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ABSTRACT 

The structure of a two-phase steady detonation in a granulated solid propellant has 

been studied, and existence conditions for a one-dimensional, steady two-phase detonation 

have been predicted. Ordinary differential equations from continuum mixture theory have 

been solved numerically to determine steady wave structure. In the limiting case where 

there is no chemical reaction and no gas phase effects, the model describes inert compaction 

waves. The equations predict detonation structure when reaction and gas phase effects are 

included. In the limiting case where heat transfer and compaction effects are negligible, the 

model reduces to two ordinary differential equations which have a clear geometrical 

interpretation in a two-dimensional phase plane. The two-equation model predicts results 

which are quite similar to those of the full model which suggests that heat transfer and 

compaction are not important mechanisms in determining the detonation structure. It is 

found that strong and Chapman-Jouguet (CJ) detonation solutions with a leading gas phase 

hock and unshocked solid are admitted as are weak and CJ solutions with an unshocked 

gas and solid. The initial conditions determine which of these solutions is obtained. As for 

one-phase materials, the CJ wave speed is the speed of propagation predicted for an 

unsupported, one-dimensional, two-phase detonation. The model predicts that there is no 

physically admissible CJ structure below a critical value of initial bulk density. This result 

is not predicted from equilibrium end state analysis, and based on this result, it is 

concluded that it is essential to consider reaction zone structure. 
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I. INTRODUCTION 

Predicting the behavior of combustion waves in mixtures of gas and reactive solid 

particles is an important and partially unsolved problem. Practical applications include the 

burning of damaged, granulated solid rocket propellants, detonation of granular explosives, 

burning of coal dust, and explosion of dust-air mixtures. Understanding these combustion 

processes could lead to more accurate design criteria for rockets, new tailored explosives, 

and improved safety criteria for environments where dust explosions are a hazard. 

One way to gain understanding is to model these processes. A class of models which 

has the potential to describe these processes has been developed from two-phase continuum 

mixture theory. These models describe each phase as a continuum; distinct equations for 

the mass, momentum, and energy, and constitutive equations for both phases are written. 

The two phases are coupled through terms representing the transfer of mass, momentum, 

and energy from one phase to another. Models of these phase interaction processes are 

determined from experiments. In the models the phase interaction terms are constructed 

such that global conservation of mass, momentum, and energy is maintained. Regardless 

of the particular form of the two-phase equations, the idea of global conservation is a 

criterion which must be enforced. 

Unsteady two-phase models have been widely used to study the problem of 

deflagration-to-detonation transition (DDT) in granulated solid propellants [1-21], which 

has been observed experimentally [22-24]. Similar unsteady models are used to study 

transient combustion in porous media [25-30]. By concentrating on unsteady solutions, 

many simple results available from the less-complicated two-phase steady theory have been 

overlooked. These results are found by solving the ordinary differential equations which 

define the steady two-phase detonation equilibrium end states and reaction zone structure. 

None of the previous steady two-phase studies [31-39] has adequately described the 

admissible end states and structure of a two-phase detonation. Only when steady 

detonation solutions are understood will it be possible to fully comprehend the implications 

of unsteady two-phase detonation theory. 

A sketch of an envisioned two-phase steady detonation structure is shown in Figure 

1.1. In this study the term" structure" refers to the spatial details of the detonation wave. 

Such details include the reaction zone length and the variation of pressure, temperature, etc. 

within the reaction zone. 
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Figure 1.1 Hypothesized Two-Phase Steady Detonation 
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Drawing on the results of one-phase detonation theory, it is hypothesized that a two-phase 

detonation consists of a chemical reaction induced by a shock wave propagating into a 

mixture of reactive particles and inert gas. At the end of the reaction zone the particles are 

completely consumed; only inert gas remains. Important questions concerning such a 

detonation exist, for example, 

1) What is the speed of propagation of an unsupported two-phase 
detonation? 

2) What are the potential two-phase detonation end states? 

3) What is the structure of the two-phase reaction zone? 

4) What is the nature of a shock wave in a two-phase material? 

5) How is two-phase detonation theory related to and differentfrom one­
phase detonation theory? 

It is the goal of this work to use steady state analysis to answer these and other questions. 

The steady equations are best studied using standard phase space techniques. In this 

work such techniques are used to study a general two-phase detonation model. In so 

doing, two-phase steady detonations have been studied in the same context as the extensive 

one-phase steady theory [40]. 

An outline of the two-phase detonation analysis of this work is now given. The 

unsteady model is flrst presented. Then the steady dimensionless form of this model is 
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shown, and a description is given of how the problem of detennining two-phase detonation 

structure can be reduced to solving four coupled ordinary differential equations. In certain 

limits, two of these equations may be integrated, and the detonation structure problem is 

reduced to solving two ordinary differential equations in two unknowns. In these limits the 

detonation structure has a clear geometrical interpretation in the two-dimensional phase 

plane. Both two and four equation models are then used to predict examples of acceptable 

reaction zone structure and unacceptable, non-physical solutions. Parametric conditions are 

obtained for the existence of a steady, one-dimensional, two-phase detonation. 

Two methods are used to restrict the available solutions: algebraic end state analysis 

and reaction zone structure analysis. Algebraic analysis of the equilibrium end states, 

described in detail in Ref. 41, identifies a minimum wave speed necessary for a steady 

solution. This wave speed is analogous to the well-known one-phase Chapman-Jouguet 

(CJ) wave speed. As in one-phase theory, the two-phase CJ wave speed is identified as 

the unique wave speed of an unsupported two-phase detonation. The available solutions 

are further restricted by considering the structure of the two-phase detonation wave. In 

particular, results from the structural analysis show that below a critical initial solid volume 

fraction, no steady two-phase detonation exists. 

The behavior of integral curves near singular points identified by this analysis is 

crucial in understanding why structural analysis limits the class of available detonation 

solutions. Analysis of two-phase equations near singularities has not been emphasized in 

two-phase detonation theory or two-phase theory in general. This is argued by Bilicki, et 

al. [42] who write in a recent article concerning steady two-phase flow, 

... the theory of singular points of systems of coupled, ordinary nonlinear 
differential equations--still largely unexploited in thisjield--is essential for clarity, 
for the proper management of computer codes and for the understanding of the 
phenomenon of choking as predicted by the adopted mathematical model, an 
impossible task when only nwnerical procedures are used. 

The kingpin of the analysis is the identification of the singular points of the 
basic system of equations and of the solution patterns that they imply. Such an 
analysis serves two purposes. First, it gives the analyst the ability to understand 
the physical characteristics of a class of flows without the need to produce 
complete solutions. Secondly, it gives valuable indications as to how to 
supplement computer codes because practically all nwnerical methods of solution 
become inadequate in the neighborhood of the singular points and are 
constitutionally incapable of locating them in the first place, which leads to 
numerical difficulties and incorrect interpretations. This has to do with the fact 
that the set of algebraic equations, which the computer code must solve at each 
step, becomes either impossible or indeterminate ... and no longer solves the 
coupled differential equations of the model. 
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The analysis presented here identifies two types of singular points, explained in detail 

below, which exist in most two-phase particle burning models based on continuum mixture 

theory. Near a singularity there is a zero in the denominator of the forcing functions of the 

governing differential equations. The consequences of these singularities are not 

straightforward and must be analyzed in detail. 

One type of singularity occurs at the point of complete reaction. The complete reaction 

singularity arises in most particle-burning two-phase detonation models because the 

interphase transport terms used in the mass, momentum, and energy equations typically 

have a l/r dependence where r is particle radius. When the particle radius approaches zero, 

a singularity exists. It is an open question as to whether this singularity gives rise to 

infinite gradients, infinite property values, or whether there is a balancing zero in the 

numerator to counteract the singularity. No work in the current two-phase detonation 

literature adequately addresses this issue. The results presented in this work account for 

the complete reaction singularity. 

Another type of singularity occurs when the velocity of either phase relative to the 

wave front is locally sonic. In this work the term "sonic" is taken to mean that the velocity 

of an individual phase relative to the steady wave is equal to the local sound speed of that 

particular phase as predicted by the state equation for that particular phase. The term 

"sonic" in this work does not in any way refer to a mixture sound speed, nor is the idea of 

a mixture sound speed incorporated into any of the arguments developed in this work. 

The sonic singularity arises naturally from the differential equations and has been 

extensively studied for one-phase systems. Here for the first time the importance of sonic 

conditions in two-phase detonation theory is shown: in general if a solid sonic condition is 

reached within the detonation structure, a physically acceptable steady two-phase 

detonation cannot exist. If a solid sonic condition is reached, it is predicted that all physical 

variables are double-valued functions of position; for instance at any point in the wave 

structure two distinct gas densities, solid temperatures, etc. are predicted. This condition is 

obviously not physical. Furthermore, when such a condition is reached the solution does 

not reach an equilibrium point; thus, no steady solution is predicted. This alone is a 

sufficient reason to reject solutions contain a solid sonic condition. In addition to the solid 

phase sonic singularity, imaginary gas, phase properties are predicted if the solution 

includes a gas phase sonic point at a point of incomplete reaction. 

The influence of the two-phase shock state on steady detonation structure is shown in 

this work. The shock wave, assumed to be inert, leaves the material in a state of higher 

pressure, temperature, and density than the ambient state. This serves to initiate chemical 

reaction which in turn releases energy to drive the shock wave. In this work mechanisms 
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which define the structure of a shock wave such as diffusive heat conduction and 

momentum transport are ignored. It is assumed that the length scales on which these 

processes -are important are small in comparison with the reaction zone length scales. By 

ignoring the diffusive processes, the model equations become hyperbolic, and 

discontinuous shocks are admitted by the governing equations. 

The shock state can be determined by an algebraic analysis. Any state admitted by the 

shock discontinuity equations can serve as an initial condition for the ordinary differential 

equations which define the reaction zone structure. It is shown that four classes of initial 

conditions are admitted for a given wave speed: 1) gas and solid at ambient conditions, 2) 

a shocked gas and shocked solid, 3) an unshocked gas and shocked solid, and 4) a 

shocked gas and unshocked solid. Any of these initial states has the potential to initiate a 

steady two-phase detonation. Examples are found of the first and fourth classes of two­

phase detonation in this thesis. Previous work in two-phase detonation has not adequately 

shown whether the gas and solid are shocked or unshocked. 

In addition to two-phase detonation structure, this study contains a discussion of inert 

compaction waves in granular materials. This discussion, including a review of 

compaction wave theory and experiments, is contained in Chapter 4 and is not germane to 

the subject of steady two-phase detonations. The results are predicted by the same 

equations used to predict two-phase detonations in the limit of no chemical reaction and a 

negligible gas phase. In Chapter 4 analysis is presented to describe the wave motion which 

results when a constant velocity piston strikes a granular material. 

A sketch of an envisioned compaction wave is shown in Figure 1.2. 

Piston Velocity = 

Up 

Compaction Wave Speed = D 
~ 

Coml?acted Undisturbed Region 
Region 

Compaction 
Zone 

Figure 1.2 Sketch of Compaction Wave in Granular Material 
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A compaction wave is thought to be an important event in the process in the transition 

from deflagration to detonation (DDT). It is thought that a compaction process in which the 

granular material rearranges can give rise to local hot spots which could induce a detonation 

in the reactive material. 

Much as for two-phase steady detonation analysis, the compaction wave analysis 

identifies equilibrium end states and compaction zone structure. It is shown that the 

problem of determining compaction zone structure can be reduced to solving one ordinary 

differential equation for one unknown, solid volume fraction. The results show a 

continuous dependence of compaction wave structure with supporting piston velocity; 

depending on the piston velocity, two broad classes of compaction zone structure exist. At 

low piston velocities the compaction wave travels at speeds less than the ambient solid 

sound speed. Such waves are called subsonic compaction waves. The structure is 

characterized by a smooth rise in pressure from the ambient to a higher pressure equal to 

the static pore collapse stress level. Subsonic compaction waves have been observed in 

experiment [43, 44] and predicted by Baer [45] and Powers, Stewart, and Krier [46]. 

Above a critical piston velocity the compaction wave travels at speeds greater than the 

ambient solid sound speed. A discontinuous shock wave leads a relaxation zone where the 

pressure adjusts to its eqUilibrium static pore collapse value. Such waves are called 

supersonic compaction waves. Supersonic compaction waves with leading shocks have 

not yet been observed nor predicted in previous studies. 

The plan of this thesis is to first review the relevant literature in Chapter 2. The 

unsteady model is presented in Chapter 3. Steady inert compaction waves predicted by this 

model are discussed in Chapter 4 which is followed by a discussion of two-phase 

detonation equilibrium end states and structure in Chapter 5. Conclusions and 

recommendations are given in Chapter 6. Appendix A discusses the method of 

characteristics, and lists the characteristic directions and equations for one-dimensional, 

unsteady, two-phase reactive flow. Appendix B has a detailed discussion of state relations 

and demonstrates that the thermal and caloric state equations used in this study are 

compatible. Appendix C compares the momentum and energy equations of this study to 

other common forms of these equations and defends the choices made for this study. Two­

phase CJ deflagration conditions are considered in Appendix D. Appendix E contains a 

detailed description of how to reduce the model to the simple two-equation model presented 

in Chapter 5. Appendix F gives a derivation of the number conservation equation. This 

equation holds that in the two-phase flow field, the number density of particles does not 

change. 
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n. REVIEW OF TwO-PHASE DETONATION THEORY 

This chapter will briefly describe the literature which is relevant to the field of two­

phase steady detonation theory. This includes works on the fundamentals of two-phase 

continuum mixture theory, basic one-phase detonation theory, and applications of these 

theories to combustion in porous media. As this thesis is primarily concerned with the 

details of modeling two-phase detonations using existing models and not with the 

experiments which provide the basis for these models, the experimental literature regarding 

two-phase detonations will not be reviewed. The interested reader is referred to Butler's 

thesis [47] for a thorough description. A review of compaction wave theory is found in 

Chapter 4. 

The theory of two-phase flow is still under development, and there are many issues 

which remain unresolved. Drew [48] considers some of these issues in a recent review 

article. However, one need only look at the wide disparity in the forms of two-phase 

model equations expressed by various researchers to realize that the particular form of the 

equations is a matter of dispute. Thus in constructing a model, one looks for the most 

basic principles to use as a guide. In his description of two-phase theory from a continuum 

mechanics perspective, Truesdell [49] describes three metaphysical principles which can be 

used as a guide. They are: 

1. All properties of the mixture must be mathematical consequences of 
properties of the constituents. 

2. So as to describe the motion of a constituent, we may in imagination 
isolate it from the rest of the mixture, provided we allow properly for 
the actions of the other constituents upon it. 

3. The motion of the mixture is governed by the same equations as is a 
single body. 

Two-phase theory as applied to combustion in granular materials has been developed 

primarily through the work of Krier and co-workers [1, 7, 16, 17, 18, 20, 21], Kuo, 

Summerfield, and co-workers [29, 30, 37, 38], and more recently by Nunziato, Baer, and 

co-workers [2, 3, 4, 11, 13]. In addition, Nigmatulin's book [50], available in Russian 

and not reviewed by this author, is widely referred to in the Russian literature as a source 

for the governing equations of two-phase reactive flow. As opposed to the work of Kuo, 

et aI., who consider only deflagrations, the work of Krier, et al., and Nunziato, et aI., has 

been applied to the detonation of granular propellants and explosives. The extreme 
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conditions of a detonation (gas pressures are of the order of 10 GPa) force the adoption of 

a fully compressible solid phase state equation and a non-ideal gas phase state equation. 

These models use constitutive theory specially developed to describe the pore collapse 

which can be associated with detonations in these materials. There are only minor 

differences in the Krier and Nunziato model formulations; these are considered in detail in 

Chapter 3 and Appendix C. 

To understand two-phase detonation theory, it is necessary to be familiar with some of 

the results of one-phase detonation theory. The best summary of these results is given in 

Fickett and Davis's book [40]. The one-phase concept most relevant to two-phase theory 

is that of a steady Zeldovich, von Neumann, Doering (ZND) detonation which terminates at 

a CJ point. The ZND theory is named for its developers who independently described the 

theory in the 1940's. The CJ analysis describes the equilibrium end states for a one-phase 

detonation, and the ZND analysis describes the structure of the detonation reaction zone. 

Much of one-phase detonation theroy can be understood by considering the 

equilibrium end states. The CJ point is an equilibrium end state at which the gas velocity is 

sonic with respect to the wave front. Since this point is sonic, the theory predicts that any 

trailing rarefaction wave is unable to catch and disturb the steady wave. There is only one 

detonation wave speed which leaves the material in a CJ state. The equilibrium end state 

analysis of one-dimensional theory hypothesizes that this wave sp~ed is the unique speed 

of propagation for an unsupported detonation wave. There are no equilibrium end states 

for wave speeds less than the CJ wave speed. For wave speeds greater than the CJ wave 

speed, two equilibrium states are predicted. They are classified on the basis of the 

equilbrium end state pressure: the solution which terminates at the higher pressure is called 

a strong solution, the other solution is called the weak solution. The strong end state is a 

subsonic state, and thus the strong detonation is susceptable to degradation from trailing 

rarefactions. To achieve a strong detonation, the theory predicts a supporting piston is 

necessary so that no rarefactions will exist. The weak end state is a supersonic state and 

thus does not require any piston support and is not ruled out by simple equilibrium end 

state analysis. 

ZND theory considers the structure of a detonation wave which links the initial state to 

the equilibrium end state. A ZND detonation is described by at?- inert shock wave 

propagating into a reactive material. The shock wave leaves the material in a locally 

subsonic, high temperature state. The high temperature initiates an exothermic chemical 

reaction. Energy released by this chemical reaction is predicted to drive the detonation 

wave. For wave speeds greater than the CJ speed, the solution terminates at the strong 

point, a subsonic state which requires piston support to remain steady. For a CJ wave 
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speed the solution tenninates at a sonic point and thus is able to propagate without piston 

support. The simple ZND theroy predicts that there is no path from the initial shock state to 

the weak solution point and thus rules out a weak detonation with a leading shock in the 

structure. Thus simple ZND theory predicts that the wave speed for an unsupported 

detonation is the CJ wave speed. There is, however, evidence, described in detail by 

Fickett and Davis, that weak solutions can be achieved. In general the weak detonations 

described by Fickett and Davis require special conditions to exist. 

Fickett and Davis describe how ZND theory can be placed in the context of the general 

theory of systems of ordinary differential equations. Details of this theory can be found in 

standard texts [51, 52]. The theory describes how, given a set of ordinary differential 

equations, solutions link an initial state to an equilbrium end state and how other solutions 

do not have equilibrium states. Equilibrium states are defined at points where the forcing 

functions for each differential equation are simultaneously zero. Whether or not an 

equilibrium state is reached depends on the particular fonn of the differential equations. A 

solution which does not reach an equilibrium point is rejected as a steady solution by 

definition. 

A shortcoming of most two-phase detonation studies is that little emphasis has been 

put on placing two-phase detonation theory in the context of one-phase detonation theory 

and the more general ordinary differential equation theory. Most work in two-phase 

detonation theory has concentrated solely on using numerical solution of the unsteady 

equations to predict the two-phase equivalent of a CJ detonation [1, 2]. A primary goal of 

these works has been to predict the deflagration-to-detonation transition (DDT) zone length 

rather than the character of the detonation itself. As such, there has been little discussion of 

the basic characteristics of a steady two-phase detonation. In these studies the definition of 

the two-phase CJ state is unclear. Reference is often made to the one-phase CJ results with 

the assumption that the one-phase CJ condition naturally must also apply to the two-phase 

detonation model. Also in these works no attempt has been made to describe conditions 

under which a two-phase strong or weak detonation can exist. Since these states can be 

predicted by one-phase theory, it is reasonable to suggest that two-phase equivalents may 

also exist. Detailed descriptions of the steady two-phase reaction zone structure have been 

generally ignored. 

Studies of steady two-phase systems will now be considered. Several works exist 

which consider the relatively low-speed, low-pressure deflagration of solid particles. 

Among these are the works of Kuo, et al. [37, 38], Ennolaev, et al. [35, 36], and Drew 

[31]. These works consider the particle phase to be incompressible and naturally have no 

discussion of shock waves. The work of Krier and Mozafarrian [34] considered a reactive 
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wave with a leading shock wave in the gas phase. Detonation structure was detennined by 

numerically solving the steady two-phase ordinary differential equations. This work is of 

limited value because of the assumption of an incompressible solid phase. This assumption 

is unrealistic in the detonation regime. In addition they did not establish whether the model 

equations of their work are hyperbolic, leading one to question whether their model 

equations are well-posed for their initial value problem. 

The most important studies of steady two-phase detonation are those of Sharon and 

BankoffT3-3] and-CondiffTJ2]. These works apply two-phase detonation theory to vapor 

explosions which can arise from the rapid mixing of a hot liquid and cold vaporizable 

liquid. Large differences in the features of the problem of vapor explosion and that of 

detonation of solid granular explosive prevent an extension of results of vapor explosion to 

detonations in granular explosives from being made. Among the differences are that in a 

vapor explosion both components come to an equilibrium where both components exist in 

finite quantities, while in a detonation of a solid propellant the solid is entirely consumed. 

There are also large differences in the functional form of the constitutive equations. 

Nevertheless, both these works discuss in detail many features of two-phase detonation 

theory which are held in common between vapor explosions and detonations in granular 

explosives. More importantly, these works outline a rational approach to the problem of 

two-phase detonation. 

Both Sharon and Bankoff and Condiff describe a two-phase detonation in the context 

of one-phase steady detonation theory. That is they describe the detonation structure as a 

shock jump followed by a relaxation zone whose structure is determined by solving a set of 

ordinary differential equations. Both works describe the effective two-phase CJ state. 

Sharon and Bankoff argue that the CJ vapor explosion is the only steady solution which 

can exist. They also proYi:de details of the detonation structure. Condiff argues that there 

is a larger range of solutions to choose from and that a phase plane analysis is necessary to 

choose which solutions can be accepted. 

An issue which has long been troublesome for two-phase theory is that of whether the 

equations are well-posed. In two-phase detonation theory, only two models have been 

proposed which have been shown to be well-posed for initial value problems: the model of 

Baer and Nunziato [2] and Powers, Stewart, and Krier [41]. The feature of these models 

which guarantees that they are well-posed is an explicit time-dependent equation which 

models the change in volume fraction in a granular material. When models without such an 

equation are examined, it is found that there are regimes in which imaginary characteristics 

are present [8, 28, 48, 53]. Such models are not in general well-posed for initial value 
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problems; because of this any" solution to an initial value problem for such a model can be 

shown to be unstable to disturbances of any frequency. 

It should be said that for gas phase systems that the ZND assumption of one­

dimensionality has been shown by experiments to be invalid in general. However the ZND 

predictions are able to roughly predict spatially averaged gas phase properties such as final 

pressure and wave speed. For solids, experimental results provide little evidence regarding 

the existence of multidimensional detonation structure. Regardless of whether or not 

detonations in solids are one or multidimensional, it is reasonable to consider the results of 

one-dimensional theory before proceeding to consider more complicated multidimensional 

theories. 

Finally an issue relevant to models of particle burning must be considered, that of how 

an expression for the evolution of particle radius should be formulated. In two-phase 

models of granular materials the particle radius is a required variable for all interphase 

transfer terms (reaction, drag, and heat transfer are known empirically as functions of 

particle radius). In much of the two-phase granular explosive literature there is confusion 

as to how to determine the particle radius. The recent work of Baer and Nunziato [2] 

disregards the issue by not giving an expression for particle radius evolution. It would 

seem that this model is incomplete. The work of Krier and co-workers provides a relation 

for the particle radius evolution whose physical interpretation is unclear (see Appendix F). 

A rational way for determining particle radius is found by considering an evolution 

equation for the number density of particles. Several modelers do write explicit equations 

for number density evolution [10, 14,26,31,39]. Generally these studies assume that the 

number density of particles is conserved. It can be shown that with such an equation it is 

possible to determine a clearly understood equation for the evolution of particle radius (see 

Appendix F). 
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ID. THE UNSTEADY TwO-PHASE MODEL 

A two-phase model is presented which is a slight modification of the model first 

presented in Ref. 41. It is similar to models used by Butler and Krier [1] and Baer and 

Nunziato [2]. Changes of two types have been made. First a simplified constitutive theory 

has been adopted in order to make the equations tractable. The trends predicted by the 

simpler constitutive equations are similar to the trends of Refs. 1 and 2. A second more 

substantial change is that an explicit expression for particle radius evolution has been 

adopted. No counterpart to this equation is found in either Ref. 1 or 2. For the proposed 

model it is assumed that each phase is a continuum; consequently, partial differential 

equations resembling one-phase equations are written to describe the evolution of mass, 

momentum, and energy in each constituent. In addition, each phase is described by a 

thermal state relation and a corresponding caloric state relation. Constituent one is assumed 

to be a gas, constituent two, a solid. 

In order to close the system, a dynamic compaction equation similar to that of Ref. 2 is 

adopted. Choosing a dynamic compaction equation insures that the characteristics are real; 

thus, the initial value problem is well-posed. The unsteady two-phase model is posed in 

characteristic form in Appendix A. The dynamic compaction equation states that the solid 

volume fraction changes in response to 1) a difference between the solid pressure and the 

sum of the gas pressure and intragranular stress and 2) combustion. Most models use 

empirical data to model the intragranular stress. Here for simplicity it is assumed that the 

intragranular stress is a linear function of the solid volume fraction. This function is 

constructed such that no volume fraction change due to pressure differences is predicted in 

the initial state. It is emphasized that the choices made for the closure problem and for 

other constitutive relations place a premium on simplicity so that explicit analytic 

calculations can be made whenever possible. At the same time the model adopted here is 

representative of a wider class of two-phase detonation models currently in use. 

The unsteady equations are 

! [p\"'\] + :Jp \"'\U\] ~ (!) PN~ 
! [P2 "'2] + :Jp2 "'21lz] = - (!) PNP~ 

(3.1) 

(3.2) 
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a r p <I> U ] + a r P '" + p '" u2
] = u (~)p '" apm _ r:t <1>2<1>1 ( u1-u2) atl 1 1 1 ax1. 1'1'1 1'1'1 1 2 r 2'1'2 1 }oJ r (3.3) 

iJ P 2 <1>2 U2] + iJ P 2 <1>2 + P 2 <1>2 U;] ; -U2( !)p 2 <l>2aP~ + Jl <l>2:lh-U2) (3.4) 

i[PI<I>J el + ui /2)] + :JPI<I>IUI( el + ui /2 + PI/ pJ] ; 
( e2 + U~/2)(~)p <I> aPm - ~~ (U(U2) - h <l>l<l>2(T -T ) (3.5) 

r 2 2 1 r 2 1/3 1 2 
r 

( 2)( 3) m <I> <I> ( ) <I> <I> - e2 + u2 / 2 - p <I> aP + ~--L1u u1-u2 + h--L1(T -T ) 
r 2 2 1 r 2 1/3 1 2 

r 
(3.6) 

(3.7) 

(3.8) 

PI = PIRTJ 1 + bPJ (3.9) 

PI 
e1 = R 

-P (1 +bp ) 
c

v1 
1 1 

(3.10) 

c2 = RT [1 + 2bp + (Ric 1)(1 + bp )2] 
1 1 1 v 1 

(3.11) 

(3.12) 

P2 + P s 
e = 20 +q 

2 (y _ 1) p 
2 2 

(3.13) 
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(3.14) 

$ + <j) = 1 
1 2 

(3.15) 

Here the subscript "0" denotes the undisturbed condition, "1" denotes the gas phase; 

"2," solid phase; p, density; $, volume fraction; u, velocity; r, solid particle radius; P, 

pressure; m, burn index; a, burn constant; ~, drag parameter; e, internal energy; h, heat 

transfer coefficient; R, gas constant; b, co-volume correction; c, sound speed; c , constant 
v 

volume specific heat; s, non-ideal solid parameter; ~c' compaction viscosity; Y
2

, Tait 

parameter; and q, heat of reaction. 

Numerical values for the parameters introduced above, representative of the solid high 

explosive HMX, are listed in Table I. When available, references are listed for each of the 

parameters. The unreferenced parameters have been estimated for this study. The initial 

gas density and temperature have arbitrarily been chosen to be 10 kg/m3 and 300 K, 

respectively. Drag and heat transfer parameters have been chosen to roughly match 

empirical fonnulae given in Ref. 13. The gas constant R and virial coefficient b have been 

chosen such that predictions of CJ detonation states match the CJ detonation states 

predicted by the thennochemistry code TIGER [54] as reported in Ref. 1. The solid 

parameters s and Y2 have been chosen such that solid shock and compaction wave 

predictions match experimental shock [55] and compaction wave data [43, 44]. As 

reported by Baer and Nunziato [2], there are no good estimates for the compaction 

viscosity ~c . Ref. 2 chooses a value for compaction viscosity of 103 kg/m s. To 

demonstrate the existence of a two-phase detonation, it was necessary in this study to 

choose a higher value, 106 kg/m s, for the compaction viscosity. 

Undisturbed conditions are specified as 

u = 0 
2 

Undisturbed conditions for other variables can be detennined by using the algebraic 

relations (3.9-15). 

Equations (3.1,2) describe the evolution of each phase's mass; Equations (3.3,4), 

momentum evolution; and Equations (3.5,6), energy evolution. Homogeneous mixture 
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Table I 

DIMENSIONAL INPUT PARAMETERS 

a [1] [ml (s Pa)] 2.90 x 10-9 

PIO [kg 1m3] 1.00 x 101 

m [1] 1.00 x 100 

~ [kg I (s m2)] 1.00 x 1()4 

P20 [1, 2] [kg 1m3] 1.90 x 103 

h [J I (s K m8!3)] 1.00 x 107 

cvl [2] [J I (kg K)] 2.40 x 103 

c v2 [1, 2] [J I (kg K)] 1.50 x 103 

R [J I (kg K)] 8.50 x 102 

s [em I s)2] 8.98 x 106 

q [1] [J I kg] 5.84 X 106 

fO [1, 2] [m] 1.00 x 10-4 

b [m3 /kg] 1.10 x 10-3 

"(2 5.00 x 100 

Ilc [kg I (m s)] 1.00 x 106 

To [K] 3.00 x 102 
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equations are fonned by adding Equations (3.1) and (3.2), (3.3) and (3.4), and (3.5) and 

(3.6). Thus for the mixture, conservation of mass, momentum, and energy is maintained. 

The forcing functions, inhomogeneities in Equations (3.1-6), model inter-phase 

momentum, energy, and mass transfer. Functional fonns of inter-phase transfer tenns 

have been chosen to have a simple fonn. Figure 3.1 shows a comparison of the above 

drag model and the empirical model used by Baer [13], which is dependent on Reynolds 

number for particle radii from 0 to 300 ~m. The Reynolds number has been found to lie in 

the range 0-1000 within the two-phase detonation reaction zones of this study. Figure 3.1 

shows that the functional fonns of the two relations are similar, though the magnitudes 

vary widely. A similar comparison is made in Figure 3.2 between the simplified inter­

phase heat transfer modelled here and the empirical heat transfer model used by Baer. 

Again, the functional fonn of the two models is similar and wide variation exists in the 

magnitudes. For mass transfer a well-known empirical relation for the regression of 

particle radius is used. It is observed that the rate of change of particle radius is 

proportional to the surrounding pressure raised to some power. The right sides of the mass 

equations (3.1-2) are fonnulated to incorporate this feature. 

By combining the solid mass evolution equation (3.2) with the number conservation 

equation (3.7), an explicit equation is obtained for particle radius evolution: 

(3.16) 

This equation demonstrates that following a particle, the particle radius may change in 

response to combustion, embodied in the empirically-based tenn -aPlffi, and density 

changes, as described by the density derivative tenns. Many two-phase particle-burning 

detonation models do not explicitly include an equation for the evolution of particle radius. 

In these models, which also do not explicitly enforce number conservation, it is unclear 

what physical principles are used to determine the particle radius. For a detailed derivation 

of the number conservation re~ation (3.7) and Equation (3.16) see Appendix F. 

Other constitutive relations are given in Equations (3.8-15). The dynamic compaction 

equation is expressed in Equation (3.8). Constituent one is a gas described by a virial 

equation of state (3.9). Constituent two is a solid described by a Tait equation of state [69] 

(3.12). Assumption of a constant specific heat at constant volume for each phase allows 

caloric equations (3.10,13) and sound speed equations (3.11,14) consistent with the 
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assumptions of classical thermodynamics to be written for each phase. Appendix B shows 

how thermodynamically consistent equations are derived and how relevant thermodynamic 

properties are determined for the state equations chosen here. The variable <I> is defined as a 

volume fraction, <I> == constituent volume/total volume. Equation (3.15) states that all the 

volume is occupied by constituent one or two; no voids are permitted. 

By writing Equations (3.1-15) in characteristic form, it is easy to show that the model 

is hyperbolic and the characteristic wave speeds are uI' u2 ul ± ci and u2 ± c2 (see , , 
Appendix A). Baer has reached a similar conclusion. The fact that the characteristic wave 

speeds are real is a consequence of the assumed form of the compaction equation. Other 

closure techniques will, in general, result in a model with imaginary characteristics which is 

not well-posed for initial value problems. 

The momentum and energy equations of this model are slightly different from those of 

Baer and Nunziato's model. The momentum equations of this work, which are of the same 

general form of those of Ref. 1, differ with those of Ref. 2 by a term PI a<l>l/ax. Also the 

energy equation of Ref. 2 includes a term called "compaction work," proportional to the 

volume fraction gradient which is not included in this model. Which form is correct is still 

controversial; a defense of the model presented here is described in detail in Appendix C. 

The methodology which is used here to determine detonation structure is unaffected by the 

particular choice of model form. 
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IV. STEADY STATE C01v1PACTION WA VE ANALYSIS 

This chapter is concerned with steady compaction waves in granular materials. These 

waves are inert and thus fundamentally different from detonation waves. Before turning to 

the study of detonation waves in Chapter 5, there is a good reason to first consider 

compaction waves. That is, the simplicity of the two-phase equations allows a well­

understood solution to be determined. The properties of this solution and the solution 

procedure itself are useful in the detonation analysis. 

A compaction wave can arise from the impact of a piston on a granular material. It is 

shown here that the two-phase equations are able to describe such waves when no reaction 

is allowed and gas density is small relative to the solid. This chapter has a self-contained, 

complete discussion of compaction waves, essentially independent of the detonation 

analysis, except that the same model equations are used in different limits. A slightly 

different notation is introduced for this chapter which reflects the simpler nature of the 

compaction wave problem relative to the detonation wave problem. 

It has been established by experiments with granular high energy solid propellants [23, 

24] and by numerical solution of unsteady two-phase reactive flow models [1, 2] that 

deflagration to detonation transition (DDT) in a confined column of such granular energetic 

material involves material compaction and heat release. In many cases the origin of such a 

DDT can be traced to the influence of a compaction wave, defined as a propagating 

compressive disturbance of the solid volume fraction of the granular material. Steady 

compaction waves in porous HMX (cyclic nitramine) were observed by Sandusky and 

Liddiard [43] and Sandusky and Bernecker [44] arising from the impact of a constant 

velocity piston (piston velocity < 300 mls). Compaction waves in these experiments travel 

at speeds less than 800 mis, well below the ambient solid sound speed, which is near 3000 

mls. To understand compaction waves it is necessary to explain why this unusual result is 

obtained. 

The fIrst step in modeling compaction waves is to study steady compaction waves. 

With understanding gained from steady compaction waves, it is easier to understand the 

time-dependent development of these waves and how such a wave can evolve into a 

detonation wave. Although it is possible to numerically solve the coupled unsteady partial 

differential equations which model such dynamic compaction processes (including the 

formation of shock waves) [56], it is difficult to interpret from such models what physical 

properties dictate the speed, pressure changes, and porosity changes of compaction waves. 

It is the goal of this chapter to provide a simple method to predict these parameters as a 
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function of material properties with a representative model. 

The experiments of Sandusky and Liddiard are simulated by studying steady solutions 

of two-phase'flow model equations. Without considering wave structure, Kooker [57] has 

used an algebraic end state analysis to predict compaction wave speed as a function of 

piston velocity using full two-phase model equations. It is possible to extend this analysis 

in the limit where the effect of one of the phases is dominant. This approach was fIrst used 

by Baer [45] in his study of steady compaction wave structure. Here a more detailed 

discussion is provided of steady structure and basic parameter dependencies. Throughout 

this chapter, the assumptions and results will be compared to those of Baer. 

The results show a continuous dependence of compaction wave structure on the piston 

velocity supporting the wave; depending on the piston velocity, two broad classes of 

compaction zone structures exist. At low piston velocities the compaction wave travels at 

speeds less than the ambient sound speed of the solid. Such waves are called subsonic 

compaction waves. The structure is characterized by a smooth rise in pressure from the 

ambient to a higher pressure equal to the static pore collapse stress level. Subsonic 

compaction waves have been observed experimentally (though compaction zone widths 

have not been measured) and predicted by Baer. Above a critical piston velocity the 

compaction wave travels at speeds greater than the ambient sound speed in the solid. A 

discontinuous shock wave leads a relaxation zone where the pressure adjusts to its 

equilibrium static pore collapse value. Such waves are called supersonic compaction 

waves. Supersonic compaction waves with leading shocks have not as yet been observed 

nor predicted. 

A shock wave in compaction wave structure is admitted because the model equations 

are hyperbolic. This model ignores the effects of diffusive momentum and energy 

transport. If included, these effects would defIne the width of the shock structure. Here it 

is assumed that the length scales on which these processes are important are much smaller 

than the relaxation scales which defIne compaction zone structure. 

Compaction wave phenomena predicted here have analogies in gas dynamics. As 

described by Becker and Bohme [58], gas dynamic models which include thermodynamic 

relaxation effects predict a dispersed wave to result from the motion of a piston into a 

cylinder of gas. Steady solutions with and without discontinuous jumps are identified. 

These solutions have features which are similar to those predicted by the compaction wave 

model. 

Here comments are made on the differences and similarities of the original Baer study 

and the present study. Baer's incompressibility assumption has been relaxed to allow a 

fully compressible solid. A complete characterization of compaction wave structure as a 
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function of piston wave speed including an analysis of the supersonic case is given here. 

With this analysis many new results are obtained. A unique equilibrium condition, 

determined algebraically, is obtained. As Baer does, it is demonstrated that the problem of 

determining compaction wave structure can be reduced to solving one ordinary differential 

equation for volume fraction. Other thermodynamic quantities (pressure, density, etc.) are 

algebraic functions of volume fraction. An analytic solution in the strong shock limit is 

given. A term used by Baer called "compaction work" is not included in this model. As 

shown in Appendix C, this term violates the principle of energy conservation. 

Unsteady Model 

The two-phase continuum mixture equations (3.1-15) are repeated in a condensed 

form in Equations (4.1-7). The model describes two-phase flow with inter-phase mass, 

momentum, and energy transport. A density, Pi; pressure, Pi; energy, eG temperature, Ti; 

velocity, Ui; and volume fraction, <l>h is defined for each phase (for the gas i = 1, for the 

solid i = 2). A compaction equation similar to that of Baer and Nunziato is utilized. The 

compaction equation models the time-dependent pore collapse of a porous matrix and is 

based on the dynamic pore collapse theory of Carroll and Holt [59]. 

The unsteady two-phase equations are 

P. = P.(p., T.) (4.5) 
1 1 1 1 

e. = e.(P., p.) (4.6) 
1 1 1 1 
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Equations (4.1), (4.2), and (4.3) describe the evolution of mass, momentum, and energy, 

respectively, of each phase. Inter-phase transport is represented in these equations by the 

terms Ah Bh and Ci , which are assumed to be algebraic functions of Ph uh Ph etc. These 

terms are specified such that the following conditions hold: 

(4.8) 

This insures that the mixture equations obtained by adding the constituent mass, 

momentum, and energy equations are conservative. 

For each phase an initial temperature, density, velocity, and volume fraction is 

defined. The subscript 0 is taken to represent an initial condition. 

(4.9) 

Other variables are determined by the algebraic relations (4.5), (4.6), and (4.7). 

Equation (4.4) is the compaction equation. A similar model equation has been used by 

Butcher, Carroll, and Holt [60] to describe time-dependent (dynamic) pore collapse in 

porous aluminum. The parameter J.lc is defined as compaction viscosity, not to be confused 

with the viscosity associated with momentum diffusion. The compaction viscosity defines 

the only length scale in this problem. The existence of such a parameter is still a modeling 

assumption and its value has not been determined. There is, however, a strong theoretical 

justification for the dynamic pore collapse model. It has been shown (Appendix A) that 

when dynamic compaction is incorporated into two-phase model equations, the equations 

are hyperbolic. The initial value problem is required to be hyperbolic in order to insure a 

stable solution. 

In the compaction equation (4.4) f represents the intra-granular stress in the porous 

medium. It is assumed to be a function of the volume fraction. Baer has estimated f from 

Elban and Chiarito's [61] empirical quasi-static data obtained by measuring the static 

pressure necessary to compact a porous media to a given volume fraction. Carroll and Holt 

have suggested an analytical form for f for three regimes of pore collapse, an elastic phase, 

an elastic-plastic phase, and a plastic phase. In this chapter f will be modelled with an 

equation similar to Carroll and Holt's plastic phase equation. Here, two a priori 

assumptions about f are made. First, it is assumed that f is a monotonically increasing 



23 

function of volume fraction so that an increasing hydrostatic stress is necessary to balance 

the increased intra-granular stress which arises due to an increasing solid volume fraction. 

Second, it is assumed that at the initial state f must equal the difference of the solid and gas 

pressures so that the system is initially in equilibrium. The results show that with these 

assumptions, compaction wave phenomena are relatively insensitive to the particular 

functional form of f. 

Equations (4.5) and (4.6) are state relations for each phase. Equation (4.7) arises 

from the definition of volume fraction. It states that all volume is occupied by either solid 

or gas. 

Dimensionless Steady Model 

To study compaction waves in the context of this model, the following assumptions 

are made: 1) a steady wave travelling at speed D exists, 2) gas phase equations may be 

neglected, 3) inter-phase transport terms may be neglected, and 4) the solid phase is 

described by a Tait equation of state. As a result of Assumption 1, Equations (4.1) through 

(4.4) may be transformed to ordinary differential equations under the Galilean 

transformation ~ = x - Dt, v = u - D. By examining the dimensionless form of Equations 

(4.1) through (4.7), it can be shown that in the limit as the ratio of initial gas density to 

initial solid density goes to zero, that there is justification in neglecting gas phase equations 

and inter-phase transport. To prove this contention, one can integrate the steady mixture 

mass, momentum, and energy equations formed by adding the component equations to 

form algebraic mixture equations. By making these equations dimensionless (as done in 

Chapter 5), it is seen that all gas phase quantities are multiplied by the density ratio 

PlO/P20' As long as dimensionless gas phase properties are less than O(p201PlO)' there is 

justification in neglecting the effect of the gas phase. 

Because the gas phase is neglected, the subscripts 1 and 2 are discarded. All variables 

are understood to represent solid phase variables. The caloric Tait equation [69] for the 

solid is 

e = _p_+_p~o_s 
("(- 1) P 

(4.10) 

Here "( and s are parameters that defme the Tait state equation. The value of"( is chosen to 

match shock Hugoniot data [55]. It is analogous to the specific heat ratio for an ideal 
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equation of state. The parameter s is defined as the non-ideal solid parameter. In this study 

s is viewed as an adjustable parameter which allows the equation of state to be varied in a 

simple way in order to show how the results are sensitive to non-ideal state effects. When 

s = 0, the state equation is an ideal state equation. For this study a value of s was chosen to 

match the compaction wave data of Sandusky and Liddiard [43]. 

To determine the ambient solid sound speed, an important term in this analysis, it is 

necessary to specify a thermal equation of state. By assuming a constant specific heat at 

constant volume cv' a thermal equation of state consistent with Equation (4.10) can be 

derived. 

P = (y-1)c pT - P sly 
v 0 

(4.11) 

Based on Equations (4.10) and (4.11) an equation for the solid sound speed c is easily 

derived by using the thermodynamic identity T d11 = de - P/p2 dp, where 11 is the entropy. 

2 dP I c =- =y(y-1)c T 
dP 11 v 

(4.12) 

To simplify the analysis, dimensionless variables are denoted by a star subscript and 

are defined as follows 

v.=v/D, 
2 

e. = e/ D , 
2 

T. = c T /D , 
v 

With this choice of dimensionless variables four dimensionless parameters arise. 

y = Tait Solid Parameter, 
s 

- = (J = Non-Ideal Solid Parameter 
D2y 

= 1t = initial pressure , <I> = initial volume fraction o 
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For materials of interest <1>0 and y are of order 1. Interesting limiting cases can be studied 

when s~ 0, corresponding to either the strong shock or weak non-ideal effect limit, or 

when 1t ~ 0, corresponding to the strong shock limit. 

With the assumptions made, steady dimensionless equations can be written to describe 

the compaction of an inert solid porous material as follows: 

~(P.<1>v.) = ° 
d~. 

(4.13) 

~(P. <1>+ P. <1> v;) = ° 
d~. 

(4.14) 

~ (p.$v.[e.+v;12+P.t P.]) = 0 
d~. 

(4.15) 

d<1> 
(4.16) -= 

e. =--- (4.17) 
(y- 1) P. 

Initial conditions are specified as 

P. = 1, <1> = <1>0' v. = -1, p. = 1t (4.18) 

Equations (4.13-17) are equivalent to Baer's steady model except a term Baer calls 

"compaction work" is not included and a simpler state equation is used. Equations (4.13), 

(4.14), and (4.15) may be integrated subject to initial conditions (4.18) resulting in the 

following set of equations: 

(4.19) 

(4.20) 
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(4.21) 

( 2 ) (1t+ Ycr ) P * <I> v * e* + v * /2 + P * / p * = - <1>0 Y _ 1 + 1 / 2 + 1t (4.22) 

(4.23) 

From Equations (4.20) through (4.23), equations for pressure and velocity as 

functions of volume fraction can be written. Equation (4.23) is used to eliminate energy 

from Equation (4.22). Velocity is eliminated from Equations (4.21) and (4.22) by using 

Equation (4.20). Then density is eliminated from Equation (4.22) by using Equation 

(4.21). What remains is a quadratic equation involving only pressure and volume fraction. 

It is possible to solve this equation for pressure explicitly in terms of volume fraction. The 

solution is 

-1 ± 
1 + (1++1 t (I +,,) - I) -" ( 2 -" (y - I»)] 

(~-I-"r 
(4.24) 

The solution corresponding to the positive branch is the physically relevant one. The 

negative branch is associated with negative pressure. Equations (4.20) and (4.21) may be 

simultaneously solved for velocity as a function of pressure and volume fraction. The 

velocity is given by 

(4.25) 
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By using Equation (4.24) to substitute for pressure in Equation (4.25), velocity is available 

as a function of volume fraction alone. The mass equation (4.20) can be used to give 

density as a function of volume fraction and then the state equation (4.17) can be used to 

give energy as a function of volume fraction. Thus all variables in the compaction equation 

(4.19) can be expressed as functions of volume fraction; the compaction wave problem is 

reduced to solving one ordinary differential equation (4.19) for volume fraction subject to 

the conditio~ $ = $0 at ~* = O. 

Next the technique is described for determining wave speed as a function of piston 

velocity. This calculation is algebraic and can be made without regards to structure. The 

solution is parameterized by the wave velocity through the definitions of 1t and 0'. Instead 

of using a piston velocity as an input condition, it is easier to consider the wave speed to be 

known and from that wave speed calculate a piston velocity. By assuming a static pressure 

equilibrium end state in Equation (4.19) (P.($) = f.($)), it is possible to determine the 

equilibrium volume fraction and thus, from Equations (4.24) and (4.25), the final velocity 

v •. The piston velocity (lip) is found by transforming the final velocity to the lab frame by 

using the transformation lip = D(v. + 1). 

Pressure eqUilibrium end states are found when a volume fraction is found such that 

the pressure given by Equation (4.24) matches the intra-granular stress predicted by f. In 

the initial state, Equation (4.24) predicts a pressure of 1t, the dimensionless initial pressure. 

By assumption f also yields a value of 1t in the initial state so that the undisturbed material 

is stationary. In Figure 4.1, dimensional pressure in HMX is plotted as a function of 

volume fraction from Equation (4.24) for a series of wave speeds and an initial volume 

fraction of 0.73. Except for compaction viscosity ~c parameters used to model HMX are 

those previously listed in Table I (cy, ~c' and Po of Baer is used, and the parameters yand 

s are estimated by requiring predictions to match shock and compaction data. Unlike in 

detonation wave analysis, there is no special problem posed by using Baer's value of 

compaction viscosity, 1000 kg/em s), in these calculations). All curves pass through the 

point of initial pressure and volume fraction. 

The curve on Figure 4.1 for the ambient sonic wave speed (D = 3000 mls) has a 

special property whose importance will be apparent in the following discussion. For this 

curve a volume fraction minimum exists at the initial volume value. It can be proven for a 

sonic wave speed, that the discriminant in Equation (4.24) is identically zero for $ = $0 and 

D = y(y - l)cy To (the ambient solid sonic wave speed). 

The positive pressure branch of Equation (4.24) is a double-valued function of volume 

fraction for wave velocities that exceed the ambient solid sound speed and single-valued for 
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wave velocities less than or equal to the ambient solid sound speed. For subsonic wave 

speeds, small increases from the initial volume fraction cause small positive perturbations 

in pressure. For supersonic wave speeds a positive increase of the initial volume fraction is 

only acceptable if the pressure jumps discontinuously to a shocked value on the upper 

portion of the double-valued P.-<!> curve. Because the governing equations are hyperbolic, 

these shock jumps are admissible. From Equation (4.19) the shock jump condition for 

volume fraction is 

(4.26) 

where "0" denotes the initial state and "s" the shock state. Thus the shock: volume fraction 

is always equal to the initial volume fraction. 

From Equations (4.24) and (4.25) the shock pressure and particle velocity can be 

determined. The shocked values are independent of the initial solid volume fraction. 

P 
2 - (1t + a) (y - 1) 

- a = s y+l 
(4.27) 

v 
(y - 1) + 2 Y (1t + a) = -s y+l 

(4.28) 

The combination of parameters 1t + a is independent of the non-ideal solid parameter s. So 

from Equations (4.27) and (4.28) it is deduced that non-ideal effects lower the shock 

pressure by a constant, a, and do not affect the shock particle velocity. 

Based on the implications of Equation (4.24), the structure analysis is thus 

conveniently split in two classes, subsonic and supersonic. As wave speed increases from 

subsonic values, the initial pressure at the wave front is the ambient pressure until the 

compaction wave speed is sonic. For wave speeds greater than the ambient solid sound 

speed the initial pressure jumps are dictated by Equation (4.27). A plot of the leading 

pressure versus compaction wave speed is shown in Figure 4.2. 
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As an aside, it is noted that a criterion for a solid equation of state is that the candidate 

equation along with the Rankine-Hugoniot jump conditions be able to match experimental 

piston impact data. Typically parameters for solid equations of state are determined by 

choosing them such that shock data is matched. For voidless HMX (cp = 1) observations of 

shock wave speed as a function of piston velocity are reported by Marsh [55]. By 

rewriting Equation (4.28) in dimensional form, the wave speed D is solved for as a 

function of piston velocity. 

1+"( 
D = --u + 4 p 

(4.29) 

From Equation (4.12), the term "( ("(-1) Cv To is the square of the ambient sound speed for 

the non-ideal solid. In a result familiar from gas dynamics, it can be deduced from 

Equation (4.29) that the minimum steady shock wave speed admitted in response to a 

piston boundary condition is the ambient sonic speed. For values of ,,(, cv, and To listed in 

Table I, the shock wave speed D is plotted as a function of piston velocity up and data from 

Marsh in Figure 4.3. 
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Figure 4.3 Piston Velocity vs. Solid Shock Speed 

The parameter y has been fixed such that there is agreement between the data and the model 

predictions. In the range of piston velocities shown, Equation (4.29) approximates a linear 

D vs. up relation used by other modelers to match this data. 

Subsonic Compaction Waves 

Subsonic End States 

To study subsonic compaction waves admitted by Equation (4.19), a form for f. is 

chosen: 

f. (<I» (4.30) 

This function satisfies the requirements described earlier, namely, it is a monotonically 

increasing function of volume fraction and is constructed such that the system is in 

equilibrium in the initial state. It has the same form as the plastic-phase static pore collapse 

relation given by Carroll and Holt [59]. It is not the Carroll and Holt relation, as the 

leading coefficient in the Carroll and Holt relation is the yield stress of the solid. In 
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Equation (4.30) the leading coefficient is a function of initial volume fraction. Predictions 

of Equation (4.30) approximately match the experimental results of Elban and Chiarito 

[61]. Figure 4.4 compares a curve fit of Elban and Chiarito's data for HMX with the 

approximation given by Equation (4.30). 

300 

200 

100 

Elban and Chiarito's 
CurveFitforHMX-ll ~ 
64.6%TMD 

0.7 0.8 0 .9 

Equation (4.30) 

1.0 

Figure 4.4 Comparison of Static Pore Collapse Data with Predictions of Equation (4.30) 

To locate an end state, Equations (4.24) and (4.30) are solved simultaneously. For 

73% theoretical maximum density (TMD) HMX (volume fraction = 0.73) and a variety of 

subsonic wave speeds, curves of pressure versus volume fraction from Equations (4.24) 

and (4.30) are plotted in Figure 4.5. As wave speed increases, the final volume fraction 

increases. For wave speeds above 600 mls nearly complete compaction is predicted. For 

wave speeds of about 200 mls or lower, no steady compaction wave is predicted. This is 

solely a consequence of the assumed form of f. The form of f chosen crosses through the 

initial point with a positive slope and fails to intersect the pressure-volume fr~ction curves 

for low wave speeds. 

For 73% TMD HMX Figure 4.6 shows plots of compaction wave speed, final 

density, final volume fraction, [mal pressure, and final mixture pressure (mixture pressure 

= pressure * volume fraction) versus piston velocity. Also shown are the observations of 

Sandusky and Liddiard [43] and Sandusky and Bemecker [44] of wave speed and final 

volume fraction and their predictions of pressure. The relatively small density changes 

verify that Baer's incompressibility assumption is a good approximation. Figure 4.7 

shows predictions of compaction wave speed, final volume fraction, and final mixture 
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pressure as a function of initial volume fraction for a constant piston velocity of 100 mls 

along with Sandusky's predictions as reported by Kooker [62]. 

Subsonic Structure 

Equation (4.19) has been numerically integrated to determine the structure of the 

subsonic compaction zone. The integration was performed using the IMSL routine 

DVERK, a fifth and sixth order Runge-Kutta routine. A step size was chosen such that the 

compaction zone structure was described by about 100 points. Using more points had little 

effect on the results. Run times to detennine a structure were less than ten seconds on the 

UIUC Cyber 175 computer. In the numerical integrations pressure, velocity, and fare 

used as given by Equations (4.24), (4.25), and (4.30), respectively. The integration was 

performed starting at ~* = 0 and integrating towards ~* ~ -00. To initiate the integration, a 

small positive perturbation of volume fraction was introduced which in this case causes a 

small positive p~rturbation in pressure. 

Figure 4.8 shows the particle velocity, volume fraction, and pressure in the 

compaction zone for a subsonic compaction wave. Here the piston velocity is lOOmis and 

the initial volume fraction is 0.73. The compaction wave speed is 404.63 mls. For an 

assumed compaction viscosity of 1000 kg/(m s) a compaction wave thickness of 80 mm is 

predicted. Because compaction viscosity defines the only length scale in this problem, 

compaction viscosity only serves to define the compaction wave thickness. For the same 

value of compaction viscosity Baer reports a compaction wave thickness of 31.9 mm. The 

discrepancy could be due to many effects including the definition of compaction zone 

length. It is important to note that the length is of the same order of magnitude. Final 

pressure, wave speed, and final volume fraction are unaffected by the value chosen for 

compaction viscosity. By measuring a compaction wave thickness, an estimate could be 

made for the compaction viscosity. 

Supersonic Compaction Waves 

Supersonic End States 

At 0.73 initial porosity for piston velocities greater than 884 mis, supersonic 

compaction waves are also admitted. Figure 4.9 shows plots of compaction wave speed, 

fmal density, final volume fraction, final pressure, and final mixture pressure as a function 

of piston velocity. These curves encompass both the subsonic and supersonic compaction 
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wave end states. It is seen that the end states are a continuous function of piston velocity. 

In Figure 4.9 the shock wave speed as a function of piston velocity is plotted alongside the 

compaction wave speed. For large wave speeds the predicted shock velocity converges 

with the compaction wave velocity. It is demonstrated next that this is a consequence of 

non-ideal effects having little importance at supersonic wave speeds. Furthermore it will be 

demonstrated that the existence of subsonic compaction waves can be attributed solely to 

non-ideal effects. 

Supersonic Structure 

Equations (4.24) and (4.25) can be simplified in the limit as 0 ~ O. The limit of small 

cr corresponds either to negligible non-ideal effects or large wave speed. In the limit as cr 

~ 0 Equations (4.24), (4.25), and (4.19) can be written as 

(4.31) 

v = v 
• s 

(4.32) 

(4.33) 

Equation (4.32) holds that in this limit the velocity is constant in the relaxation zone 

and is equal to the shocked particle velocity. For s == 0 (that is for an ideal state relation) 

Equation (4.32) is equivalent to Equation (4.29); thus, for an ideal state relation the 

minimum compaction wave speed is the ambient sonic speed. Any subsonic compaction 

wave admitted by the model (Equations (4.19) - (4.23» is a direct conseq~ence of non­

ideal state effects. 

In the strong shock limit D ~ 00, and both 1t and cr ~ O. Equation (4.33) has a 

simple solution in this limit, assuming f. to be sufficiently bounded. (Note that because of 

the logarithmic singularity at <I> = 1, that Equation (4.30) does not meet this criterion. The 

general model is not, however, restricted to a function of this form) In this limit Equation 

(4.33) becomes 
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-= (4.34) 

whose solution is 

<I> = 1 - ( 1 - <1>0) exp( 2 <1>0 ~*) 
y-1 

(4.35) 

In tenns of dimensional parameters, the compaction zone thickness found by equating the 

exponent in Equation (4.35) to one and substituting the expression for piston velocity for 

wave speed is estimated as 

~ 2(y - 1)/J. ) 

Lcomp = (y + 1)p <I> Cu o 0 p 

(4.36) 

The length is proportional to compaction viscosity and inversely proportional to piston 

velocity and the product of density and volume fraction. 

An example of supersonic structure arising from the impact of a 1000 rn/s piston is 

now given. Figure 4.10 shows the particle velocity, volume fraction, and pressure in the 

compaction zone for a supersonic compaction wave. Here the initial volume fraction is 

0.73. The compaction wave speed is 3353.67 m/s and the wave thickness is 2.9 mm. It is 

seen that pressure and particle velocity undergo shock jumps. Volume fraction does not 

undergo a shock jump; however, its derivative does jump at the initial point. 

Compaction Zone Thickness 

It is possible to study the parametric dependence of compaction zone thickness. Given 

a constant compaction viscosity, the model can predict compaction zone thickness as a 

function of initial volume fraction and piston velocity. Should experiments be devised to 

measure the compaction zone, thickness, the experiments could provide a means to verify 

the theory. 

The thickness is defined as the distance at which the ratio of the difference of 
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instantaneous volume fraction and initial volume fraction to the difference of final volume 

fraction and initial volume fraction is equal to 0.99. The final volume fraction is available 

from the algebraic end state calculation. Figure 4.11a shows the compaction zone length 

versus initial volume fraction for a piston velocity of 100 m/s and compaction viscosity of 

1000 kg/em s). It is not understood why the peak in this curve occurs. It is noted that for 

high initial volume fraction, the zone length decreases as initial volume fraction increases in 

accordance with the predictions of Equation (4.36) for supersonic compaction. It is 

speculated that for low porosity a different mechanism dictates the subsonic compaction 

zone length than supersonic length. Figure 4.11 b shows compaction zone length versus 

piston velocity for 73% TMD HMX and compaction viscosity of 1000 kg/em s). The 

compaction zone length decreases with increasing piston velocity in accordance with the 

predictions of Equation (4.36) for supersonic compaction. Figure 4.11c shows 

compaction zone length as a function of compaction viscosity for a 100 m/s piston velocity 

and 0.73 initial volume fraction. As no estimates are available for compaction viscosity, 

compaction zone lengths for a wide range of compaction viscosity have been plotted. 

Though plotted on a log scale, the relationship is truly linear with the compaction zone 

length equal to a constant multiplied by the compaction viscosity. 
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V. STEADY STATE DETONATION WAVE ANALYSIS 

Equations (3.1-15) can be re-cast in a more tractable form using the steady state 

assumption. First the equations are written in dimensionless form. For a right-running 

steady wave the Galilean transformation ~ = x - Dt, v = u - D causes Equations (3.1-8) to 

become eight ordinary differential equations. Here D is a constant defined as the steady 

wave speed. Next, Equations (3.1), (3.3), and (3.5) may be eliminated in favor of 

homogeneous mixture equations formed by the addition of the steady form of Equations 

(3.1) and (3.2), (3.3) and (3.4), and (3.5) and (3.6), respectively. The resultant mixture 

equations and the steady form of Equation (3.7) may be integrated to form algebraic 

equations. Thus the steady two-phase model is described by four ordinary differential 

equations and eleven algebraic equations. 

Dimensionless Steady Equations 

To reduce the number of independent parameters, dimensionless equations are 
introduced. Define dimensionless variables where "*" indicates a dimensionless quantity: 

~ = ~/L v*. = v./D 
2 

P *. = P. I (P'o D ) 
* 1 1 1 1 1 

p. / P'o 
2 

T*. 
2 = r/L p*. = e*. = e./D =c.T./D r* 1 1 1 1 1 1 Vl 1 

1 = 1,2 

Here D is the wave speed; L, a length scale which can be associated with the reaction zone 

length; P'o' the initial density of phase i; c ., the specific heat at constant volume of phase i. 
1 Vl 

Define the following independent dimensionless parameters as 

3 mD2m-l 
1t = ap 

1 10 

1t - P / P 5 - 10 20 

1t3 = h L 2/3 I (p c ID ) 
20 v 

1t =c1/c2 6 v v 

2 
s I (Y2D ) 1t9 = p 20DL I J.1c 1t = 8 

2 
1t1O = q/D 1t - <I> 11 - 10 



7t13 = bp 10 
2 

7t = c 2TO/D 14 v 

and the following dependent dimensionless parameters as 

1-7t 

7t 
IS 

11 
=7t+-~~ 

11 7t 
5 

7t
19 

= [7t7-1]7t67t14[1+7t13] 

7t20 = 1 - 7tn 

7t21 = 7t17 - 1 - 7tS 

"22 = "11 ["6 "14 + ~ + "19] + 1 ~:11 [ "14 + "10 + ~ + "21] 

1 - 7tn 
= 1t11 1t19 + 1t21 

7t5 

45 

Then the dimensionless model differential equations (for compact notation the stars are 

dropped) can be written as 

d<l> 
v _2 = 

2 d~ 
7t 11\ 11\ [p -7t P - 7t <1>] 

9't'1't'2 2 5 1 152 

1t 
<I> P 4 

2 1 
- 7t--

I r 

(5.1) 

(5.2) 

(5.3) 

(5.4) 
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The supplemental algebraic mixture, number conservation, state, and volume fraction 

equations are 

<I> +<1> = 1 
1 2 

Undisturbed conditions for the ambient mixture are 

p = 1 
2 

'" - 1t '1'2 20 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 
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Equilibrium End State Analysis 

To place a first restriction on the steady solutions admitted by Equations (S.l-lS), 

equilibrium end states are considered. It is later shown that the complete reaction state is an 

equilibrium state for Equations (S.1-4). This result can be used at this point to completely 

describe the gas phase equilibrium state. In the complete reaction state the mixture 

equations (S.S-7) allow for the gas phase properties to be determined. For <1>2 = 0 (<1>1 = 1), 

Equations (S.S-7) can be combined to form an equivalent two-phase Rayleigh line (S.16) 

and two-phase Hugoniot (5.17) 

P - 1t = 1t
2 

(1/1t18 - IIp ) (S.16) 
1 23 18 1 

[
e - 1tll

1t
6

1t
14] 1 [p +1t ] [1/p -1/1t ] _ (1-1t 11 )(1t14 +

1tIO) 
1 1t + "2 1 23 1 18-

18 1t51t18 
(S.17) 

From the -state relations (S.9,10) the energy el can be written as el(PI,PI) which is 

substituted into the Hugoniot equation (5.17). The Rayleigh line equation (5.16) allows PI 

to be eliminated in favor of Pl. Substituting this in the reduced Hugoniot equation results 

in a cubic equation for Pl. Depending on the wave speed three cases are possible: three 

distinct real solutions, two equal real solutions and a third real solution, and a real solution 

and a pair of complex conjugate solutions. When three distinct real solutions exist, two are 

analogous to the weak and strong solutions predicted by the simple one-phase theory. The 

third solution has no such counterpart and often is a nonphysical solution with PI < O. A 

sketch of the two-phase Rayleigh lines and Hugoniots for wave speeds corresponding to 

the three classes of solutions is shown in Figure S.1. 

~ 'lWO-PHASEHUGONlOT 

~ STRONG SOLUTION (SUBSONIC) 

Figure 5.1 Sketch of Two-Phase Complete Reaction Rayleigh Line and Hugoniot 
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By imposing the condition that two real roots are degenerate (which forces the 

Rayleigh line and Hugoniot to be tangent) a minimum detonation velocity can be found. 

This will be called the CJ condition. Because the detonation velocity D is contained in the 

dimensionless parameters, it is convenient to return to dimensional variables to express CJ 

conditions. Define the bulk density, bulk pressure, and bulk internal energy p a' P a' and ea: 

p a = p 10<1>10 + p 20<1>20' P a = P 10<1> 10 + P 20<1> 20 

e a 
= PI0 <1>10 e lO + P20 <1>20 e20 

P lO <1>10 + P20 <1>20 

(5.18, 19) 

(5.20) 

The dimensional equations which must be solved to determine the two-phase CJ end state 

are shown next. 

P = P + p2D2f IIp - lIP) 
1 a a\. a 1 

(P + PI) (lip - IIp) cvl1 a 1 a + ------e = 0 
2 Rp (bp + 1) a 

1 1 

dP11 
dp 5.21 

1 

= dP11 
dp 5.22 

1 

(5.21) 

(5.22) 

(5.23) 

Equation (5.21) is the dimensional form of the Rayleigh line equation (5.16), Equation 

(5.22) is the dimensional form of the Hugoniot equation (5.17), and Equation (5.23) is the 

tangency condition. These three equations have been solved by iteration for the three 

unknowns, PI' PI' and D. The equations have an exact solution in terms of a quadratic 

equation in the ideal gas limit (b = 0). The ideal gas solution has been used as a first 

estimate for the iterative solution. 

The effects of a non-ideal gas and small initial bulk pressure on CJ conditions can be 

seen by writing the CJ conditions as Taylor series expansions which are valid in the limit as 

the dimensionless groups bPa and P a/(Paea) approach zero. These expressions were 

obtained with the aid of the computer algebra program MACSYMA and have been verified 

by comparing predictions to the solutions obtained by iteration. (The same technique can 

be used to obtain CJ deflagration conditions for a two-phase material; these conditions are 
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reported in Appendix D). The Taylor series expansions for the CJ detonation condition for 

a two-phase material are given below. The leading coefficients on the right hand sides of 

Equations (5.24-28) are the exact solutions in the limit of no non-ideal gas effects (b = 0) 

and zero initial bulk pressure (P a = 0). The bracketed terms in these equations represent the 

first order corrections for finite non-ideal effects and finite initial bulk pressure. From the 

expressions, it is seen that non-ideal effects tend to raise the detonation wave speed and 

pressure, lower the density, and have no effect on the gas velocity or temperature. Finite 

initial bulk pressure tends to lower the detonation wave speed, pressure, density, and gas 

velocity, and has no effect on the temperature at this order of the expansion. 

J2eaR(R+ 2cvl ) (1 

c
vl 

+ bp -a 

_ 2eaR p ( 1 + bp _ 
c a a 
vi 

2c I + R ( c I c
2

1 v P 1- v bp _ v 
- cvl + R a cv1 + R a 2R(R + 2c

v1
) 

2(c 1+ R) e v a 
T = -CJ - 2c

vl 
+ R c

vl 

(5.24) 

(5.25) 

:.:J (5.26) 

(5.27) 

(5.28) 

For Pa = b = 0 these formulae show that it is appropriate to treat the two-phase CJ 

condition as a one-phase CJ condition using Pa and ea as effective one-phase properties. 

Fickett and Davis [40] give equations for one-phase CJ properties for an ideal gas in the 

limit of small initial pressure. In these equations, one can simply substitute the bulk 

density for the initial density and the bulk internal energy for the chemical energy to obtain 

the two-phase CJ equations. It is important to note that the two-phase CJ properties are 

predicted from the full model equations. The two-phase nature of the conditions is 

embodied in the definitions of bulk properties, which have no one-phase counterpart. 

Figure 5.2 shows plots of the CJ properties predicted by Equations (5.24-28) along 

with the exact CJ properties predicted by iterative solution of Equations (5.21-23). Also 
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plotted on these curves are predictions of CJ properties from the thermochemistry code 

TIGER [54] as reported in Refs. 1 and 47. It is seen that the predictions of the 

approximate formulae more accurately predict the exact solutions for low initial bulk 

density. The improved accuracy for low initial bulk density can be attributed to the form of 

the Taylor series prediction, whose accuracy improves as the dimensionless parameter bPa 

approaches zero. Except for the CJ density, the approximate formulae estimate the general 

trends for a large range of initial bulk densities. 

Equations (5.24, 25) indicate that the CJ state is quite sensitive to the non-ideal 

parameter b, a parameter allowed to vary in Ref. 47 to match CJ TIGER predictions. In 

particular, when the dimensionless group bPa is of order 1, non-ideal effects become quite 

important. This is demonstrated in Figure 5.3 which for constant bulk density plots CJ 

wave speed versus the non-ideal parameter b. This plot was obtained by solving the full 

non-linear equations (5.21-23). 
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Figure 5.3 CJ Wave Speed vs. Non-Ideal Parameter b 

By numerically studying exact two-phase CJ conditions, it can be inferred that the CJ 

point is a sonic point; that is, the gas velocity relative to the wave head is equal to the local 

gas phase sound speed. In addition, numerical studies indicate that for D > DCJ the gas 

velocity relative to the wave head is locally subsonic at the non-ideal strong point, while the 

gas velocity relative to the wave head is locally supersonic at the non-ideal weak point. 

This result agrees with the results of the simple one-phase theory. 
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Shock Discontinuity Conditions 

A shock discontinuity is an integral part of a two-phase detonation. As in one-phase 

ZND theory the shock wave is a discontinuity that raises the pressure, temperature, and 

density of the material, initiating significant chemical reaction. In the context of the one­

dimensional steady model, the shock wave is supported by the chemical energy which is 

released by the reaction; thus the process is self-sustaining. 

The shock conditions are determined from an algebraic analysis and provide the initial 

conditions for integrating the steady equations (5.1-4). These conditions are defined by 

Equations (5.1-15) by assuming that within the shock wave, reaction, drag, heat transfer, 

and compaction have no effect. Thus through the shock discontinuity, differential 

equations (5.1-4) may be integrated to form algebraic relationships. These algebraic 

equations admit four physical solutions: 1) the ambient state, 2) shocked gas, unshocked 

solid, 3) unshocked gas, shocked solid, and 4) shocked gas, shocked solid. 

This model ignores the effects of diffusive momentum and energy transport. If 

included, these effects would define a shock structure of finite width. Here it is assumed 

that the length scales on which these processes are important are much smaller than the 

relaxation scales which define two-phase detonation structure. To the author's knowledge, 

this assumption, common in the analysis of shocked systems, has not been examined either 

experimentally or theoretically for two-phase reactive systems. 

The shock conditions are given below: 

[ P2 <1>2 v2 r = 0 
o 

, [ p 2 <I> + P <I> v~]S = 0 
2 2 2 0 

(5.29) 

(5.30) 

(5.31) 

(5.32) 



55 

Here "s" denotes the shocked state and "0" the undisturbed state. Equations (5.29-32) 

and state relations (5.12, 13) are sufficient to calculate the shock properties for phase two. 

The shock state for the solid phase is independent of the initial porosity. This is apparent 

from Equation (5.32), which says that the porosity does not change through the shock 

discontinuity (<1>25 = <1>20), and from Equations (5.29-31) where it is seen that a common 

factor <1>20 cancels from each equation. For the solid phase there are two solutions to 

Equations (5.29-32): the inert solution and the shock solution. Exact expressions for the 

solid phase shock state are: 

P2S = 
2 - 7C (7C - 1)2 

14 17 -7C 
7C + 1 8 

17 

7C 17 + 1 

T = 2s 

( 2 - 7C1i 7C 17 - 1)2)( 1 + 27C 147C 17 ) 

2 
(7C

17 
+ 1) 

V
2s 

= 

'" = 1-7C 't'2s 11 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

In Figure 5.4, the dimensional solid phase shock pressure is plotted versus the shock wave 

speed. 
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Figure 5.4 Solid Shock Pressure vs. Shock Wave Speed 
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The shock properties for phase one are implied by the mixture equations (5.5-7) and 

state relations (5.9-10). By subtracting the solid shock equations (5.29-31) from the 

respective mixture equations (5.5-7), one obtains gas shock jump equations which are 

dependent only on gas phase properties. As for the solid phase, in these equations a 

common factor of <1>10 cancels from each equation. Three solutions to the gas shock jump 

relations exist: the inert solution, a nonphysical solution, and a shock solution. In the limit 

as 1t13 (or b) approaches zero, the nonphysical prediction of gas density approaches -1/1t13 

and is therefore rejected. The full solution to the non-ideal shocked gas equations are 

lengthy, so here the shocked gas solution in the limit of an ideal gas will be presented. The 

full non-ideal shocked solution is determined by solving a cubic equation described in 

Appendix E. The shocked ideal gas state (b = 1t13 = 0) is described by the following 

equations, which can be easily rewritten as classical ideal gas shock relations by using the 

definitions of the dimensionless parameters to write these equations in dimensional form. 

[

2 -1t141tl1t7 - 1)2] 
1t7 + 1 

1t7 + 1 
P = ....,...--.,..,.......,..,--~--~ 

Is (1t7 - 1) (1 + 21t
14

1t
6

1t
7

) 

(21t141t61t7 + 1) ( 2 - 1t141t6(1t7 - 1)2) 
e ls = TIs = 2 

v = Is 

(1t7 + 1) 

- (1t7 - 1) (1 + 21t
14

1t
6
1t

7
) 

1t7 + 1 

(5.39) 

(5.40) 

(5.41) 

(5.42) 

Figure 5.5 shows a plot of the dimensional gas phase shock pressure versus the shock 

wave speed for the non-ideal gas. 
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Two-Phase Detonation Structure 
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Before studying solutions of the full equations (5.1-15), a simplified model, reduced 

to two differential equations is considered. These equations have a clear geometrical 

interpretation 'in the two-dimensional phase plane. Results from this model will be 

compared to those of the full model. In this section the steps necessary to reduce Equations 

(5.1-15) to two equations will be described. Next, a comparison of acceptable detonation 

structure predicted by the two-equation and full model equations is given. Finally, an 

example is given of an non-physical solution again comparing the results of the two­

equation model with those of the full model, and an explanation is given for why this 

solution is non-physical. 

The steady equations (5.1-15) are simplified significantly when heat transfer and 

compaction effects are ignored. This corresponds to the limit 1t3 ~ 0 and 1t9 ~ O. From 

the definition of the dimensionless parameter 1t3' it can be concluded that in this limit the 

heat transfer in the reaction zone, roughly h L2/3 / D, is small compared to the thermal 

capacity P20cvl. By setting 1t9 to zero, it is assumed that compaction effects are negligible; 

in this limit Equation (5.4) holds that all volume change is due to chemical reaction. This is 

achieved mathematically by allowing the compaction viscosity J.1c to approach infinity. 

In these limits it is possible to integrate Equations (5.1) and (5.3) and write two 

autonomous ordinary differential equations in two unknowns, solid density and solid 

volume fraction, that determine the system completely. All other thermodynamic variables 

can be expressed as algebraic functions of solid density and volume fraction. With the two 

ordinary differential equations it is easy to study the geometry of the two-dimensional 

phase space in the P2-<P2 phase plane. The geometry of the phase plane determines whether 

a detonation structure can exist in theory. 
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To derive the two-equation model requires a lengthy algebraic analysis. Details can be 

found in Appendix E. To summarize the process, state relations (S.9, 10, 12, 13) are used 

to eliminate energy and temperature of both phases in all remaining equations. Number 

conservation (S.8) is used to eliminate particle radius r from all equations. Mixture 

equations (S.S-7) are used to write gas phase properties as algebraic functions of solid 

phase properties. In uncoupling the mixture equations, a complicated cubic equation must 

be solved. One root corresponds to a shocked gas, associated with what is known in one­

phase ZND theory as the strong solution. Another root corresponds to an un shocked gas, 

associated with the weak solution in one-phase ZND theory. The third root is a non­

physical consequence of the virial equation of state; negative gas density, temperature, and 

pressure are predicted with this root. Substitution of these results into Equations (S.1-4) 

yields four ordinary differential equations in four unknowns, P2' 4>2, v2' and P2· 

When the limit 1t3 ~ 0 and 1t9 ~ 0 is considered, combinations of two of these 

equations can be integrated. By eliminating the gradient of volume fraction by substituting 

Equation (S.4) into (S.l), a homogeneous equation is found for the product of solid density 

and velocity. When integrated this gives an algebraic relation between particle density and 

velocity. The solid energy equation (S.3) can then be written in terms of a homogeneous 

relation involving only solid pressure and density by using the integrated mass equation to 

eliminate velocity. Initial conditions are applied corresponding to either a shocked or 

unshocked solid state. These integrated equations allow both solid velocity and pressure to 

be written as functions of solid density. The integrated equations are given below. 

with K= 

1 
v =--

2 P 
2 

1t 
P2=Kp 17 -1t 

2 8 

(S.43) 

(5.44) 

un shocked solid 

Here K is a constant which depends on whether the initial solid state is shocked or 

un shocked. With these results, the momentum equation (5.2) can be used to determine an 

explicit equation for the derivative of solid density. This equation along with the 
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compaction equation (5.4) fonn the two-equation model. The equations which govern the 

structure are written below as 

with f, g, and h defined as follows 

dp 2 = f(p 2' <1>2) 

dS g(p 2' <1> 2) 

d<1> 2 = h(p 2' <1>2) 

dS g(p 2' <1>2) 

(5.45) 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

These equations are expressed in terms of the functions f, g, and h, which are 

functions of P2 and <1>2 only. It is seen from Equations (5.45, 47) that the solid density 

changes in response to drag effects, embodied in the tenns multiplying the drag parameter 

1t2' and chemical reaction effects, embodied in tenns multiplying the reaction parameter 1tl' 

Drag tenns are inherently present in the momentum equation, (5.2), from which Equation 

(5.45) is derived. Reaction effects arise since the momentum equation (5.2) predicts 

changes in momentum due to changes in volume fraction. By substituting the volume 

fraction equation (5.4) into the momentum equation, reaction effects are introduced. 

Effectively then the momentum equation predicts that solid density changes in response to 

drag and chemical reaction in the two-equation model. From Equations (5.46, 49) it is 

seen that volume fraction changes are predicted only in response to chemical reaction. 

Potential equilibrium states exist when f and h are simultaneously zero. From the 

functional fonn of f and h, it is seen that this corresponds to a state where density changes 

due to drag are balanced by density changes due to reaction and where volume fraction 

changes are zero due to complete reaction. 
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When g(P2,<P2) = 0, and f, h ~ 0, infmite gradients are predicted. The condition g = 0 

is either a complete reaction or solid phase sonic condition as described below. Appendix 

E shows in detail how for the two-equation model, the solid phase is sonic when Equation 

(5.51) holds. 

r = 0 

_-_1_ 

1t +1 
P = (n K) 17 

2 17 

(5.50) 

(5.51) 

When either Equations (5.50) or (5.51) hold, forcing g to zero, it is seen from Equation 

(5.49) that h is simultaneously zero. 

The condition g(P2,<P2) = 0 leads to difficulties regarding the division by zero. The 

difficulties in the continuation of the solution through the g = 0 state are removed by 

introducing a new path variable z and considering ~ as an independent variable defined as 

follows 

~(O) = 0 (5.52) 

In terms of the new independent variable z Equations (5.45, 46) are transformed to the 

following equations 

(5.53) 

(5.54) 

Equations (5.53, 54) are autonomous in the Pr<P2 phase plane. Equation (5.52) may be 

thought of as an auxiliary relationship to determine ~ once the structure defined by the 

above equations is detennined. Whether Equations (5.53, 54) should be integrated 

forward or backward in z is a relevant question. The equations should be integrated so that 

~ goes from 0 to -00. From Equation (5.52) it is seen that the direction of change of ~ with 

respect to z depends on whether the solid phase is subsonic or supersonic. If the initial 
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state of the solid is un shocked, the solid is locally supersonic, g > 0, and a negative dz 

corresponds to a negative d~. If the initial state of the solid is shocked, the flow is locally 

subsonic, g < 0, and a positive dz must be chosen to recover a negative d~. 

In the context of this reduced model there are several requirements for an admissible 

detonation structure. An admissible steady structure is defined by an integral curve which 

~ begins at the initial point in the P2-<1>2 plane and travels in that plane to an equilibrium 

position where f and h are simultaneously zero. This point is defined by the intersection of 

the curves f = 0 and h = O. In addition further restrictions are placed on the solution. It is 

required that the gas and solid thermodynamic variables density, pressure, and temperature, 

are always positive and real. Also it is required that all physical variables are single-valued 

functions of the position variable~. Based on these restrictions parametric conditions can 

be obtained for admissibility of a detonation solution. 

The conditions under which thermodynamic variables become either negative or 

imaginary are checked numerically. By examining a few limited cases, it has been found 

that there are regions in the P2-<1>2 plane where gas phase pressure, density, and temperature 

are negative. These regions are bounded by curves in the P2-<1>2 plane where gas density, 

pressure, and temperature are zero. In solving the cubic equation for the gas phase 

properties, imaginary gas phase quantities are sometimes predicted. It has been found 

numerically that the border of the imaginary region corresponds to a sonic condition in the 

gas phase. 

The geometry of the f = 0 and h = 0 curves is critical in determining the integral curve 

which defines the steady state solution. Depending on the relative orientation of these 

curves and the initial state, many classes of solutions, each with a distinct character, are 

available. Some solutions reach an equilibrium state, defmed at the intersection of the f = 0 

and h = 0 curves. The structure of the steady detonation solution is strongly influenced by 

the nature of the eqUilibrium point, which can be classified as a source, sink, saddle, or 

spiral. For example, if the equilibrium point to which the integral curve is drawn is a sink, 

then a continuum of wave speeds are found for which steady detonations are allowed. If 

the equilibrium 'point is a saddle, there is only one wave speed which will bring the integral 

curve to the equilibrium position. For some wave speeds the orientation of the f = 0 and h 

= 0 curves prevents solutions from reaching an eqUilibrium state; these solutions cannot be 

classified as steady solutions. Among these types of solutions are those that pass through a 

solid sonic point and become physically unacceptable, multivalued functions of distance. 

Figure 5.6 shows sketches of phase planes for two classes of solutions, one an acceptable 

detonation structure, the other a nonphysical solution. 
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Figure 5.6 Phase Plane Sketches of Physical and Nonphysical Solutions 

Each sketch shows the separatrix lines f = 0 and g = h = O. The equilibrium position 

is at the intersection of these curves. Each curve shows a solid phase sonic line, g = h = 0, 

forbidden regions in which gas phase properties are not physical, and integral curves which 

originate from the initial condition. For the acceptable structure the integral curve travels 

from the initial state to the equilibrium position. By changing the flow conditions, the 

topology of this phase plane is altered, shown in the adjacent sketch. In this sketch, the 

integral curve is driven through the solid sonic line and is incapable of reaching the 

equilibrium point. As explained below, past the solid sonic line, the solution is double­

valued and therefore not physical. 

Thermodynamic variables become double-valued functions of distance when a solid 

sonic condition (g = 0) is reached at a non-equilibrium point in the phase plane (f,* 0). 

From Equation (5.52), it is seen that the direction of change of ~ with respect to z changes 

when the solution passes through a solid sonic point. Thus~, which starts at zero and 

moves towards -00 as reaction progresses, changes direction and moves towards +00 at a 

critical point ~min when a solid sonic condition is reached. Through this point Equations 

(5.53, 54) predict a continuous variation of density and volume fraction. At the solid sonic 

point the derivatives of P2 and <1>2 with respect to z are finite, and the derivatives with 

respect to ~ are infinite. At any given location ~, ~ > ~min' two values of each 

thermodynamic variable will be predicted. This is physically unacceptable. 
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Results analogous to one-phase ZND theory can be obtained with the two-equation 

model. For the input conditions of Table I, with the heat transfer coefficient h = 0 and 

compaction viscosity Ilc -7 00, an initial porosity greater than 0.19, and an initially shocked 

gas and un shocked solid, a CJ structure can be defined. In these limits there is no heat 

transfer or volume change due to pore collapse. The CJ wave speed is detennined from 

solving the earlier-described equation set (5.21-23). Wave speeds less than the CJ speed 

are rejected because imaginary gas phase quantities are predicted near the complete reaction 

end state. Wave speeds greater than CJ are admitted by this model and correspond to the 

strong ZND solution. Such a wave leaves the gas at a velocity which is subsonic relative to 

the wave front. As in ZND theory, piston support is required to prevent rarefaction waves 

from damping the reaction zone structure. For the CJ wave, the final velocity is sonic and 

no piston support is necessary to support the wave. 

The solution is driven to a sink in the P2-<1>2 plane. To show this point is a sink, one 

first finds the equilibrium point by solving the algebraic problem f(P2' <1>2) = 0, h(p2' CP2) = 

O. The differential equations (4.53, 54) are then linearized about this equilibrium point. 

These linear differential equations can be solved exactly to determine the behavior of any 

integral curve which approaches the equilibrium point. In this study, for an shocked solid 

and shocked or un shocked gas, it was found that all integral curves in the neighborhood of 

the equilibrium point were attracted to the equilbrium point; in the terminology of ordinary 

differential equation theory, that point is classified as a sink. 

The ordinary differential equations of the two-equation model and full, four-equation 

model were solved numerically. Integration was performed using the IMSL subroutine 

DVERK, a fifth and sixth order Runge-Kutta routine, on the VIVC Cyber 175. Step sizes 

were chosen such that none of the fundamental variables, P2, <1>2, v2' and P2' changed by 

more than 5% in value in any given integration step. Typically about two hundred 

integration steps were sufficient to describe the reaction zone. A typical integration took 

twenty seconds to complete. 

For an initial solid volume fraction of 0.70, Figure 5.7 shows a plot of the phase plane 

for a CJ wave speed of 7369 mls. This curve shows the sonic line (g = h = 0) on P2 = 
1.35, the complete reaction line (g = h = 0) on <1>2 = 0 and the f = 0 line. It is seen from this 

curve that the only equilibrium point is at (P2,<I>2) = (1.04, 0). The vector field 

superimposed on this figure, defined by Equations (5.53, 54), shows this point is a sink 

which is confmned by a local linear analysis near the equilibrium point. The integral curve 

connecting the initial state to the equilibrium point is also plotted on this figure. This curve 

is obtained by numerical integration of Equations (5.53, 54). This integral curve moves in 

a direction defined by the vector field of the phase plane. Curves of zero gas phase 
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pressure are plotted in this figure along with the curve defining the boundary between pure 

real and imaginary gas phase quantities. The gas velocity is locally sonic (M12 = 1) on the 

boundary of the region where imaginary gas phase properties exist. This indicates that the 

solution is non-physical if the gas passes through a sonic condition at a point of incomplete 

reaction. 

When the full model equations are considered, general results from the two-equation 

model are retained. It is more difficult to interpret these results as the phase space is four­

dimensional. With a given set of initial conditions, the gas phase CJ end state is the same 

whether the two-equation or four-equation model is used. The solid phase end state and 

details of the reaction zone structure do depend on which model equations are used. Plots 

of predicted detonation structure are shown in Figure 5.8, which plots solid and gas 

density, lab velocity u, pressure, temperature, Mach number, particle radius, and solid 

volume fraction versus distance~. Also plotted on this figure are results from the two­

equation model. It is seen that both models predict results of the same order of magnitude. 

Gas phase quantities are nearly identical for both models. While there are small differences 

in solid phase predictions, these results are remarkable as there is no real basis to assume 

the the limits taken are appropriate for this class of models. These results show that 

material compaction and heat transfer are not important mechanisms in determining two­

phase detonation structure and that there is justification in using the two-equation model as 

a tool for understanding the full model equations. A comparison of some results of the two 

models is given in Table II. 

In Figure 5.8 it is seen that the gas phase is shocked while the solid phase is 

un shocked. It is noted from Figure 5.8c that the gas pressure continues to rise past the 

initial shock gas pressure, in contrast to the results of the simple one-phase ZND theory, 

which predicts the pressure to be a maximum at the shock state. From this maximum, 

known as the "Von Neumann spike," the pressure decreases to the equilibrium CJ 

pressure. It should also be noted that the high gas phase temperature (- 10,000 K) 

indicates that ionization, dissociation, and radiative heat transfer could be important 

mechanisms in the reaction zone. These effects have not been considered but could be 

incorporated into future work. 

Non-physical solutions are now considered. Such solutions exist below a critical 

value of initial solid volume fraction. The critical point is shown in Figure 5.9, which plots 

CJ wave speed versus initial bulk density Pa (Pa = PIO<PlO + P20$:zO). This figure also 

compares predictions of this model with those of the unsteady model of Butler and Krier 

[1] and those of the equilibrium thermochemistry code TIGER given in Ref. 1. The feature 

of a critical initial bulk density has not been identified by other models. 
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Tablell 

COMPARISON OF TWo AND FOUR EQUATION MODEL PREDICTIONS FOR 
CJ W A YES WITH AND WITHOUT LEADING GAS PHASE SHOCK 

Leading Gas Shock No Leading Gas Shock 

Two-Equation Full Two-Equation Full 

Initial Bulk Density 1,333 kg/m3 1,333 kg/m3 1,333 kg/m3 1,333 kg/m3 

Reaction Zone Length 13.00 mm 12.89 mm 62.1 mm 61.7 mm 

CJ Wave Speed 7,369 mls 7,369 mls 7,369 mls 7,369 mls 

CJ Pressure 19.4 GPa 19.4 GPa 19.4 GPa 19.4 GPa 

CJ Density 1,821 kg/m3 1,821 kg/m3 1,821 kg/m3 1,821 kg/m3 

CJ Temperature 4,176 K 4,176 K 4,174 K 4,174 K 

CJ Gas Velocity 1,976 mls 1,976 mls 1,974 mls 1,974 mls 

(CJ Gas Mach Number)2 1 1 1 1 

Maximum Gas Temperature 11,119 K 11,108 K 4,174 K 4,174 K 

Final Solid Pressure 0.716 GPa 0.636 GPa 0.716 GPa 0.636 GPa 

Final Solid Density 1,973 kg/m3 1,962 kg/m3 1,973 kg/m3 1,962 kg/m3 

Final Solid Temperature 349K 344K 349K 344K 

Final Solid Velocity 272 m/s 429 m/s 272 mls 428 m/s 

(Final Solid Mach Number)2 4.82 4.67 4.82 4.67 
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For a value of initial solid volume fraction of 0.20, very near the critical bulk density, 

an acceptable detonation structure is obtained. A phase portrait, vector map, and integral 

curve is shown in Figure 5.10. The figure resembles Figure 5.6, but the curves have all 

been skewed. Note that the integral curve nearly reaches the sonic state before turning 

around and travelling to the complete reaction end state. 

For an initial solid volume fraction of 0.15, a non-physical solution is obtained for a 

CJ wave speed. The two-equation model's phase plane is shown in Figure 5.11. The 

integral curve in this plane passes through the solid sonic line at a non-equilibrium point 

causing the solution to become double-valued. A plot of the solid phase Mach number is 

shown in Figure 5.12 for both the two and four equation models. Again both models 

predict nearly identical results. It is seen from Figure 5.12 that infinite gradients with 

respect to ~ are predicted precisely at the point where the solid phase reaches a sonic 

velocity (M22 = 1). 
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Solutions with no leading shock in either the gas or solid phase are also admitted by 

this model. Figure 5.13 shows the phase portrait, vector map and integral curve for a CJ 

wave with no leading gas or solid shock propagating through a mixture with an initial solid 

volume fraction of 0.70. Again, the eqUilibrium point is a sink. As summarized in Table 

II, the main difference between this case and the case with the leading gas phase shock is 

that the reaction zone is much longer (62 mm vs. 13 mm) for no leading shock in the gas 

phase. Again both two and four equation models predict similar results. The CJ gas phase 

end state is identical regardless of whether the initial gas state is shocked or unshocked, or 

whether the two or four equation model is used. This is because the complete reaction CJ 

state is independent of the structure of the detonation. Small differences in the CJ 

temperatures and gas velocities can be attributed to numerical roundoff errors as the CJ 

state is extremely sensitive to the CJ wave speed. In general the solid end state can vary for 

each state presented in Table II. It is noted that the solid phase end state predicted by the 

two-equation model is nearly the same for both the unshocked and shocked gas as is the 

solid phase end state for the full equation model. 
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For wave speeds greater than CJ, strong and weak waves can be predicted. For an 

initial solid volume fraction of 0.70 and a wave speed of 8,000 rn/s (which is greater than 

the CJ wave speed of 7369 rn/s) Figures 5.14 and 5.15 show plots of the two-equation 

mode1's phase portraits for the strong (initially shocked gas) and weak (initially un shocked 

gas) case. In each case the solid is initially un shocked. The equilibrium points are sinks in 

both cases. The results of these calculations for both twO and four equation models are 

summarized in Table III. For the strong case the reaction zone is shorter than for the 

corresponding CJ wave with a leading gas phase shock. For the weak case the reaction 

zone is longer than for the corresponding CJ wave without a leading gas phase shock. 

Again two and four equation models predict similar results. 

This study predicts a continuum of two-phase detonation wave speeds as a function of 

piston velocity. CJ wave speed is plotted as a function of piston velocity in Figure 5.16. 

For wave speeds greater than CJ, piston support is required to support the wave. The CJ 

wave can propagate with or without piston support as the complete reaction point is a gas 

phase sonic point. . 
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Figure 5.16 Two-Phase Detonation Wave Speed vs. Piston Velocity 

For piston velocities below CJ, a continuum of weak waves are predicted. The 

implications of this are unclear. As the complete reaction point is supersonic, the piston 

support is not necessary. This suggests that the solution may not be unique. Simple one­

phase ZND theory also predicts a continuum of weak waves. Fickett and Davis [40] 
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Table ill 

COMPARISON OF TwO AND FOUR EQUATION MODEL PREDICTIONS FOR 
STRONG AND WEAK DETONATIONS, D = 8,000 Mis 

Leading Gas Shock (Strong) No Leading Gas Shock (Weak) 

Two-Equation EYlL Two-Equation Full 

Initial Bulk Density 1,333 kg/m3 1,333 kg/m3 1,333 kg/m3 1,333 kg/m3 

Reaction Zone Length 10.2 mm 10.1 mm 71.4 mm 70.9 mm 

Wave Speed 8,000 m/s 8,000 m/s 8,000 m/s 8,000 m/s 

Final Gas Pressure 32.3 GPa 32.3 GPa 13.8 GPa 13.8 GPa 

Final Gas Density 2,145 kg/m3 2,145 kg/m3 1,590 kg/m3 1,590 kg/m3 

Final Gas Temperature 5,274 K 5,274 K 3,710 K 3,710 K 

Final Gas Velocity 3,029 m/s 3,029 m/s 1,291 m/s 1,291 m/s 

(CJ Gas Mach Number)2 0.567 0.567 l.99 1.99 

Maximum Gas Temperature 12,526 K 12,514 K 3,710 K 3,710 K 

Final Solid Pressure 0.744 GPa 0.676 GPa .657 GPa .542 GPa 

Final Solid Density 1,975 kg/m3 1,966 kg/m3 1,967 kg/m3 1,953 kg/m3 

Final Solid Temperature 351 K 346K 345K 337K 

Final Solid Velocity 306 m/s 484 m/s 273 m/s 432 m/s 

(Final Solid Mach Number)2 5.63 5.44 5.78 5.66 
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discuss this issue for one-phase theory. Though this issue is still not settled for the one­

phase model, some have suggested that the weak waves may be ruled out as unphysical 

because of a lack of an initiation mechanism. Fickett and Davis show results of more 

complicated one-phase models which indicate that a unique weak wave speed exists when 

such mechanisms as diffusive heat and momentum transfer are taken into account. A 

similar result may hold for two-phase detonations. 
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VI. CONCLUSIONS AND RECOMMEND A nONS 

Compaction Waves 

The piston-impact problem for a compressible porous solid has been solved in the 

context of a steady two-phase model neglecting gas phase effects. With this model, it is 

possible to obtain an exact solution for the compaction wave speed, fmal porosity, and final 

pressure. The degree of accuracy of the predictions can be attributed to the ad hoc 

estimates for the non-ideal solid parameter and the assumed fonn of the static pore collapse 

function, f. Within the framework of this model it is possible to understand the general 

features of a compaction wave. Two classes of compaction waves have been identified, 

subsonic waves with no leading shock, and supersonic waves with a leading shock. It is 

predicted that the magnitude of the supporting piston velocity determines which class of 

wave exists, with low piston velocities resulting in a subsonic structure and high piston 

velocities resulting in a supersonic structure. 

A compaction wave with structure has been predicted because a dynamic pore collapse 

equation has been used. As summarized by Kooker [62], many compaction wave models 

do not consider dynamic pore collapse; rather they enforce static pore collapse (P =0 
throughout the flow field. In zero gas density limit, such an assumption results in a 

compaction wave without structure. The pressure discontinuously adjusts to a static 

equilibrium value. However, it is not established whether two-phase models with static 

pore collapse are hyperbolic, a necessary condition if discontinuities are to be admitted and 

for a well-posed initial value problem. For two-phase models assuming pressure 

equilibrium between phases but not incorporating quasi-static compaction data, 

Lyczkowski, et. al. [53] have identified regimes in which unsteady two-phase equations 

are not hyperbolic. 

There are many ways to extend the compaction wave study. By including the effects 

of the gas phase, it should be possible to determine how the gas phase's presence modifies 

the compaction wave structure. By including the effect of particle size in f, it should be 

possible to model the experiments of Elban, et aI. [63] which show that the static pore 

collapse stress level is a function of both volume fraction and particle size. By considering 

the solid to be composed of particles, it may be possible to model the effect of particle 

breakup on the results when f is assumed to be a function of particle size. 
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Detonation Waves 

It is thought that the most important contribution of this study is that existence 

conditions have been predicted for a steady, one-dimensional, two-phase detonation in a 

granular material. The available detonation solutions are restricted by both algebraic 

equilibrium end state analysis and by an analysis of the structure of the steady wave. 

Though gas phase end state analysis has been performed by many others, it is believed 

that the work here clarifies this analysis by finding simple analogies between one-phase CJ 

conditions and two-phase CJ conditions along with simple corrections for non-ideal gas 

phase effects. These simple two-phase conditions are analogous to, but not identical to, the 

one-phase CJ condition and cannot be obtained a priori from the one-phase model. The 

similarity in results is due to the similarities which exist between the one-phase 

conservation equations and two-phase conservation equations. The common notion that 

one-phase CJ results can be directly applied to two-phase systems is disproved by this 

work. 

The variation of CJ properties with initial bulk density reported here accurately 

matches the TIGER predictions for a single set of gas phase state parameters. Thus it is not 

necessary to vary the gas phase state equation parameters as initial bulk density changes to 

match the TIGER predictions as done by other researchers. In Ref. 47 a virial equation of 

state identical in form to the gas state equation of this study was used. In that study as the 

initial bulk density varied, the value of b was varied within the range from 0.00361 m3Jkg 

to 0.00486 m3Jkg in order to match the TIGER predictions. As shown in Figure 5.3 of the 

present study the CJ properties are very sensitive to changes in b on the order of those 

studied in Ref. 47. In Ref. 2 a JWL gas state equation is used, and it is reported that CJ 

data is adequately reproduced when the constants are allowed to vary with the initial bulk 

density. It is believed that the approach of the present study in detennining CJ properties 

has the advantage over the approach taken in Refs. 47 and 2. Though all the studies flx gas 

state equation parameters so that CJ predictions or data is matched, a single set of 

parameters is used only in the present study. 

An analysis of the structure of a two-phase detonation wave has further restricted the 

class of available steady solutions. The structure analysis has shown that below a critical 

initial bulk density no steady solution can exist when the solid particles reach a sonic state. 

The mathematical consequence of this is that the solution is becomes a double-valued 

function of distance, a physically unacceptable result. This particular result and the general 

technique of using structure analysis to limit the available solutions is new to two-phase 

detonation theory. 
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As a result of this study it is possible to predict the features of a steady two-phase 

detonation structure. It has been shown that when a leading shock wave exists in the gas 

phase and the solid is un shocked, that two-phase equivalents to the one-phase ZND strong 

and CJ solutions are predicted. As in ZND theory, the two-phase theory predicts that 

piston support is required for the strong solution to exist, and that a two-phase CJ 

detonation can propagate with or without piston support. It has also been shown that when 

both the gas and solid phases are unshocked, that the model equations yield two-phase 

equivalents of weak and CJ solutions. These types of solutions are also found using the 

simple one-phase ZND theory but are commonly dismissed because it is thought there is no 

mechanism to initiate reaction. The model yields such solutions because the functional 

form of the combustion model allows a small amount of reaction to occur even at ambient 

conditions. The model allows the small heat released by the reaction to accumulate and 

cause a thermal explosion after an induction time. 

This work has clarified the role of shock jumps in two-phase detonation theory. No 

previous work on two-phase detonation theory has considered the four possible states 

admitted by the shock jump conditions. This study has shown that two-phase detonation 

structure is possible when the gas phase is shocked or unshocked and the solid is 

unshocked. The possibility of a two-phase detonation with a shocked solid has not been 

ruled out; an example of such a detonation has not been found yet. This study does not 

consider how the structure of an un shocked solid and shocked gas can arise. To show 

how this could occur would require an unsteady analysis which is beyond the scope of this 

study. 

To speculate on how such a scenario could develop, on could imagine a slow, 

unconfined burning of reactive particles. If the system were suddenly confined, a local 

region of high gas pressure could develop which could give rise to a propagating shock 

wave in the gas but not the solid. It should also be said that the idea of shocked gas and 

un shocked solid is common in the literature of shock waves in dusty gases. A standard 

assumption is that there is a shock wave in the gas but that the solid particles are 

incompressible, thus un shocked. Rudinger [64] provides an example of such a model. 

This study has for the frrst time unambiguously identified a fmite-valued gas and solid 

complete reaction end state. Though others have discussed the gas phase complete reaction 

end state, the solid end state has never been considered. In each of the physical detonation 

solutions presented here the fmal values of both the solid and gas can be precisely stated. 

In all cases, the complete reaction end state analysis allows the fmal gas phase properties to 

be determined. For the two-equation model, the fmal solid properties can be determined by 

an algebraic analysis without regard to the detonation structure. 
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The complete reaction singularity which exists due to the 11r terms in the governing 

equations leads one to question whether unbounded properties are predicted at complete 

reaction. Previous studies have neglected this question. Here it has been shown that a 

two-phase detonation can be predicted when proper account is taken for the complete 

reaction singularity. 

This study has also identified for the first time the importance of sonic singularities in 

two-phase detonation systems. It has been shown that in general if a sonic condition is 

reached in the solid phase, that double-valued properties are predicted, and that if a sonic 

condition is reached in the gas phase at a point of incomplete reaction, that imaginary gas 

phase properties are predicted. The sonic conditions are particular for each phase and have 

no relation to the mixture sound speed. 

Techniques which are new in the two-phase detonation modeling field have been used 

to simplify the governing equations. An algebraic method for uncoupling the mixture 

mass, momentum, and energy equations to solve for gas phase variables in terms of solid 

phase variables has been developed. It has been shown that the equations can be reduced 

to a set of four uncoupled ordinary differential equations in four unknowns and how in the 

limit of zero heat transfer and compaction these equations reduce to two ordinary 

differential equations. The two-equation model makes it possible to exploit the simple two­

dimensional phase plane to gain understanding of the complete model. Similarity of the 

results of the two and four equation models suggests that heat transfer and compaction are 

not important mechanisms in determining two-phase detonation structure. 

Much work remains to be done in two-phase detonation theory. It is highly likely that 

other classes of steady detonations can be predicted which have not been studied here. The 

complexity of the model equations makes this search a trial and error process. However, 

one can envision several different detonation scenarios by making minor adjustments in the 

relative positions of the separatrices in the two-dimensional phase plane. 

Two-phase steady detonation results can be effectively used in the unsteady two-phase 

DDT problem. Predictions of any unsteady model would be strengthened by comparing 

them to the predictions of a steady model. Unsteady model results can be used to verify 

that the unsupported two-phase detonation wave is a CJ wave. This would simply require 

an examination of the two-phase end state conditions. 

Reaction zone lengths predicted by the steady model must match those predicted by the 

unsteady model. This however raises an important question regarding numerical 

resolution. This study predicts reaction zone lengths of the order of 10 mm. Unsteady 

two-phase models now use a cell size on the order of 1 mm. It is highly unlikely that with 

the ratio of cell size to reaction zone length so high that one could use unsteady results to 
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distinguish features of the reaction zone identified by steady analysis, in particular, shock 

waves. The results are smeared by artificial viscosity and lack of an adequate number of 

cells. Thus the results of this study suggest that a cell size on the order of 0.01-0.1 mm be 

employed in unsteady calculations. Cell sizes of this magnitude present a dilemma. 

Typical particle sizes for detonation applications range from 0.1-1 mm. One assumption of 

continuum modeling of granular materials is a large number of particles exist in any 

averaging volume. If cell sizes of the order of 0.01-0.1 mm are employed, as the results 

suggest is necessary, then the continuum assumptions may not be valid. 

The results of two-phase steady theory can be used as the basis for further studies. At 

this time, the stability of two-phase detonations has yet to be investigated. Also 

multidimensional two-phase theory is undeveloped. It may be possible to obtain a 

relationship to detennine the critical diameter of a cylinder containing a two-phase explosive 

much in the same way these relations have been developed for one-phase materials [65]. 

Finally, it should be possible to -use the method of characteristics to study the unsteady 

two-phase problem in a new way which has the potential to provide more understanding of 

what processes actually cause a two-phase detonation. 
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APPENDIX A. CHARACfERISTIC FORM OF GOVERNING EQUATIONS 

This appendix will identify the characteristic directions and characteristic form of 

Equations (3.1-15). First a simplified, compact form of Equations (3.1-15) is presented. 

This form is useful when deriving the characteristic form of the equations. Because 

Equations (3.1-15) are hyperbolic, it is guaranteed that these equations are well-posed for 

initial value problems. If these equations were not well-posed, any solution to the initial 

value problem would be unstable. This analysis is very similar to the analysis performed 

by Baer and Nunziato [2] for their two-phase model equations. Here the same 

characteristic eigenvalues are obtained. 

Though the characteristic form is not immediately relevant to the work presented in this 

thesis, it could be important for future work in the unsteady DDT problem. The 

characteristic form is in some sense the natural frame in which to study the unsteady 

equations. The unsteady equations are transformed from a set of partial differential 

equations to a set of ordinary differential equations. Previous studies of the unsteady 

problem have used the method of lines to solve the equations (see Ref. 47). With this 

method both time and space derivatives are discretized. Also to describe shock waves, it is 

necessary to use a special technique, such as artificial viscosity or flux-corrected-transport 

(FCT) to spread the shock jump over a few fmite difference cells. When the characteristic 

form of the equations is studied, no shock-smearing method is required to describe shock 

jumps. 

This analysis will follow the technique described by Whittam [66] for determining the 

characteristic eigenvalues and eigenvectors. Consider a system of partial differential 

equations of the form 

dU. dU. 
A.. :l.,J + B .. ~ = C. 

IJ OL IJ oX 1 
(A.!) 

MUltiply both sides of Equation (A.!) by a vector Ii' 

dU. dU. 
1.A.. :l.,J + l.B .. ~ = 1.C. 
1 IJ OL 1 IJ oX 1 1 

(A. 2) 
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The vector Ii is chosen such that Equation (A.2) can be transformed into a system of 

ordinary differential equations. To insure that Equation (A.2) can be transformed to such a 

system, it is sufficient to require that the following condition hold. 

l.B.. = A.l.A.. 
1 IJ 1 IJ 

(A.3) 

where A. is a variable scalar quantity. If Equation (A.3) holds, then Equation (A.2) can be 

written as 

(
au. au.) 

l.A.. -aJ + A.-a J = 
1 IJ t x 

l.e. 
1 1 (AA) 

Equation (AA) can be transformed to an ordinary differential equation on special 

curves in the x-t plane. On curves specified by 

Equation (AA) becomes 

dx 
= A. 

dt 

duo 
l.A. -dJ = l.e. 
1 IJ tIl 

(A.5) 

(A6) 

To get the form of Equation (A.6) it is required that the eigenvalue problem specified by 

Equation (A.3) holds, that is 

I (A. A. - B..) = 0 i IJ IJ 
(A.7) 

For a non-trivial solution to this equation to exist it is necessary that 

det(A. A. - B..) - 0 IJ IJ- (A.8) 
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Solution of Equation (A.8) will provide a set of eigenvalues A.. For each eigenvalue, it 

is then possible to use Equation CA.7) to detennine the vector Ii' This vector will have an 

arbitrary magnitude. Using this vector for the particular eigenvalue, equation (A.6) can be 

used to determine the characteristic ordinary differential equation for the characteristic 

direction of interest. When substituted into Equation (A.6) the arbitrary magnitude appears 

as a factor on both sides of the equation and cancels. 

To study the characteristic form of Equations (3.1-15), it is first important to write 

these equations in the reduced form required by Equation (A. 1). To achieve this form, 

several steps are necessary. First, the gas and solid mass equations are used to eliminate 

density derivatives in gas and solid momentum and energy equations. Next, the reduced 

gas and solid momentum equations are used to eliminate velocity derivatives in the gas and 

solid energy equations. Then the gas and solid Gibbs equations are used in the gas and 

solid energy equations to rewrite derivatives of gas and solid energy in terms of derivatives 

of gas and solid entropy and density. Finally, thermodynamic relations developed in 

Appendix B are used in the gas and solid momentum equations to rewrite derivatives of gas 

and solid pressure in terms of derivatives of gas and solid entropy and density. 

With these steps and adopting Equation (3.16) in favor of the number conservation 

equation (3.7), the unsteady two-phase equations can be written compactly as follows 

d</>. dP i dU. d</>. dP i </>2 [ 1t ] 
p. ~l + </>.- + p.</>.~ + p.u.~ + u.</>.- = ~r 1t

1
P
2
P1

4 

1 OL 1 dt 1 1 oX 1 1 oX 1 1 dX 
(A.9) 

dU. dU. d</>. 2dp. ( 8-1) dS. 1 1 IIp 1 P .</>.-s- + P .</>. u.:r + P':r + </>.c. -s- + </>. . - -2 1t8 -s- = 
1 1 ot 1 1 1 oX 1 oX 1 1 oX 1 1 oX 

(A. 10) 

dS. dS. d</>. d</>. 
p.</> .T.~ + p .</>.T.u.~ - P. ~l - P.u.~ = 

1 1 1 ot 1 1 1 loX 1 OL 1 1 oX 

~{x[p l ~{ e2-ei+"2-U/-
p !Pi ]+X24> [ (U2-U[)(U2-Uj)+X3"'[ (x6T2-T [)r

2i3
} 

(A. 11) 



3 ar 3 ar 1 ap 2 1 ap 2 
--+-u -+---+-u -- = 
r at r 2 ax p at p 2 ax 

2 2 

with 
{

gas phase 

solid phase 

i = 1 

i = 2 

8 = 1 

8 =-1 
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(Al2) 

(A 13) 

Equation (A.9) represents the gas and solid mass equations; Equation (A.lO) 

represents the gas and solid momentum equations; Equation (All) represents the gas and 

solid energy equations; Equation (A.12) is the compaction equation; and Equation (A.13) 

represents a combination of the number conseIVation equation and solid mass equation. 

The algebraic details required to derive the characteristic equations are very lengthy and 

not immediately relevant to this work. For this reason, only the results will be presented 

here. Six characteristic eigenvalues A are found 

(A.l4) 

The characteristics are real and analogous to the characteristics found for one-phase 

equations. 

The characteristic equations have been detennined in the limit when the gas phase is 

ideaL There is nothing in principle preventing the characteristic equations from being 

determined for a non-ideal gas; however, the algebraic details are much more complicated. 

The characteristic directions given by Equation (A.l4) apply to both ideal and non-ideal gas 

phase state equations, and the non-ideal solid assumption has not been relaxed in any 

calculations. Let 11 = 7t7 and "12 = 7t17' The equations in characteristic form in the ideal gas 

limit are 



1 d (P.<1>.) 1 du
l
· 

__ ---:::--1_1_ + _ _ = 
,+. 2 dt;+ - c. dt.+ 

p.'I'.C. ~ 1 n: 
1 1 1 

P. 1 d<1>. 
(y. _ 1) _I ___ I = 

1 2 <1> dt. . p.c. i 10 
1 1 

97 

(A. 15) 

<1>2 { 1t4( 1 2 ) 2/~ + 0 1t P P e2-e.+7(u2-u.) -P./p. +1t <1> (u -u )(u -u.)+1t <1> (1t T -T )r 
yp.<1>.T.r 1 2 1 1 2 1 1 1 2 1 2 1 2 1 3 1 6 2 1 

1 1 1 1 

where the derivatives are defined as follows 

d a a 
-d = '"5"""+ (u. ±c.):r 

ti± ot 1 1 oX 

d a a 
-=-+u.­
dtiO at 1 ax 

(A.16) 

(A. 17) 

(A.18) 

These definitions lead to the following differential equations defining the characteristic 

directions 



dx 
-d = u. ± c. on i± characteristics 
til 

dx 
- = u. 
dt 1 

on iO characteristics 
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It should be noted that Equations (A.lS-16) reduce to familiar one-phase formulae 

given by Courant and Fredrichs [67] in the one-phase inert limit. 
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ApPENDIX B. THERMODYNAMIC RELATIONS 

In this appendix, it will be shown how, given a thennal equation of state for pressure 

as a function of density and temperature, one can derive a thennodynamically consistent 

caloric equation for internal energy as a function of density and temperature. This 

technique will be applied to the virial gas state equation and solid Tait equation. Equations 

for sound speed and partial derivative of pressure with respect to entropy at constant 

density are derived for each phase. The analysis that will follow is well-known in classical 

thennodynarnics and can be found in most thennodynamics textbooks. 

General Analysis 

For this analysis let the specific volume v be defined as v = lip. The task is to derive 

a caloric state equation [e = e(T,v)] given a thennal state equation [P = P(T,v)]. If energy 

is to be a function of temperature and volume, then the differential of energy can be written 

as follows: 

ae I ae I 
de = aT v dT + av Tdv (B.1) 

The Gibbs equation, Tds = de + Pdv, can be used to write an expression for the partial 

derivative of energy with respect to volume: 

ael = T~I -P av T av T 
(B.2) 

The specific heat at constant volume is defined as 

(B.3) 

Equations (B.2) and (B.3) are then substituted into Equation (B.1) to yield the following: 
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(B.4) 

U sing the Maxwell relation 

dPI = ~I 
dTv dV T 

(B.5) 

in Equation (B.4) the following equation is obtained for the differential of energy: 

(B.6) 

which is a convenient fonnula for detennining a caloric equation given a thennal equation 

of state. 

Gas Phase Analysis 

It is assumed that the gas thennal equation of state is given by 

(B.7) 

By substituting Equation (B.7) into Equation (B.6), the following equation is obtained for 

the differential of gas internal energy 

(B.8) 

By making the assumption of a constant specific heat at constant volume, integrating 

Equation (B.8), and setting the arbitrary integration constant to zero, the following fonnula 

is obtained for the gas internal energy: 

(B.9) 
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Internal energy can be written in tenns of pressure and density by substituting Equation 

(B.7) into Equation (B.9) and using the definition of specific volume. 

cYI PI 
e

l 
=-

R P (1 + bp ) 
I I 

(B.lO) 

The Gibbs equation, Tldsl = del - Pl/P12 dPl' can be used with Equation (B.1O) to 

determine an expression for sound speed cl' defined below: 

c2 = aPII 
1 ap S 

I 

(B.ll) 

By using Equation (B.10) to determine the differential of energy in tenns of pressure and 

density and substituting this result into the Gibbs equation, the following expression is 

obtained: 

cYI 1 cYI PI (1 + 2bP
I
) 

= - dP --- dp 
R P (1 + bp) I R p2 (1 + bp)2 I 

I I I I 

(B.12) 

By holding entropy constant (dsl = 0), and using Equation (B.7) to reintroduce 

temperature, Equation (B.12) can be used to determine an expression for gas phase sound 

speed: 

c2 = RT [1 + 2bp + (RIc 1)(1 + bp )2] 
I I I Y I 

(B.13) 

It is easily verified by setting b = 0 that Equation (B.12) reduces to the well-known ideal 

gas sound speed. 

Solid Phase Analysis 

For the solid phase the assumed thermal state equation is 
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(B.14) 

By substituting Equation (B.14) into Equation (B.6), the following expression is obtained 

for the differential of solid energy: 

(B.15) 

By assuming a constant specific heat at constant volume, integrating Equation (B.15) and 

assuming the arbitrary integration constant is the chemical energy q, the following equation 

is obtained: 

(B.16) 

Using the thermal state equation (B.14) and the definition of specific volume, Equation 

(B.16) can be rewritten to give internal energy as a function of density and pressure. 

(B.17) 

As for the gas phase, the sound speed for the Tait solid may be determined by 

considering the Gibbs equation. The Gibbs equation for the Tait solid in terms of 

differential pressure and density, obtained from differentiating Equation (B.17), is 

1 P +p s P2 
T

2
ds

2 
= ---dP - 2 20 dp - -dp 

(y - 1) P 2 (y _ 1) p2 2 p2 2 
2 2 2 2 2 

(B.18) 
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By setting the entropy change to 0 in Equation (B.18), solving for the derivative 

representing sound speed, and using the thermal state equation (B.14) to reintroduce 

temperature, the following formula for the sound speed of a Tait solid is obtained: 

(B.19) 

Equation (B.19) is identical to the formula one finds for the sound speed of an ideal gas; 

when the sound speed is expressed as a function of pressure and density, there is a non­

ideal term present. 
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In this appendix, the momentum and energy equations of this work are compared to 

those of Baer and Nunziato [2]. The differences lie in the particular form of the pressure 

gradient term in the momentum equations and in a term known as compaction work in the 

energy equations. 

Momentum Equations 

The formulation of the momentum equations used in this work, adopted from the work 

of Butler and Krier [1], has been criticized becaJlse it fails to describe the equilibrium 

configuration of solid panicles at rest in a less dense fluid in the presence of a gravity field. 

This is not in dispute. It has been argued that the two-phase equations as formulated by 

Baer and Nunziato are able to describe such a situation and thus are to be preferred to the 

Butler-Krier equations. Here, it is shown that both formulations are in general unable to 

predict the equilibrium situation described above. 

The problem is sketched below in Figure C.l. 

Figure C.l. Sketch a/vertical settling problem 

This sketch shows a mixture of a fluid and solid particles at rest in a tube. Here a 

gravitational acceleration, g, has caused the heavier solid particles to settle to the bottom of 

the tube. 
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Consider the following two-phase model equations, which are inclusive of both the 

Nunziato-Baer and Butler-Krier formulations. 

aUI aU
I 

ap I a<l> 
p <I> --s:- + p <I> u - + <I> -a + KP _1 = - B(u -u ) - p <I> g 

I I Ul I I I ax I x I ax I 2 1 1 
(C.l) 

aU2 aU2 ap 2 a<l> a<l> 
p <I> --s:-+p <I> u2-=-=+a <I> ~a P2 a 2+(1-K)PI-a 

1 = - B(u2-u1)-P <I> g 
2 2 Ul 2 2 x 2 x x x 2 2 

(C.2) 

(C.3) 

Here the subscript "1" represents the fluid phase and the subscript "2" represents the 

solid phase. Equations (C.l) and (C.2) are the momentum equations for the fluid and solid 

phases, respectively. Equation (C.3) is the dynamic compaction equation. Density is 

represented by p, volume fraction by <1>, velocity by u, pressure by P, drag coefficient by 8, 

gravitational acceleration by g, compaction viscosity by Jlc' and static pore collapse 

function by f, assumed to be a function of only the solid volume fraction, <1>2. For K = 0 

these equations describe the Nunziato-Baer formulation, for K = 1, the Butler-Krier 

formulation. 

The following equations partially describe the initial state in the vertical settling 

problem: 

<1>2 (x,O) = hex) 

u
1 
(x,O) = u

2
(x,O) = 0 

(C.4) 

(C.S) 

Here, it is assumed that there is an initial distribution of particles given by a general 

function hex). It is further assumed that both particles and fluid are at rest. 

It would seem that a basic test for any model of this problem is that the model should 

predict that the mixture stays at rest; thus at this initial state, the equations should predict 

that no variables change with respect to time. To insure that no volume changes are 
predicted, a condition on the relation between P2, PI and <1>2 is obtained from Equation 

(C.3): 
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(C.6) 

An equilibrium condition is also obtained from the fluid momentum equation (e.l) by 

using the initial conditions (C.4, 5). For no fluid motion to be predicted, the following 

condition must hold: 

oPI PI db 
- lC-- P g ax - l-hdx- I (C.7) 

For lC = 0, a result identical from one-phase fluid statics is recovered. It has been 

argued [68] that this limit must also be recovered from a two-phase model and that this is a 

sufficient reason to take lC = O. However, it is still not clear whether this familiar result 

should extend to the two-phase situation. 

When the solid momentum equation (C.2) is considered, it is seen that both 

formulations have difficulty describing an equilibrium configuration. By substituting the 

initial conditions (C.4, 5), the compaction equation condition (C.6), and the fluid pressure 

gradient condition (C.7) into Equation (C.2), the following condition is obtained for no 

solid acceleration: 

This equation raises questions regarding equilibrium in the presence of gravitational 

forces and initial volume fraction gradients .. Consider two limiting cases for the Nunziato­

Baer model (lC = 0). In the first case consider a situation in which there is no intragranular 

stress; the particles are in contact but are not exerting a force on each other. This would 

correspond to the condition f = O. In this limit, equation (C.8) predicts equilibrium only 

when the fluid density is equal to the solid densitY, which in general is not satisfied. (In 

this case it is questionable whether the state equations would allow' Equation (C.6) to hold 

also.) In the second case consider the zero-gravity limit, g ~ O. In this limit for Equation 

(e.8) to be satisfied, the static pore collapse function f must be of the form f = constant / 

<1>2' a condition which is not enforced by the Nunziato-Baer model. The condition (C.8) 
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has not been enforced by the Butler-Krier model. It should be said that the Butler-Krier 

model never attempts to describe the situation in Figure c.l. 
From this analysis, it is clear that both the Nunziato-Baer and Butler-Krier model 

equations are incapable of describing an equilibrium state in the presence of either a volume 

fraction gradient or gravity forces unless very restrictive conditions are placed on the 

constitutive relations. Neither of these models currently enforces such restrictions. 

Energy Equations 

Baer and Nunziato have included a term in their model which is intended to model 

experimentally-observed hot spots in granular explosives and the work associated with the 

local distortion of grains when a granular material is compacted. This term, called 

compaction work, appears in both the solid and gas phase energy equations. It is 

constructed such that when compaction work is predicted, energy is removed from the 

solid phase anq. deposited in the gas phase. This local energy deposition gives rise to a 

.local hot spot which encourages a local acceleration of the reaction rate. It is shown by 

Baer and Nunziato that this compaction work term is consistent with but not required by the 

second law of thermodynamics. 

Here, it will be shown that the presence of compaction work gives rise to a 

fundamental inconsistency in the limit of an inert mixture where the ratio of initial gas 

density to initial solid density is small. In this limit the steady-state mixture energy 

equation predicts a result inconsistent with the solid energy equation. It is shown that the 

solid energy equation in this limit gives rise to energy escaping from the system. 

Consider the following equations, general equations which encompass the gas and 

solid energy equations of both models. 

d r p <p (e1+u2
112)] + d r p <p u (e1+u

2
112)+P <p u ] _ 8P u d<P1 = 

ati11 axt.111 111 12dX 

- h(T\-T2) + a(u2-u\)U2 -c;( e2+u;n) + I) <I>~ <l>2( P2-P \-f(<I>2»)( P 2-f(<I>2») (C.9) 
c 
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MOOel of this Work 

Baer-Nunziato MOOel 

The new notation introduced here is that h is considered to be a general function 

specifying the heat transfer coefficient, likewise ex is taken to be a general function 

specifying the drag coefficient, and Cs + is a general function specifying the combustion rate. 

The parameter 8 is used to distinguish the two model formulations. 

When Equations (C.IO) and (C.11) are added, a homogeneous. unsteady mixture 

energy equation is obtained. 

iip I<PJ el+u~fl )+p2<PJ e2+u}2)] + 

:J p l+lul el+u~fl) + Pl<Plul + P2+2u2( e2+u}2) + P2+2U2] ~ 0 (C.lI) 

It is argued by Baer [45] that in the limit where material is inert (cs + = 0) and where the 

effect of the gas phase is negligible that Equation (C. I 0) reduces to the following 

(C.12) 

If Equations (C.ll) and (C.12) are transformed to steady dimensionless form and the limit 

of zero gas phase density is taken, the inconsistency becomes apparent. Using the same 

technique and nomenclature found in the main text for writing steady dimensionless 

equations, it is found that Equation (C.11) transforms to the following (equivalent to 

Equation (5.7» 
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(C.l3) 

In the limit of zero gas phase density, 1t5 is zero. Thus in this limit the steady mixture 

equation (C. 13) becomes 

(C.l4) 

The steady dimensionless form of Equation (C.l2) is 

(C.l5) 

It is obvious that Equations (C.l4) and (C.l5) are consistent only when 0 = 0, that is when 

compaction work is ignored. 

Inclusion of compaction work leads to violation of the conservation of energy in the 

zero-density gas phase limit. This is easily seen by considering the application of the 

unsteady energy equation (C.l2) to the following problem (see Fig. C.2). Strike with a 

piston a constant area tube closed at one end containing a porous material. After a period of 

time bring the piston to rest The piston motion induces a pressure imbalance in the porous 

material (i. e. (P - f) > 0). After the piston is brought to rest, a zero velocity boundary 

condition must be enforced at both ends of the tube. However the material inside the tube 

is not in a state of equilibrium. 
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x=o x=L 

Figure C 2 Sketch of Piston Problem 

By integrating the energy equation (C.12) from x = 0 to x = L, it is seen that for 0 = 0, the 

energy of the system is conserved and for 0 = 1, energy leaves the system as time 

progresses. The time rate of change of energy per unit cross-sectional area for this system 

is 

(C.16) 

For 0 < <I>z S 1, the integrand of the right hand side of the total energy equation is always 

positive; therefore, for 0 = 1, energy leaves this syste~, and for 0 = 0, energy is 

conserved. In order to preserve energy conservation in this limit, and in light of the fact 

that compaction work is not necessarily required by the second law of thennodynamics, 

compaction work is not included in this model. 

It is concluded that though it may be important to model hot spot fonnation, the 

proposed mechanism of compaction work has an inherent flaw, and in order to model such 

phenomena another model must be proposed. To model hot spots in a granular material 

which arise from the material compaction is difficult in the context of a two-phase mixture 

model. One would need to devise a way to non-uniformly distribute the energy introduced 

to the system by the piston (P dV work) to the particles. The non-uniform distribution 

would allow some particles to have higher temperatures than others, thus giving rise to 

local "hot spots." It is unclear how this can be achieved with a two-phase mixture model 

which relies on averaged properties. In fact one of the strengths of two-phase modeling is 

that details of microstructure do not need to be considered as these local variations are 

eliminated in the averaging process. For this reason, it may be impossible to attempt to 

describe hot spots with a two-phase mixture model. 
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APPENDIX D. TWO-PHASE CJ DEFLAGRATIONS 

It is possible in principle to use the two-phase model to study two-phase deflagrations, 

reactive waves which travel much slower than detonations and which have a much lower 

pressure, temperature, and density rise. Because of the more moderate changes in the state 

of the gas, the ideal gas state equation is appropriate for use in studying two-phase 

deflagrations. Understanding of two-phase deflagrations can be gained by studying the 

complete reaction two-phase Rayleigh line and Hugoniot equations (5.21, 22) in the P!­

liP! plane (see Fig. D.l). 

~ TWO-PHASE HUGONIOT 

WEAK SOLUTION (SUBSONIC) 

STRONG SOLUTION (SUPERSONIC) 

TWO-PHASE RAYLEIGH LINE 

lip 
1 

Figure D.l Two-Phase Complete Reaction Deflagration Rayleigh Line and Hugoniot 

Deflagration solutions are found at the intersection of these two curves at gas pressures 

lower than the initial apparent pressure P a and gas densities lower than the initial apparent 

density P a. It is possible to predict a maximum deflagration wave speed, called here the CJ 

deflagration speed. At the CJ deflagration state, the two-phase Rayleigh line is tangent to 

the two-phase Hugoniot. For wave speeds greater than the CJ deflagration speed, but less 

than the CJ detonation speed, there is no intersection of the two-phase Rayleigh line and 

Hugoniot and thus no solution. For wave speeds less than the CJ deflagration speed two 

solutions are obtained, a strong and weak deflagration solution. 

For an ideal gas the complete reaction CJ wave speed is given exactly by the following 

equation using the nomenclature of Chapter 5. 
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2 
(2c I+R) Re - c IP /p ± D2 = v a v a a 

CJ 

(2c +R)(e
2
R

2
(2C I+R) - (2e +P /p )C

2
IP RIp ) vI a v a a a v a a 

2 
c

vl 

(D.1) 

Here the plus branch of this equation corresponds to the CJ detonation state and the 

minus branch corresponds to the CJ deflagration state. When P a1(Paea) « 1, the CJ 

deflagration state simplifies considerably. In this limit, which is relevant for many physical 

systems including the HMX system studied in this thesis, the CJ deflagration state is 

approximated by the following equations. 

1t7 _a_ 
( 

P ) 
p CJ == 2( 1t - 1) peP a 

7 aa 

e 
T::: 2 a 

CJ - 1t
7

(1t
7 

+ 1) c
vl 

2 

2(1t
7 

- 1) 
--~e 

1t7 + 1 a 

(D.2) 

(D.3) 

(D.4) 

(D.5) 

(D.6) 

(D.7) 

It is important to stress that beyond describing the maximum speed two-phase 

deflagration wave the interpretation of Equations (D.2-5) is unclear. At this point it is not 

known whether a steady two-phase deflagration structure can be predicted by the model 

equations (5.1-15) and if such a structure could be predicted, what conditions would dictate 

whether a CJ, strong, or weak deflagration was obtained. A limited study was undertaken 



113 

to find steady deflagration structure with no success. This study included CJ deflagrations 

along with strong and weak deflagrations. Kuo and Summerfield have found steady two­

phase deflagration structure using a similar model [37]. Also both the Kuo and 

Summerfield model and the model of this work have neglected diffusive processes such as 

heat conduction and viscous momentum transport which may be very important for the 

relatively slow deflagration waves. 
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ApPENDIX E. DERIVATION OF UNCOUPLED EQUATIONS 

This appendix will provide a detailed explanation of how the coupled set of 

differential-algebraic equations describing steady detonation structure (S.l-lS) can be 

written as four differential equations in four unknowns and how in the zero heat transfer, 

zero compaction limits these equations can be further reduced to form the two-equation 

model (S.4S-46). First, it will be shown how through an algebraic analysis the mixture 

equations (S.S-7) can be used to write gas phase quantities in terms of solid phase 

quantities. It is found that this process involves the solution of a cubic equation. Next the 

coupled differential equations (S.1-4) are uncoupled using linear algebra techniques. It is 

then shown how these equations reduce to the two-equation model. 

The mixture equations (S.S-7), solid and gas caloric state equations (S.13, 10), and 

porosity definition (S.lS) are rewritten here 

1 
P <I>v +-P<I>v =-1t 

1 1 1 1t 2 2 2 18 (E.1) 
5 

P I <I> I v~ + PI <1>1 + : [ P 2<1>2 v; + P2<1>2] = '\8 + "23 (E.2) 
5 

PI 'I vI [el + :~ <:] + :/2 '2 V2[ e2 + 1 <:] = 

P 2 + 1t171tg 
e2 = + 1tIO 

(1t
17

-1)p
2 

PI 
el = --------

(1t7 - 1) PI (1 + 1t13P I) 

<I> +<1> = 1 
I 2 

-1t 
22 (E.3) 

(E.4) 

(E.S) 

(E.6) 

By using Equations (EA) and (E.5) to eliminate gas and solid energy in Equation 

(E.3) and Equation (E.6) to eliminate gas volume fraction in Equations (E. 1-3), Equations 

(E.1-3) can be rewritten as follows 
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(E.7) 

(E.8) 

(E.9) 

where A, B, C, and D are functions of solid density, volume fraction, velocity, and 

pressure defined below 

(E.lO) 

(E.ll) 

(E.ll) 

Equations (E.7-9) can be combined to form a cubic equation for gas density. This is 

done by first using Equation (E.7) to express gas velocity as a function of gas density and 

solid variables. Then gas velocity may be eliminated from Equations (E.8) and (E.9). 

Thus modified, Equation (E.8) can be used to express gas pressure as a function of gas 

density and solid variables. This result is used to eliminate gas pressure from the modified 

energy equation (E.9). The resulting equation is a cubic equation for gas density whose 

coefficients are functions of the solid phase density, volume fraction, velocity, and 

pressure. 
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[- 2(7t7 - 1)7t13C] pi + [2(7t7 - 1)(AB7t13 - C)] P~ + 

[ 2AB7t7 - (7t7 - I)A
3

7t13] PI - [ (7t7 + I)A
3
] = 0 (E.12) 

Equation (E.12) can be solved exactly for gas density in tenns of solid phase variables 

and parameters. The solution is very lengthy and can be easily produced using the fonnula 

for solution to the general cubic equation. Three roots are found for Equation (E.12). One 

is associated with a shocked gas and is analogous to the strong branch of the ZND 

solution. Another is associated with an un shocked gas and is analogous to the weak 

branch of the ZND solution. The third predicts a negative density for all cases studied and 

is rejected as unphysical. This root is not present when non-ideal gas effects are absent. 
(It is seen from Equation (E. 12) that for no non-ideal effects, 7tl3 = 0, that the equation is 

quadratic, and only two roots are present.) It is possible for Equation (E.12) to predict a 

pair of imaginary roots under certain conditions. If such a condition was reached, the 

detonation structure must be rejected as unphysical. In addition to solving for the gas 

phase variables within the reaction zone, Equation (E.12) is used to determine the shock 

state of the gas. 

With the gas density predicted from Equation (E.12) as a function of solid phase 

variables, all other gas phase variables can be expressed as functions of solid phase 

variables. The gas velocity is found by using Equation (E.?). The gas pressure can then 

be determined from Equation (E.8) and the energy from the state equation (E.5). The gas 

temperature and sound speed can then be found using Equations (5.9,11). 

In the numerical code which predicts reaction zone structure, Equation (E.12) was 

solved using the IMSL subroutine ZRPOL Y. Though one could use the exact cubic 

solution to determine the gas density, the numerical accuracy of the solution is higher when 

ZRPOL Y is used. Given a general polynomial equation, the subroutine ZRPOL Y 

determines all roots, real and complex. 

Equations 5.1-4 can be expressed in the form 

duo 
A.._J = B. 

IJ d~ 1 
(E. 13) 

where Uj = (P2' ~, v2' P2) and Aij and Bi are functions of P2' ~, v2' and P2. To put the 

equations in a form suitable for phase space analysis, explicit expressions for the 



117 

derivatives du/d~ must be obtained. This is done by multiplying both sides of Equation 

(E. 13) by the inverse of Aij• 

duo 1 
_1 = A~. B. 
d~ IJ J 

One necessary step to express Equations (5.1-4) in this form is to use the solid caloric 

state equation (5.13) to determine an expression of the derivative of solid energy in terms 

of solid pressure and density. This derivative is given below: 

de2 1 dP2 -- (E.14) 
d~ (1t

17 
- 1) P

2 
d~ 

Expanding the derivatives in Equations (5.1-4) and using Equation (E.14) allows a 

system in the form of Equation (E.13) to be written. 

dp 
_2 

<l>2v2 P2v2 P2<1>2 0 d~ 1t4 
-1t 1 P 2<1>2 P 1 / r 

0 P2 P2<1>2v2 <1>2 
d<l>2 

-1t2 (v 2 -v 1)<1> 1 <1>2 / r 
d~ 

P 2+1t171t8 v2 
= 

- 0 P2 dV2 
1/3 v2 (1t

17
-1) 

-1t
3

(1t
6 
T2-T1)<I>l / r 

(1t
17

-1)p
2 d~ 1t4 

0 v2 0 0 dP2 
1t9<1> 1 <1>2 (P 2 -1t 5P 1-1t 15<1> 2)-1t 1 <1>2 PI 'Ir 

--
d~ 

(E.15) 

The left side of Equation (E.15) is expressed in terms of the fundamental variables P2' <1>2' 

v2, and P2. The right hand side can also be expressed in terms of these variables. The 

method described earlier in this appendix can be used to write the gas phase variables VI' 

PI' and TI as functions of the fundamental variables. The number conservation equation 
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(5.8) and solid thermal state equation (5.12) can be used to express the radius r and solid 

temperature T 2 as a functions of the fundamental variables. 

By multiplying both sides of Equation (E.15) by Ai{l, explicit expressions can be 

obtained for the derivatives of the fundamental variables. 

dp 
_2 = (E.16) 
dS 

(E.17) 

(E.18) 

(E.19) 

where D, E, and F are defined as follows 

(E.20) 

(E.21) 



<1>1 
F = - 1t (1t T - T )-

36211/3 
r 

Equations (E.16, 18, 19) are singular when the following condition is met 
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(E.22) 

(E.23) 

By using the solid thermal state equation (5.12) to eliminate solid pressure and density 

in favor of solid temperature and using the solid sound speed definition (5.14) it is seen 

that Equation (E.23) can be rewritten as 

(E.24) 

Thus when the velocity of the solid relative to the wave head is locally sonic, the system of 

equations (E.15) is singular. It is seen by examination of Equations (E.21-22) that the 

equations are also singular at the complete reaction state because the particle radius r 

appears in the denominator of the expressions for E and F. 

The two-equation model can be derived form Equations (E.16-22). To derive the two­

equation model, one must consider the zero-compaction, zero-heat transfer limit, 

corresponding to 1t9 ---+ 0, 1t3 ---+ O. In this limit, Equations (E.20, 22) hold that D = F = O. 

Then if Equation (E. 16) is multiplied by solid velocity and added to the product of solid 

density and Equation (B.18), the following homogeneous equation is obtained. 

dp dV2 
v_2 +p-=O 

2 dl; 2 dl; 

TIlls equation can be integrated to form the algebraic relation 

P v =-1 2 2 

(E.25) 

(E.26) 
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In applying the initial conditions when integrating this equation, it is unnecessary to 

specify whether the initial state is shocked or unshocked. This arises because Equation 

(E.26) is equivalent to the shock relation (5.29) when it is considered that porosity does not 

jump through the shock wave. 

To determine a second algebraic relation, Equation (E.26) must first be used to 

eliminate solid velocity in favor of solid density in all remaining equations. Then if 

Equation (E.19) is multiplied by the factor 

1 

and added to the product of Equation (E. 16) and the factor 

the following homogeneous equation is obtained 

(E.27) 

This equation may be integrated to form an algebraic relation between solid pressure 

and density. The constant of integration for this expression is dependent on whether the 

initial state is shocked or unshocked. 

1t 
P =Kp17_1t 

2 2 8 
(E.28) 

with K= 

unshocked solid 
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When Equations (E.26) and (E.28) are used to eliminate solid velocity and pressure 

from Equations (E.16) and (E.17), the two-equation model is found. 

(E.29) 

1t 
dtt. tt. p 4 

~ = 1t P2'+'2 1 
d~ 1 r 

(E.30) 

By multiplying the numerator and denominator of the right side of Equation (E.30) by 

the factor 

1t +1 
1t Kp 17 - 1 

17 2 

the form of Equations (5.45, 46) is found. 
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APPENDIX F. DERIVATION OF NUMBER CONSERV ATION EQUATION 

As the number conservation is not universally used in two-phase granular detonation 

theory, a derivation for the number conservation equation (3.7) along with Equation (3.16) 

is given here. 

The volume fraction of particles <i>2 is defined as the ratio of the volume of particles to 

the total volume. 

Volume Particles 
<j) 2 = Total Volume (F.l) 

If it is assumed that the particles are spheres of radius r, then the volume of particles is 

equal to the product of the number of particles and the volume of a single particle. Based 

on this assumption Equation (F.l) is written as 

(Number of Particles) ± 1t ? 
3 

Total Volume 
(F.2) 

If the number density n is defined as the number of particles per total volume, then 

Equation (F.2) can be used to determine an expression for number density as a function of 

particle radius and solid volume fraction. 

n = (F.3) 

By performing a simple control volume analysis, an expression for the conservation of 

number density can be derived. The expression is 

(F.4) 
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This equation could be modified to describe the agglomeration or splitting of particles by 

use replacing the zero on the right side of Equation (F.4) with a functional relation suitable 

to describe such a phenomenon. 

Substituting the number density defmition (F.3) into the number conservation equation 

CF.4), an equation identical to Equation C3.7) is derived. 

~(<I> I?) + ~(U2<1> Ir3) = 0 at 2 ax 2 
CF.5) 

U sing the Galilean transfonnation ~ = x - Dt, v2 = u2 - D where D is the steady wave 

speed allows Equation CF.5) to be written in steady fonn. 

(F.6) 

Using the initial conditions from Chapter 3, Equation (F.6) may be integrated to 

provide the following algebraic expression for particle radius as a function of particle 

velocity and volume fraction 

!*.v <I> 
r = r 3 2 2 

o D <I> 
20 

(F.7) 

To obtain an explicit equation for the particle radius evolution, Equation CF.5) can be 

expanded. 

(F.g) 

The solid mass equation (3.2) can be used to write an expression for the derivative of 

solid volume fraction. 
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= _ <1>2 [ap 
2 + u ~] _ (3'<1> aPm 

p at 2 ax r) 2 1 
2 

(F.9) 

By using Equation (F.9) to eliminate the volume fraction derivative in Equation (F.8), 

an expression identical to Equation (3.16) for the evolution of particle radius is obtained. 

(F.lO) 

This equation states that the particle radius changes in response to combustion and 

compressibility effects. Equation (F.lO) is inconsistent with the model equation used 

formerly by Krier and co-workers to determine the particle radius. As stated in Ref. 1, the 

particle burn law used in these works is (correcting for a sign error in the paper) 

dr m 
= -aP 

dt 1 
(F.ll) 

In this equation the defmition of the derivative dldt is unclear as to whether or not 

convective terms are included. Regardless of this question, it is clear that Equation (F. 11) 

does not account for compressibility effects in the particles. It must be concluded that since 

Equation (F.11) is inconsistent with Equation (F.lO) that the model of Ref. 1 does not 

conserve number; thus, the physical motivation of Equation (F. 1 1 ) is unclear. 
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