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Abstract

A novel Karhunen-Loève (KL) Galerkin model for
the supersonic, inviscid flow of a calorically perfect
ideal gas about an axisymmetric, blunt body em-
ploying shock fitting is developed. The motivation
for developing the KL Galerkin model is the need
for an accurate and computationally efficient model
for use in the optimal design of hypersonic vehicles.
In constructing a KL Galerkin model, a set of flow
field solutions representative of the design space are
required. For this, a global polynomial pseudospec-
tral method for the generalized coordinate, noncon-
servative form of the Euler equations is implemented.
The variables in the equations are collocated via La-
grange interpolating polynomials defined at the ze-
roes of the Chebyshev polynomials, i.e. Chebyshev-
Gauss-Lobatto nodes. Code verification, validation
and grid convergence results are shown for the pseu-
dospectral code, and an optimal geometry is iden-
tified from a single degree of freedom family of ge-
ometries. In conclusion the KL modes derived from
pseudospectral solutions at Mach 3.5 from a uniform
sampling of the design space are presented. This
will be used in forthcoming work to develop a KL
Galerkin model for the blunt body optimization.

Introduction

Computer-assisted multi-disciplinary design and
optimization in the aeronautical engineering commu-
nity is a promising area of current research. Un-
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til recently, the optimization of air vehicles has re-
lied almost exclusively on low fidelity aerodynamic
models due to the need for rapid evaluation of aero-
dynamic design variables such as lift, drag, or heat
transfer. Unfortunately, the use of low fidelity mod-
els can lead to unacceptable uncertainties in the final
optimal design, especially where design safety mar-
gins are tight 1. In addition, low fidelity models of-
ten do not provide the complete flow field information
such as pressure, temperature, and velocity distribu-
tions, acoustic signature, shock wave location, etc.
which the designer may be require. For these rea-
sons, high fidelity models such as the Euler or Navier
Stokes equations are required. For most problems,
these model equations require a discrete solution.

A major difficulty in employing discrete solvers in
a multi-disciplinary design process is the large central
processing unit (CPU) requirements of these codes.
It is not uncommon for discrete solutions to three
dimensional flows around complex aircraft configura-
tions to require on the order of ten or more hours of
CPU time per steady state solution 1 and these solu-
tions are likely not fully resolved. Complete resolu-
tion of complex flow structures could require consid-
erably more CPU time. A design cycle incorporating
multiple disciplines, e.g. aerodynamics, structures,
controls, may easily have hundreds or even thou-
sands of design variables. While interdisciplinary
coordination schemes using varying fidelity models 2

help to alleviate the CPU cost associated with inter-
disciplinary dependence, the aerodynamics discipline
alone could still involve a hundred or more design
variables. For this reason, current gradient-based
numerical optimizers can be prohibitively expensive
when used directly with discrete solvers of high fi-
delity models and approximation becomes necessary.

Review

One popular approximation technique for the de-
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sign of complex, multi-variable problems are response
surface approximations 3. Response surfaces typi-
cally approximate quantities such as the lift and drag
of the vehicle as a function of the design variables,
e.g. geometric parameters in terms of simple func-
tional forms. An advantage of the response surface
method is that both objective function and gradi-
ent evaluation are rapid, on the order of a second
or less. Furthermore, polynomial approximation of
the objective function ensures that the gradients are
continuous. This increases the efficiency of the nu-
merical optimizer in the sense that fewer iterations
may be needed to reach an optimum. Two disad-
vantages of the response surface method are a poten-
tial lack of accuracy in capturing the system response
by a simple function and also the absence of detailed
information about the flow field. Flow field informa-
tion may be needed for design of a thermal protection
system, for coupling with a structural code in static
and aeroelastic design, for inverse vehicle design in
sonic boom mitigation, acoustic or radar signature
reduction, or for shock wave placement for efficient
supersonic/hypersonic propulsion.

A recently developed method which does yield de-
tailed flow field information by solution of the gov-
erning equations such as the Euler or Navier-Stokes
equations is the adjoint method 4−6 taken from con-
trol theory 7. This method is computationally effi-
cient since through the addition of an adjoint equa-
tion the governing equations need only be solved once
for each iteration of the optimizer regardless of the
number of design variables. The adjoint equation
is of similar complexity as the governing equations,
so each iteration is equivalent in computational cost
to two flow field solutions. Although still in de-
velopment, this method appears to be promising as
an accurate and efficient means of multidisciplinary,
multi-variable optimal design. Nevertheless, the ad-
joint method has the disadvantage of requiring that
a unique adjoint equation be derived and solved for
each new design objective function that may be for-
mulated.

Another approximation technique is the Karhunen-
Loève (KL) Galerkin method. This technique is fun-
damentally a spectral Galerkin method where the ba-
sis functions are eigenfunctions of the averaged auto-
correlation of previous numerical flow-field solutions.
It can be shown that the KL decomposition yields
an optimal set of orthonormal basis functions in the
sense that the fewest number of functions of all pos-
sible bases are required for a given level of accuracy
in reconstructing the original set of data. Employing
the KL basis functions as the bases of a Galerkin 8,
orthogonal collocation 9 or least-squares 10 spectral

method, reduced dimension models have been devel-
oped which yield accurate solutions to partial differ-
ential equations for a computational cost several or-
ders of magnitude lower than discrete solvers. The
KL method has advantages over response surfaces in
that it generates detailed flow field information and is
potentially more accurate. It has advantages over the
adjoint method in that the KL model is independent
of the design problem formulation. This flexibility
in specifying the design problem is an important at-
tribute for an optimal design code 11.

In the present study, a novel KL Galerkin model
for the supersonic flow of an inviscid, calorically per-
fect, ideal gas about an axisymmetric, blunt body us-
ing the primitive variable formulation of the unsteady
Euler equations in generalized coordinate form is de-
veloped. The shock is fitted in order to maintain high
accuracy of the model and to avoid the well known
Gibbs’ phenomena which occurs when trying to cap-
ture strong discontinuities using a spectral method 12.
The novelty of the method lies in its use in a com-
pressible flow environment with a moving boundary.

Rusanov 13 as well as Hayes and Probstein 14 have
given a thorough review of early contributions to solu-
tions of the supersonic blunt body problem of which
a few will be mentioned. Two methodologies for
solving the supersonic flow about a blunt body are
the direct and inverse methods. The direct method
specifies the body shape and then calculates the shock
shape and flow field, while the inverse method spec-
ifies the shock shape and calculates the body shape
which would support that shock shape. At first,
studies concerning the inverse problem were founded
on series expansion of the governing equations in the
vicinity of the shock wave 15. Later, numerical solu-
tions to the inverse, supersonic blunt body problem
were performed by Garabedian and Lieberstein 16

and Van Dyke 17. Evans and Harlow 18 were the
first to generate a numerical solution to the direct
problem by integrating the unsteady Euler equations
to a relaxed steady state solution using a particle in
cell method. Moretti and Abbett 19 used finite dif-
ferences and fitting of the shock to generate accu-
rate solutions of the Euler equations about a blunt
body. Shock-fitted pseudospectral solutions to the
Euler equations were first performed by Hussaini, et
al. 20 and more recently by Kopriva 21.

Outline of KL Method

The first step in generating a KL Galerkin model
is generating a set of numerical solutions to the gov-
erning equations for a range of design variables. A
pseudospectral method is employed for this step. Al-
though there does not appear to be consensus in
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the literature for the definition of pseudospectral, we
will follow Fornberg 22 and consider a pseudospec-
tral method to be a collocation type of method of
weighted residuals, i.e. the governing equations are
satisfied exactly at collocation points, with the flow
quantities represented in terms of global Lagrange
interpolating polynomials defined at the collocation
points. The spatial derivatives of the flow quantities
are then calculated by differentiating the Lagrange in-
terpolating polynomials. Efficient algorithms for cal-
culating derivatives of Lagrange interpolating polyno-
mials on arbitrary grids can be found in Fornberg 22.
The pseudospectral method has two advantages over
finite difference or finite volume methods which make
it a good candidate for use with the KL method: 1)
it is more accurate and 2) integration can be per-
formed by Gaussian quadrature. Accuracy is impor-
tant since the magnitude of the KL modes decreases
rapidly with increasing mode number; two or three
orders of magnitude difference are not uncommon be-
tween one mode and the next. More modes can be re-
liably calculated from a pseudospectral method than
from finite difference or finite volume methods. In
addition, since the solution is known in terms of La-
grange interpolating polynomials, the KL modes can
also be expressed in terms of Lagrange polynomials
and integration of the KL modes necessary for the
Galerkin method can be performed exactly by means
of Gaussian quadrature.

The second step in the development of the KL
model is to perform a KL decomposition on the char-
acteristic solution set generated by the pseudospec-
tral solver. The KL decomposition, also called
Proper Orthogonal Decomposition (POD), appears
to have been developed independently in the 1940’s
by several researchers including Karhunen 23 and
Loève 24. Lumley 25 proposed the KL decomposi-
tion as a rational procedure for the extraction of co-
herent structures in a turbulent flow field. The KL
decomposition is also closely related to the singular
value decomposition and principal component analy-
sis used in data compression and image processing 27.
As originally introduced by Lumley, the KL decom-
position was impractical for more than one spatial
dimension. Sirovich 26 introduced the method of
snapshots which permitted the KL decomposition to
be performed for fully three dimensional flows.

The final step in the development of the KL model
is to project the governing equations onto the set of
KL modes via a Galerkin method where the boundary
conditions are taken into account by integration by
parts. Unlike the pseudospectral method, methods
such as the spectral Galerkin method represent solu-
tions to the governing equations in terms of a sum of

orthogonal functions multiplied by coefficients. The
coefficients are calculated by setting the integrated
error in the approximation to zero with respect to cer-
tain weight functions. The choice of the weight func-
tions determines the type of spectral method. For
the spectral Galerkin method, the weight functions
are the same orthogonal functions used in approx-
imating the solution. The earliest unified math-
ematical assessment of the theory of spectral and
pseudospectral methods was Gottlieb and Orszag 28.
Significant advances in spectral and pseudospectral
methods occurred in the late 1970’s and early 1980’s
and are well documented by Canuto et al. 29, with
particular application to fluid dynamics. For a more
recent review of the application of spectral and pseu-
dospectral methods to hyperbolic problems see Got-
tlieb and Hesthaven 30.

The KL decomposition has been used in conjunc-
tion with the Galerkin method to develop approxi-
mate models of turbulent fluid mechanical phenom-
ena, e.g. Aubry et al. 31, and Sirovich and Park 32,33.
The first use of the KL method for a control ap-
plication was by Chen and Chang 34, where it was
used to control spatiotemporal patterns on a catalytic
wafer using experimentally determined KL modes.
Independently, Park and Cho 35 developed a KL
Galerkin model of the nonlinear heat equation for
control or parameter estimation, more recently the
KL Galerkin method has been used to solve the
Navier-Stokes equations for flow control 36−38 and in-
verse convection 39−43 and radiation 44 problems. In
order to avoid the difficulty of employing the Galerkin
method for nonlinear problems, Theodoropulou et
al. 9 successfully implemented an orthogonal colloca-
tion method with numerical KL modes for the opti-
mization of rapid thermal chemical vapor deposition
systems in one dimension. LeGresley and Alonso 10

used a KL least-squares model of the Euler equations
in a finite volume formulation to optimize the pres-
sure distribution around an airfoil in subsonic flow.

Outline of Paper

In the remainder of this paper, for a model par-
tial differential equation: 1) the Lagrange interpo-
lating polynomial formulation of the pseudospectral
method, 2) the KL decomposition, and 3) the KL
Galerkin method are presented. Following this, the
Euler equations, boundary conditions, geometry of
the blunt body, and the single variable blunt body
optimization problem are described. Code verifica-
tion has been performed by comparison to a Taylor-
Maccoll solution, but these results will not be pre-
sented here. For the blunt body problem, grid con-
vergence tests are presented as well as code validation
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results using surface pressure distribution and shock
shape. Derivation and implementation of the KL
Galerkin model is in progress; results assessing the
accuracy and efficiency of the method will be pre-
sented in a later paper.

KL Design Optimization Strategy

Step 1: Pseudospectral Solver

The first step in developing a KL model for use
in optimization is to generate a set of K character-
istic solutions which span the design space of inter-
est in the problem. In the current study, the de-
sign space consists of a single geometric variable, b,
which parameterizes the problem. The following
time dependent partial differential equation in two
space dimensions, x and y, gives the solution vector
field U(x, y, t; b) of dimension n,

∂U
∂t

+ A
∂U
∂x

+ B
∂U
∂y

+ S = 0, (1)

where A and B are flux Jacobian matrices in the x
and y directions respectively, and S is a source term.
Although Eq. (1) is time dependent, for the optimal
design problem only steady state solutions for various
values of b are considered. Solving the time depen-
dent equation to a relaxed steady state is a conve-
nient numerical solution technique. The solution to
Eq. (1), U(x, y, t; b), can be written in terms of a dou-
ble Lagrange global interpolating polynomial defined
on the mesh xi, i = 0, ..., N, yj , j = 0, ..., M , i.e.

U(x, y, t; b) =
N∑

i=0

M∑
j=0

U(xi, yj , t; b)L
(N)
i (x)L(M)

j (y).

(2)
The Lagrange interpolating polynomial in the x di-
rection of order N is for example

L
(N)
i (x) =

N∏
k=0,k 6=i

(x − xk)

N∏
k=0,k 6=i

(xi − xk)
, i = 0, ..., N, (3)

and a similar expansion defines L
(M)
j (y). It is easily

shown that the Lagrange interpolating polynomial,
L

(N)
i (x) has the value of unity at x = xi and zero at

the other collocation points, i.e.

L
(N)
i (xp) = δip =

{
0 if i 6= p,
1 if i = p.

; (4)

likewise, L
(M)
j (y) is equal to unity at y = yj and zero

at the other collocation points.

Derivatives of U(x, y, t; b) are evaluated by differ-
entiating Eq. (2). Evaluating these derivatives on
the grid, (xp, yq) , chosen to be the same grid as
that used to define the interpolating polynomial, i.e.
(xp, yq) ≡ (xi, yj), and making use of Eq. (4) yields

∂U
∂x

∣∣∣∣
(xp,yq)

=
N∑

i=0

U(xi, yq, t; b)
dLi

dx
(xp), (5)

∂U
∂y

∣∣∣∣
(xp,yq)

=
M∑

j=0

U(xp, yj , t; b)
dLj

dy
(yq).

The terms dLi

dx (xp) and dLj

dy (yq) in Eq. (5) can be
evaluated efficiently for an arbitrary grid using an al-
gorithm developed by Fornberg 22. The points which
both uniquely define the Lagrange interpolating poly-
nomials and at which derivatives are evaluated are
the zeroes of Chebyshev polynomials or simply, the
Gauss-Lobatto Chebyshev nodes, i.e.

xi =
1
2

[
1 − cos

( π

N
i
)]

, i = 0, ..., N, (6)

yj =
1
2

[
1 − cos

( π

M
j
)]

, j = 0, ..., M.

The Gauss-Lobatto Chebyshev grid is used because
global Lagrange polynomial approximations of gen-
eral nonperiodic functions defined on this grid were
found to yield a more uniform and overall lower error
than a uniform grid. Substituting the approxima-
tions for the derivatives of U(x, y, t; b) from Eq. (5)
into Eq. (1) results in a system of ordinary differ-
ential equations (ODEs) in time at the grid points
(xp, yq) , p = 0, ..., N, q = 0, ..., M. This system of
ODEs, i.e.

dU
dt

∣∣∣∣
(xp,yq)

= − A (U)|(xp,yq)

N∑
i=0

U(xi, yq, t; b)
dLi

dx
(xp)

− B (U)|(xp,yq)

M∑
j=0

U(xp, yj, t)
dLj

dy
(yq) − S (U)|(xp,yq) ,

p = 0, ..., N, q = 0, ..., M, (7)

are integrated in time from an arbitrary initial state
subject to boundary conditions using a fourth or-
der Runge Kutta technique until a converged steady
state is achieved. Equation (7) is solved to steady
state for K distinct values of the geometric variable,
bm, m = 1, ..., K, yielding K characteristic solutions,
Um (x, y) , m = 1, ..., K.

Step 2: Karhunen-Loève Theory

The second step in the development of the KL
model is to perform a KL decomposition on the set of
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characteristic solutions, Um (x, y) , m = 1, ..., K, gen-
erated in the previous section. We will derive the KL
decomposition using a more detailed and transparent
process than often is given in the literature.

The motivation behind the KL decomposition is
the desire to obtain a series of L orthonormalized
functions, ϕ̂i (x) such that∫

Ω

ϕ̂i (x) ϕ̂j (x) dx = δij ,
i = 1, ..., L,

L ≤ K,
(8)

where x ∈ Ω, and upon approximating the members
of an ensemble of functions, um(x), m = 1, ..., K, in
a finite expansion of the ϕ̂i(x), the ensemble average
mean-square error, ε2, is a minimum. Here x is a
spatial variable of dimension two for this problem and
um(x) is a component of the steady state vector field
Um (x, y). Mathematically, the coefficients ami and
the set of functions ϕ̂i (x) are sought which minimize
the following expression:

ε2 =
1

K
∫
Ω dx

K∑
m=1

∫
Ω

[
um (x) −

L∑
i=0

amiϕ̂i (x)

]2

dx.

(9)
It is here shown that choosing the coefficients, ami,
to be

ami =
∫

Ω

um (x) ϕ̂i (x) dx,
m = 1, ..., K

i = 1, ..., L
, (10)

will minimize ε2 in Eq. (9) . For any other choice of
coefficients bmi, ε2 is

ε2 =
1

K
∫
Ω

dx

K∑
m=1

∫
Ω

[
um (x) −

L∑
i=0

bmiϕ̂i (x)

]2

dx.

(11)
Substituting the following expression for the bmi,

L∑
i=0

bmi =
L∑

i=0

ami −
L∑

i=0

(ami − bmi) , (12)

into Eq. (11) and making use of Eqs. (8) and (10) ,
ε2 in Eq. (11) is after simplification,

ε2 =
1

K
∫
Ω

dx

K∑
m=1

∫
Ω

[
um (x) −

L∑
i=0

amiϕ̂i (x)

]2

dx

(13)

+
L∑

i=0

(ami − bmi)
2

)
,

from which it is clear that choosing bmi = ami mini-
mizes ε2.

Having found the optimal choice of ami from
Eq. (10) , the set of functions, ϕ̂i(x), i = 0, ..., L,
which minimize ε2 are found next. Substituting
Eq. (10) into Eq. (9) and imposing the restriction
of orthonormality from Eq. (8) , Eq. (9) becomes:

ε2 =
1

K
∫
Ω

dx

K∑
m=1

(∫
Ω

[um (x)]2 dx (14)

−
L∑

i=0

∫
Ω

um (x) ϕ̂i (x) dx
∫

Ω

um (x′) ϕ̂i(x′)dx′
)

.

Observing that the terms
∫
Ω [um (x)]2 dx and

∫
Ω dx in

Eq. (14) are constants, it is evident that minimizing
ε2 is equivalent to maximizing:∫

Ω

∫
Ω

R(x,x′)
L∑

i=0

ϕ̂i(x)ϕ̂i(x′)dxdx′, (15)

where

R(x,x′) =
1
K

K∑
m=1

um(x)um(x′). (16)

subject to Eq. (8) .
Next the maximization of Eq. (15) from calcu-

lus of variations is considered. Suppose that ϕi(x),
i = 1, ..., L, are the functions which maximize the ex-
pression in Eq. (15) . Then any functions, ϕ̂i (x) can
be written as ϕ̂i (x) = ϕi(x) + εϕ′

i(x), where ε is a
constant and ϕ′

i(x) is an arbitrary function. Sub-
stituting ϕ̂i (x) = ϕi(x) + εϕ′

i(x) into Eq. (15) , the
function to be maximized f (ε) , becomes

f (ε) =
∫

Ω

∫
Ω

R(x,x′)
L∑

i=0

[ϕi(x) + εϕ′
i(x)] (17)

[ϕi(x′) + εϕ′
i(x

′)] dxdx′,

subject to Eq. (8) . In order to solve this constrained
maximization problem, the method of Lagrange mul-
tipliers is employed and a maximum for the following
modified function f∗ (ε) is sought:

f∗ (ε) =
∫

Ω

∫
Ω

R(x,x′)
L∑

i=0

[ϕi(x) + εϕ′
i(x)] (18)

[ϕi(x′) + εϕ′
i(x

′)] dxdx′

−
L∑

i=0

λi

(∫
Ω

[ϕi(x′) + εϕ′
i(x

′)]

[ϕi(x′) + εϕ′
i(x

′)] dx′ − 1) ,

where the λi are the Lagrange multipliers. Now for
a maximum, we it is required that d

dεf
∗ (ε) = 0 at
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ε = 0. Differentiating Eq. (18) with respect to ε and
evaluating at ε = 0 yields the following equation after
simplifying

d

dε
f∗ (ε)

∣∣∣∣
ε=0

=
∫

Ω

∫
Ω

R(x,x′)
L∑

i=0

[ϕi(x)ϕ′
i(x

′)

(19)

+ϕ′
i(x)ϕi(x′)dxdx′]

− 2
L∑

i=0

λi

∫
Ω

ϕi(x′)ϕ′
i(x

′)dx′

= 0.

Since, by definition, R(x,x′) = R(x′,x) in Eq. (16)
and since x and x′ are dummy variables, it is observed
that the two terms involving R(x,x′) in Eq. (19) are
equivalent, so that Eq. (19) can be written as

L∑
i=0

∫
Ω

[∫
Ω

R(x,x′)ϕi(x)dx − λiϕi(x′)
]

ϕ′
i(x

′)dx′ = 0.

(20)
From Eq. (20) it is observed that the quantity in
brackets must be equal to zero since the ϕ′

i(x
′) are

arbitrary, in general non-zero, functions, i.e.∫
Ω

R(x,x′)ϕi(x)dx = λiϕi(x′), i = 0, ..., L. (21)

It is recognized that Eq. (21) is simply the definition
for the eigensystem for the linear integral operator∫

Ω

R(x,x′) (·) dx, (22)

so that the finite series of orthonormal functions
which minimize Eq. (9) are the first L eigenfunctions
of this operator. Since the operator in Eq. (22) is
symmetric and positive definite, the eigenfunctions,
ϕi(x), are orthogonal, and the eigenvalues, λi, are all
real and positive.

Next the computation of the eigensystem in
Eq. (21) by the method of snapshots as proposed by
Sirovich 26 is considered. Since the operator kernel
R(x,x′) is composed of K linearly independent solu-
tions, um(x), m = 1, ..., K, the eigenfunctions, ϕi(x)
can be expressed as a linear combination of these so-
lutions, i.e.

ϕi(x) =
K∑

j=1

αijuj(x), i = 1, ..., K. (23)

Substituting Eq. (23) into Eq. (21) and making use

of Eq. (16) yields

∫
Ω

1
K

K∑
m=1

um(x)um(x′)
K∑

j=1

αijuj(x)dx (24)

= λi

K∑
j=1

αijuj(x′), i = 1, ..., K,

or after simplifying

K∑
m=1

αimCjm = λiαij ,
i = 1, ..., K,

j = 1, ..., K,
(25)

where

Cjm =
1
K

∫
Ω

uj(x)um(x)dx. (26)

Solving the discrete eigenvalue problem for the αij

from Eq. (25) , the eigenvectors of Eq. (22) are then
reconstructed via Eq. (23). This procedure will be
repeated for each of the n components of the steady
state solution vector U(x, y; b).

Step 3: Galerkin Projection

The final step in developing a KL Galerkin approx-
imation to a partial differential equation is a projec-
tion of the differential equation onto the KL modes
according to the Galerkin method. The same time
dependent partial differential equation as in Eq. (1)
with boundary conditions on the domain, x ∈ [0, 1]
and y ∈ [0, 1] is taken. The solution to each of the n
components of U(x, y, t), uk (x, y, t) , k = 1, ..., n, is
approximated by a series expansion in their respec-
tive KL modes, ϕk

j (x, y) , k = 1, ..., n, j = 1, ..., L,
i.e.


u1 (x, y, t)
u2 (x, y, t)

...
un (x, y, t)

 ≈


∑L

j=1 a1
j (t)ϕ1

j (x, y)∑L
j=1 a2

j (t)ϕ2
j (x, y)

...∑L
j=1 an

j (t)ϕn
j (x, y)

 , (27)

where superscripts distinguish the vector compo-
nents. The right hand side of Eq. (27) is defined
as the approximate solution vector, Ua(x, y, t), and
its n components are uk

a (x, y, t) , k = 1, ..., n. The
coefficients ak

j (t) , k = 1, ..., n, j = 1, ..., L, are de-
termined as follows. Substituting the approximation
Ua(x, y, t) a residual error for U(x, y, t) in Eq. (1) ,
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results.

e (x, y, t) =


e1 (x, y, t)
e2 (x, y, t)

...
en (x, y, t)

 =
∂

∂t


u1

a (x, y, t)
u2

a (x, y, t)
...

un
a (x, y, t)


(28)

+ A
∂Ua

∂x
+ B

∂Ua

∂y
+ S

It is now enforced that each component of the residual
error vector e (x, y, t), ek (x, y, t) , be orthogonal to
each of the KL modes, ϕk

j (x, y) , j = 1, ..., L, that
correspond to that component, i.e.

∫ 1

0

∫ 1

0 e1 (x, y, t)ϕ1
i (x, y) dxdy∫ 1

0

∫ 1

0 e2 (x, y, t)ϕ2
i (x, y) dxdy

...∫ 1

0

∫ 1

0
en (x, y, t)ϕn

i (x, y) dxdy

 =


0
0
...
0

 (29)

i = 1, ..., L.

Substituting both the expression for e (x, y, t) , from
Eq. (28) and Ua(x, y, t) from Eq. (27) into Eq. (29)
and making use of the orthonormality of the KL
modes, the following KL Galerkin model of Eq. (1)
is obtained:

d

dt
ak

i (t) = −
∫ 1

0

∫ 1

0

[
A

∂Ua

∂x
+ B

∂Ua

∂y
(30)

+ S] ϕk
i (x, y) dxdy,

k = 1, ..., n, i = 1, ..., L.

The boundary conditions are incorporated into
Eq. (30) by performing integration by parts on the in-
tegrals in Eq. (30) and replacing the resulting bound-
ary terms by the boundary conditions of the problem.
The integrals in Eq. (30) are evaluated by Gauss-
Legendre quadrature.

Supersonic Blunt Body Problem

Governing Equations

Each of the three steps in developing a KL model
of the Euler equations for the supersonic flow around
a blunt body are now performed. The two-
dimensional, axisymmetric, Euler equations for a
calorically perfect, ideal gas are, in dimensionless
form:

∂ρ

∂t
+ u

∂ρ

∂r
+ w

∂ρ

∂z
+ ρ

(
∂u

∂r
+

∂w

∂z
+

u

r

)
= 0, (31)

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
+

1
ρ

∂p

∂r
= 0, (32)
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M∞ = 3.5 
Body 
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Figure 1: Schematic of shock-fitted high Mach num-
ber flow over an axisymmetric blunt body including
computational (ξ, η) and physical (r, z) coordinates.

∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z
+

1
ρ

∂p

∂z
= 0, (33)

∂p

∂t
+ u

∂p

∂r
+ w

∂p

∂z
+ γp

(
∂u

∂r
+

∂w

∂z
+

u

r

)
= 0, (34)

where ρ is density, p is pressure, u and w are the ve-
locity in the r and z directions respectively, t is time,
and γ is the ratio of specific heats. The dimensional
form for pressure, p∗, density, ρ∗, and r and z compo-
nents of velocity, u∗ and w∗ respectively are recovered
by the following equations,

p∗ = pp∞, (35)

ρ∗ = ρρ∞, (36)

u∗ = u
√

p∞/ρ∞, w∗ = w
√

p∞/ρ∞, (37)

where freestream quantities are denoted by ∞. The
dimensional space and time variables are

z∗ = zL, r∗ = rL, (38)

t∗ = tL/
√

p∞/ρ∞, (39)

where L is the length of the body. The body, Fig. 1,
is defined by the equation

r = βzb, (40)

where β = R
L , is the ratio of the body base radius, R,

to its length, L.
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To facilitate the solution to the Euler equations
for varying geometry, Eqs. (31− 34) are rewritten
in terms of a general body fitted coordinate system,
ξ(z, r, t), η(z, r, t) and τ (z, r, t) by making the follow-
ing substitutions into Eqs. (31− 34):

∂

∂z
= ξz

∂

∂ξ
+ ηz

∂

∂η
+ τz

∂

∂τ
, (41)

∂

∂r
= ξr

∂

∂ξ
+ ηr

∂

∂η
+ τr

∂

∂τ
,

∂

∂t
= ξt

∂

∂ξ
+ ηt

∂

∂η
+ τt

∂

∂τ
,

where the subscript denotes differentiation with re-
spect to that variable. Finally, taking τ (z, r, t) = t,
the nondimensional form of Eqs. (31 − 34) in gener-
alized coordinates is

∂U
∂τ

+ A
∂U
∂ξ

+ B
∂U
∂η

+ S = 0, (42)

where

U =


ρ
u
w
p

 , S =


ρu/r

0
0

γpu/r

 , (43)

A =


U c ρξr ρξz 0
0 U c 0 ξr/ρ
0 0 U c ξz/ρ
0 γpξr γpξz U c

 , (44)

B =


W c ρηr ρηz 0
0 W c 0 ηr/ρ
0 0 W c ηz/ρ
0 γpηr γpηz W c

 ,

and

U c = ξt + uξr + wξz , (45)
W c = ηt + uηr + wηz .

The grid in the computational domain, Fig. 2, is spec-
ified according to a Gauss-Lobatto Chebyshev distri-
bution, i.e.,

ξi =
1
2

(
1 − cos

(
i

N
π

))
i = 0, 1, ..., N, (46)

ηj =
1
2

(
1 − cos

(
j

M
π

))
j = 0, 1, ..., M,

where N+1 are the number of nodes in the ξ direction
and M + 1 are the number in the η direction.

The physical grid in Fig. 1 is constructed such that
the grid is normal to both the boundary at r = 0, and
the body.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

 

ξ 

η 

body 

outflow 

shock 

symmetry 

Figure 2: Gauss-Lobatto Chebyshev computational
grid for the shock-fitted blunt body.

Boundary Conditions

The kinematic boundary condition at the body is
that the normal velocity component be equal to zero,
i.e.

v · eη|η=0 = 0, (47)

where v is the velocity vector, i.e.

v = uer + wez ,

and eη is the body normal vector, i.e.

eη =
ξzer − ξrez√

ξ2
z + ξ2

r

, (48)

expressed in terms of the unit vectors er and ez, in
the r and z directions respectively. From the fact
that at the body, eη is normal to the unit vector in
the ξ direction, eξ, i.e. (eη · eξ)|η=0 = 0, where

eξ =
−ηzer + ηrez√

η2
z + η2

r

, (49)

it is found that

eη|η=0 =
−ηrer − ηzez√

η2
z + η2

r

, (50)

so that Eq. (47) becomes

v · eη|η=0 = − (uηr + wηz)|η=0 = −W c|η=0 = 0.

(51)
In order to formulate a stable numerical bound-

ary condition at the body for ρ, u, w, and p,
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Eq. (42) is rewritten in the following characteristic
formulation 45,46:

R
∂U
∂τ

+ RA
∂U
∂ξ

+ ΛηR
∂U
∂η

+ RS = 0. (52)

The square matrix, R, in Eq. (52) contains the left
eigenvectors of B in its rows. The diagonal matrix
Λη contain the eigenvalues of B in its diagonal. The
diagonal eigenvalue matrix, Λη, and the left eigen-
vector matrix R are:

Λη =


W c 0 0 0
0 W c 0 0
0 0 W c− 0
0 0 0 W c+

 , (53)

R =


0 − ηzηr

η2
z+η2

r

η2
z

η2
z+η2

r
0

1 0 0 − 1
c2

0 − ρcηz

2
√

η2
z+η2

r

− ρcηr

2
√

η2
z+η2

r

1
2

0 ρcηz

2
√

η2
z+η2

r

ρcηr

2
√

η2
z+η2

r

1
2

 , (54)

where c =
√

γp/ρ is the dimensionless acoustic speed
and W c± = W c ± c

√
η2

z + η2
r . Only the first three of

the equations in Eq. (52) can be used as numerical
boundary conditions since they are associated with
negative eigenvalues, Λη. The fourth equation in
Eq. (52) is associated with a positive eigenvalue and
thus describes information propagation from inside
the body which must therefore be discarded as non-
physical; in its place the physical boundary condition,
v · eη|η=0 , is solved. Substituting the restrictions
that, v · eη|η=0 = W c = 0, and ∂W c

∂τ = 0, into the
first three equations in Eq. (52) yields

ηz
∂ (u)
∂τ

− ηr
∂ (w)
∂τ

= U c

(
ηr

∂w

∂ξ
− ηz

∂u

∂ξ

)
(55)

+
1
ρ

(ηrξz − ηzξr)
∂p

∂ξ
,

∂ρ

∂τ
=

1
c2

∂p

∂τ
− U c

(
∂ρ

∂ξ
− 1

c2

∂p

∂ξ

)
, (56)

∂p

∂τ
= c

√
η2

z + η2
r

∂p

∂η
+

ρcU c√
η2

z + η2
r

(
ηr

∂u

∂ξ
(57)

+ηz
∂w

∂ξ
+

(ηrξr + ηzξz)
ρU c

∂p

∂ξ

)
− U c ∂p

∂ξ

− ρc2

(
ξr

∂u

∂ξ
+ ξz

∂w

∂ξ
+ ηr

∂u

∂η
+ ηz

∂w

∂η

)
− ρc2u

r
.

At the shock boundary, the Rankine-Hugoniot rela-
tions are solved along with a compatibility equation.
Specifically, the Rankine-Hugoniot relations are:

v1 · eT = v2 · eT , (58)

δ2 =
γ − 1
γ + 1

δ1 +
2γ

γ + 1
p1

ρ1δ1
, (59)

p2 =
2

γ + 1
ρ1δ

2
1 − γ − 1

γ + 1
p1, (60)

ρ2

ρ1
=

δ1

δ2
, (61)

where

δi = vi · eN − ṽ, (62)
= vi · eN − (eη · eN ) v.

In Eqs. (58 − 62), eT and eN are unit vectors in the
shock tangential and normal directions respectively,
and ṽ and v are the velocity of the shock in the, eN ,
and, eη, directions respectively. Quantities denoted
with a subscript of 1 are freestream quantities and
those with subscript 2 are on the downstream side of
the shock. The unit vectors eT and eN , are in terms
of the inverse metrics

eT =
−ηzer + ηrez√

η2
z + η2

r

, (63)

eN =
ηrer + ηzez√

η2
z + η2

r

.

In order to solve the Rankine-Hugoniot equations,
an expression for the shock velocity in the body nor-
mal direction, v, is needed. Differentiating Eqs. (59)
and (60) with respect to time in the body normal co-
ordinate system (ξ, η, τ) , yields

∂δ2

∂τ
= A

∂δ1

∂τ
+ B

∂p1

∂τ
+ C

∂ρ1

∂τ
, (64)

∂p2

∂τ
= D

∂δ1

∂τ
+ E

∂p1

∂τ
+ F

∂ρ1

∂τ

where

A =
γ − 1
γ + 1

− 2γ

γ + 1
p1

ρ1δ2
1

, B =
2γ

(γ + 1) ρ1δ1
, (65)

C = −B
p1

ρ1
, D =

4ρ1δ1

γ + 1
,

E = −γ − 1
γ + 1

, F =
2δ2

1

γ + 1
.

Since the freestream flow is steady, it is found that

∂δ2

∂τ
= A

∂δ1

∂τ
, (66)

∂p2

∂τ
= D

∂δ1

∂τ
,
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where from Eq. (62) it is seen that

∂δi

∂τ
=

∂vi

∂τ
· eN + vi · ∂eN

∂τ
(67)

− (eη · eN)
∂v

∂τ
− veη · ∂eN

∂τ
.

By substituting Eq. (67) into Eq. (66), then multi-
plying the first equation in (66) by ρ2c2 and adding it
to the second equation in (66), the shock acceleration
∂v
∂τ ,

∂v

∂τ
=

1
(eη · eN ) [D + ρ2c2 (A − 1)]

[
∂eN

∂τ
(68)

· [(D + ρ2c2A) (v1 − veη) − ρ2c2 (v2 − veη)]

−ρ2c2
∂v2

∂τ
· eN−∂p2

∂τ

]
,

is found. The terms ∂p2
∂τ and ρc∂v2

∂τ ·eN must be spec-
ified by a compatibility equation which is the charac-
teristic equation associated with the wave propagat-
ing from the interior to the back of the shock along
the normal direction. This compatibility equation is
in the same form as the fourth compatibility equation
in Eq. (52) only written in shock coordinates instead
of the body coordinate system (ξ, η, τ). After some
simplification the following shock acceleration equa-
tion is obtained

∂v

∂τ
=

(D + ρ2c2A) (v1 − veη) · ∂eN

∂τ

(eη · eN ) [D + ρ2c2 (A − 1)]
(69)

− ρ2c2 (v2 − veη) · ∂eN

∂τ + R|η=1

(eη · eN) [D + ρ2c2 (A − 1)]
,

where

R = U c ∂p

∂ξ
+ W c ∂p

∂η
+

ρc√
z2

ξ + r2
ξ

[
zξ

(
U c ∂ur

∂ξ
(70)

+W c ∂u

∂η
+

1
ρ

(
ξr

∂p

∂ξ
+ ηr

∂p

∂η

))
− rξ

(
U c ∂w

∂ξ

+W c ∂w

∂η
+

1
ρ

(
ξz

∂p

∂ξ
+ ηz

∂p

∂η

))]
+ γp

(
ξz

∂w

∂ξ

+ηz
∂w

∂η
+ ξr

∂u

∂ξ
+ ηr

∂u

∂η

)
+

γpu

r
.

The time derivative of the normal unit vector is

∂eN

∂τ
=

(
rξ

∂zξ

∂τ
− zξ

∂rξ

∂τ

)
(zξez + rξer)(

z2
ξ + r2

ξ

)3/2
. (71)

The shock distance, H, along the body normal can
be found by integrating the following equation,

∂H

∂τ
= v. (72)

The boundary conditions at ξ = 0 in computa-
tional coordinates are

∂w

∂ξ

∣∣∣∣
ξ=0

= 0, (73)

∂p

∂ξ

∣∣∣∣
ξ=0

= 0,

u|ξ=0 = 0,

s|ξ=0 = so.

where s is the entropy and so is the value of the en-
tropy just behind the shock at r = 0. In arriving at
Eq. (73) , use has been made of the orthogonality of
the grid at r = 0, i.e. ηr|r=0 = 0. The first three
boundary conditions in Eq. (73) come from enforcing
symmetry of the solution. The boundary condition
for entropy comes from casting the energy equation,
Eq. (34) , in steady-state in terms of the entropy, i.e.

u
∂s

∂r
+ w

∂s

∂z
= 0, (74)

and enforcement of u|ξ=0 = 0 which yields ∂s
∂z

∣∣
ξ=0

=
0. Thus s|ξ=0 is constant and equal to so, the value
behind the shock at ξ = 0. The density at ξ = 0
can subsequently be found by the following equation
relating density, pressure and entropy for a calorically
perfect, ideal gas,

ρ =
(p

s

)1/γ

. (75)

At the supersonic outflow boundary, ξ = 1, no
physical boundary conditions are required, i.e. all
waves are exiting the domain. Here the governing
equations are solved in the same manner as in the
interior.

Optimal Design Problem

To illustrate the KL method for an optimal design
problem, the power law body in Eq. (40) is consid-
ered and the value of b which minimizes the drag co-
efficient, CD, over the forebody section only, for fixed
freestream Mach number, M∞ = 3.5, ratio of specific
heats, γ = 7

5 , and aspect ratio β = 1 is sought. For
the axisymmetric problem in dimensionless variables,
the equation for CD (b) is

CD (b) =
4

γM2∞

∫ 1

0

[
p|η=0 − 1

]
r
∂r

∂ξ
dξ, (76)

where p|η=0 is the nondimensional pressure on the
body surface. The integral in Eq. (76) is evaluated
by using Gauss-Legendre quadrature.
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Spatial Discretization via Lagrange Polynomials

The solution vector, U(ξ, η, τ) is approximated in
terms of a double Lagrange global interpolating poly-
nomial,

U(ξ, η, τ) ≈
N∑

i=0

M∑
j=0

U(ξi, ηj , τ)L(N)
i (ξ)L(M)

j (η).

(77)
The derivatives of U(ξ, η, τ) with respect to ξ at ξp

and η at ηq are then

∂U
∂ξ

∣∣∣∣
(ξp,ηq)

≈
N∑

i=0

U(ξi, ηq, τ)
dLi

dξ
(ξp), (78)

∂U
∂η

∣∣∣∣
(ξp,ηq)

≈
M∑

j=0

U(ξp, ηj , τ)
dLj

dη
(ηq).

The Chebyshev grid is used to uniquely define the
Lagrange interpolating polynomial, i.e.

ξi =
1
2

[
1 − cos

( π

N
i
)]

, i = 0, ..., N, (79)

ηj =
1
2

[
1 − cos

( π

M
j
)]

, j = 0, ..., M.

The physical coordinates as a function of the com-
putational coordinates are also approximated by
a global Lagrange interpolating polynomial at the
Chebyshev points (ξi, ηj):

z(ξ, η, τ) ≈
N∑

i=0

M∑
j=0

z(ξi, ηj , τ)Li(ξ)Lj(η), (80)

r(ξ, η, τ) ≈
N∑

i=0

M∑
j=0

r(ξi, ηj , τ)Li(ξ)Lj(η).

The metrics zξ, zη, zτ , rξ, rη, and rτ are then found by
differentiating Eq. (80). Since the inverse metrics ξz,
ξr, ξt, ηz, ηr, and ηt are needed to solve the governing
equations, boundary conditions, and shock velocity
equation, the following relation between the metrics
and inverse metrics

ξz =
1
J

rη, ηz = − 1
J

rξ, (81)

ξr = − 1
J

zη, ηr =
1
J

zξ,

ξt =
(rτzη − rηzτ )

J
, ηt =

(rξzτ − rτzξ)
J

,

J = rηzξ − rξzη,

is employed. The metrics ∂zξ(ξp,ηqj ,τ)
∂τ and ∂rξ(ξp,ηq,τ)

∂τ

in Eq. (71) are specified by differentiating Eq. (80),

∂zξ(ξp, ηq, τ)
∂τ

=
N∑

i=0

∂

∂τ
z(ξi, ηq, τ)

dLi

dξ
(ξp), (82)

∂rξ(ξp, ηq, τ)
∂τ

=
N∑

i=0

∂

∂τ
r(ξi, ηq, τ)

dLi

dξ
(ξp).

The terms ∂
∂τ z(ξi, ηq, τ) and ∂

∂τ r(ξi, ηq, τ) can be ex-
pressed in terms of the shock velocity v, and eη, i.e.

∂

∂τ
z(ξi, ηq, τ) (83)

= −
(
1 − cos

( q

M
π
))[

ξrv (ξi)√
ξ2
z + ξ2

r

]
ξi,ηq

,

∂

∂τ
r(ξi, ηq, τ)

=
(

1 − cos
(

j

M
π

)) [
ξzv (ξi)√
ξ2
z + ξ2

r

]
ξi,ηq

.

Time Integration

Once the Euler equations (42) , the body boundary
compatibility equations (55 − 57) , the shock acceler-
ation equation (69), and the shock velocity equation
(72) have been discretized using a Lagrange interpo-
lating polynomial approximation, a set of ordinary
differential equations of the following form remains

dU
dτ

∣∣∣∣
p,q

= −
[
A

∂U
∂ξ

+ B
∂U
∂η

+ S
]
(ξp,ηq)

, (84)

p = 0, ..., N,

q = 0, ..., M.

The additional algebraic equations, namely, the
Rankine-Hugoniot relations, Eqs. (58 − 61) , the zero
normal velocity at the body, Eq. (51) , and the
discretized form of the symmetry boundary condi-
tion, Eq. (73) , are needed to completely determine
Eq. (84) . Eq. (84) is solved using a fourth order
Runge-Kutta method with the time step, ∆τ, corre-
sponding to a CFL number of roughly 0.3, so as to
resolve the fastest acoustic time scales. The initial
conditions are chosen such that the values for den-
sity, pressure, and velocity are constant in the domain
and equal to the post shock values with the exception
that at the body, the velocity is forced also to satisfy
v ·eη = 0. The initial shock shape is chosen such that
the distance H is constant and v is initially zero.
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Figure 3: Grid convergence L∞[Ω] error in ρ (ξ, η) ,
and L2 error in CD measured against a baseline, 65×
33 grid, Chebyshev solution for a b = 0.5, Mach 3.5
blunt body.

Results

Flow Solver Verification and Validation

A grid convergence study is performed for the blunt
body with both the L∞[Ω] error over the domain,
{Ω : ξ ∈ [0, 1], η ∈ [0, 1]} in ρ (ξ, η) and the L2 error
in CD shown in Fig. 3, where the error is measured
against a 65 × 33 or 2145 node numerical solution.
For 703 nodes, the error in CD has been reduced to
the order of 10−14 and subsequently flattens due to
roundoff error. The maximum local error is approxi-
mately two orders of magnitude greater than the error
in CD for every grid resolution.

As a means of code validation, a comparison is
made between the numerical results for the pressure
distribution on the body with that of the modified
Newtonian 47 sine squared law. The modified New-
tonian approximation is a semi-empirical model for
the surface pressure distribution over blunt bodies.
It has been reported by Anderson48, that for a power
law body with b = 0.5 and aspect ratio near unity,
the modified Newtonian approximation does well in
predicting the pressure distribution on the surface of
the body. As can be seen from Fig. 4, the pseu-
dospectral code also predicts close agreement for the
pressure distribution on the surface of the body de-
fined by r =

√
z. As a further check on the validity

of the pseudospectral code, in Fig. 5 a comparison is
made of the current prediction for the shock shape for
Mach 3.5 flow over a sphere with that of an empirical
formula by Billig49 developed for flow over spherically
blunted cones based on experiment. Contour plots of
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Figure 4: Blunt body surface Cp distribution predic-
tions at Mach 3.5 for modified Newtonian theory and
the current code, where b = 0.5.
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Figure 5: Current method shock shape prediction for
a sphere at Mach 3.5 compared with an empirical
formula [49] derived from experiments.
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Figure 6: Contour plot of Mach number for Mach 3.5
flow over the blunt body for b = 0.5.

Mach number and entropy are shown in Figs. 6 and
7.

Finally, a profile of CD as a function of the power b
at Mach 3.5 calculated from the pseudospectral code
on a 17 × 9 grid is shown in Fig. 8. The minimum
CD occurs at approximately b = 0.35. The result for
the minimum CD computed in this fashion will be
used to compare with the KL method results to be
performed in future work.

Blunt Body KL Modes

Ten snapshots are generated for ten different val-
ues of b chosen uniformly in the range 0.3 ≤ b ≤ 0.6.
From these ten snapshots, ten KL modes and as-
sociated eigenvalues are calculated for each of the
primitive variables: {ϕρ

n, λρ
n} , {ϕu

n, λu
n} , {ϕw

n , λw
n } ,

{ϕp
n, λp

n} , n = 1, ..., 10, where superscripts dictate to
which primitive variable the KL modes and eigen-
values are associated. The method of snapshots,
Eqs. (25) and (23) , was used to generate the KL
modes and eigenvalues. A plot of the eigenvalues
for density are shown in Fig. 9 while the ten eigen-
modes are shown in Fig. 10. There is a rapid decay in
the magnitude of the eigenvalues and a progressively
more complex set of eigenmodes as the eigenvalue de-
creases.
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Figure 7: Contour plot of pressure for Mach 3.5 flow
over the blunt body for b = 0.5.
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Figure 8: CD vs. b from a 17 × 9 grid numerical
solution at Mach 3.5.
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Discussion

In this study, a KL Galerkin model of the Euler
equations for supersonic flow over a blunt body was
developed. It is believed that this is the first study
where the KL Galerkin method has been applied to
a supersonic problem with shock fitting. In addi-
tion, this work is novel in employing the KL Galerkin
method for a complex geometry with a complicated
moving boundary. Results assessing the accuracy
and efficiency of the KL Galerkin model will be pre-
sented in a later paper.

Accuracy and efficiency results for the KL Galerkin
method from other researchers 36−43 are encouraging;
nevertheless, it is still in the early stages of develop-
ment and much work needs to be done. There are
still issues that need to be addressed for applying the
KL method to general complex geometries, particu-
larly how to implement the KL method on unstruc-
tured or multi-domain structured grids. There are
also issues of the necessary number and location of de-
sign space samples needed to guarantee a prescribed
level of accuracy in the KL Galerkin model. In ad-
dition, work is needed in applying the KL method to
design problems with a large number of design vari-
ables. It has not yet been determined if the cost
reduction per KL Galerkin solution will be enough to
permit the solution to a large, multi-variable design
problem. For large, multi-variable design, it may
be necessary to employ various fidelity models such
as discrete solvers and response surfaces in a coordi-
nated fashion 2 with the KL Galerkin method.

It is noted that the necessity to use shock fitting to
obtain these results is a significant complication that

renders application of the KL method to be difficult
for problems with embedded discontinuities. It is
also noted that for design optimization of vehicles in
the hypersonic regime it is more appropriate to em-
ploy a viscous model which accounts for real gas ef-
fects such as vibrational relaxation and dissociation.
In the high Mach number regime in the outer atmo-
sphere, the viscous shock and boundary layer merge
and a KL model would no longer require special mea-
sures of shock fitting and the KL method of design
optimization may be more straightforward.
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Figure 10: Ten KL eigenmodes of density with asso-
ciated eigenvalues, λρ

n.
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