

π2D
∼ 10−3 s

Slow dynamics change from
reaction to diffusion at ℓc

10
-7

10
-5 0.001 0.1

0.10

1.00

0.50

0.20

0.30

0.15

0.70

YO2

YO

t (s)

Y

Evolution of Species

ℓ = 0.334 cm

J. Powers (Notre Dame) Bifurcations in SIMs January 10, 2012 22 / 24



Conclusions

The SIM isolates the slowest dynamics, making it ideal for a
reduction technique.

For sufficiently short length scales, diffusion time scales are faster
than reaction time scales, and the system dynamics are dominated
by reaction.

When lengths are near or above a critical length where the
diffusion time scale is on the same order as reaction time scales,
diffusion will play a more important role.

In the limit of large length scales, a truncation at M = 1 is
insufficient, and more terms are required to fully resolve the
dynamics.
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