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Theory of Two-Phase Detonation--Part II: Structure 
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The structure of a two-phase steady detonation in a granulated solid propellant is studied, and existence conditions 
for a one-dimensional, steady two-phase detonation are given. Ordinary differential equations from continuum 
mixture theory are solved numerically to determine steady wave structure. In the limiting case where heat transfer 
and compaction effects are negligible, the model reduces to two ordinary differential equations that have a clear 
geometrical interpretation in a two-dimensional phase plane. This two-eqnation model predicts results that are 
quite similar to thoge of the full model. This suggests that in the limited parameter space studied heat transfer 
and compaction are not important mechanisms in determining the detonation structure. It is found that strong and 
Chapman-Jouguet (CJ) detonation solutions with a leading gas phase shock and unshocked solid can be admitted, 
as can weak and CJ solutions with an unshocked gas and solid. As for one-phase materials, the CJ wave speed is 
the speed of propagation predicted for an unsupported, one-dimensional, two-phase detonation. It is predicted that 
there is no admissible CJ structure with a single leading gas phase shock and unshocked solid below a critical value 
of initial bulk density. This result cannot be predicted from equilibrium end state analysis. Thus it is concluded that 
it is essential to consider reaction zone structure when assessing potential solutions. 

N O M E N C L A T U R E  

A funct ion o f  solid phase variables 

h i j  matr ix  funct ion o f  solid phase variables 

B funct ion o f  solid phase variables  

n i  vec tor  o f  solid phase variables  

co specific heat  at constant  vo lume  

C funct ion o f  solid phase variables  

D steady wave  speed or  funct ion o f  solid phase 

variables  

e internal energy  

E funct ion o f  solid phase variables  

f funct ion o f  solid density and vo lume  fract ion 

F funct ion o f  solid phase variables  

g funct ion o f  solid density and v o l u m e  fract ion 

h heat  t ransfer  constant  or  funct ion o f  solid 

density and v o l u m e  fract ion 

i subscript ,  i - -  1, gas; i = 2, solid 

ig igni t ion 

oo 10-2180/90/$3.50 

K shock constant 

L length scale 

m burning exponent  

M Mach  number  

P pressure  

q chemica l  energy  

r par t ic le  radius 

R gas constant 

T t empera tu re  

uj  vec tor  o f  solid phase variables  

o veloci ty  in wave  f rame 

z progress  var iable  

Greek Symbols 

et burning constant  

B drag constant  
3' Grune i sen  coeff icient  +1  

/Zc compac t ion  viscosi ty  
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distance in wave frame 
a" dimensionless parameter 
p density 
tr non-ideal solid parameter 
~b volume fraction 
oJ sound speed 

INTRODUCTION 

Deflagration-to-detonation transition (DDT) in 
granular solid propellants is an important unsolved 
problem. Experiments by Griffiths and Groocock 
[1] and Bernecker and Price [2, 3] have demon- 
strated the transition to detonation in granular 
HMX. Many researchers have modeled the DDT 
process using one-dimensional two-phase reactive 
flow models. The work of Butler et al. [4] showed 
for the first time in the archival open literature that 
a two-phase model could predict a transition from 
a deflagration to a steady detonation. Since then 
many models have been presented that describe 
the transient processes that can ultimately lead to a 
steady detonation in a two-phase mixture. Among 
these models are those of Butler and Krier [5], 
Baer and Nunziato [6], Baer et al. [7], Akhatov 
and Vainshtein [8], and Markatos [9]. 

Although unsteady two-phase flow equations 
have been used extensively to model DDT, the 
more fundamental problem of two-phase steady 
detonation has largely been ignored. In the field 
of solid propellant combustion, only the work of 
Krier and Mozafarrian [10] considers steady det- 
onation solutions to the two-phase reactive flow 
equations. This work is of limited value because of 
the assumption of an incompressible solid phase. 
In addition there is question as to whether the un- 
steady form of the model equations of this work 
are hyperbolic [11]. Multiphase steady detonation 
theory has been studied by Sharon and Bankoff 
[12] and Condiff [13] as it applies to vapor explo- 
sions in mixtures of hot liquid metals and water. 
Large differences in the assumptions and consti- 
tutive theory prevent a direct application of this 
theory to the problem of steady detonation in gran- 
ulated propellants. 

There are many reasons to study steady two- 
phase detonation theory. As opposed to unsteady 
DDT theory, which considers solutions to time- 

dependent partial differential equations, the steady 
two-phase detonation is described by the solution 
of ordinary differential equations. This allows the 
use of the powerful technique of phase space anal- 
ysis to describe the solutions. In addition with the 
steady equations, it is not necessary to use spe- 
cial numerical techniques to describe shock dis- 
continuities. Instead the shock state is specified by 
an exact solution to algebraic shock discontinu- 
ity equations. Predictions of steady theory can be 
compared to predictions of steady detonations by 
unsteady models as an additional means of ver- 
ification of those models. In addition knowledge 
of the steady solution is necessary for stability or 
multidimensional studies. 

There are several shortcomings to current two- 
phase detonation theory. First and foremost, there 
is no clear link between two-phase detonation the- 
ory and one-phase CJ and ZND detonation theory. 
As described by Fickett and Davis [14], one-phase 
CJ theory identifies three classes of detonation end 
states that depend on the velocity of a supporting 
piston: a weak, strong, and CJ end state. Because 
the gas velocity relative to the wave head is sonic 
at the CJ end state, the CJ wave can propagate 
without disturbance from trailing rarefactions and 
thus is a potential equilibrium end state for an un- 
supported detonation. The strong end state is sub- 
sonic and thus requires piston support to maintain 
a steady speed. The weak end state is supersonic 
and thus not ruled out by CJ theory. ZND the- 
ory describes the structure that links the ambient 
state to the equilibrium end state described by CJ 
theory. In its simplest form, one ordinary differen- 
tial equation is integrated to describe the reaction 
zone structure. The structure consists of an inert 
shock discontinuity that initiates the reaction fol- 
lowed by a zone where the reaction goes to com- 
pletion. ZND theory rules out the weak state for 
a detonation with a simple one-step irreversible 
reaction with a leading shock. ZND theory iden- 
tifies a structure linking the shocked state to both 
the strong and CJ end states. As most two-phase 
detonation studies have concentrated on transient 
events, there has been little discussion describing 
two-phase detonations in the context of this estab- 
lished one-phase theory. 

There are other more specific deficiencies in 
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current two-phase theory. First, current two-phase 
detonation theory does not identify the role or 
necessity of either shock jumps or sonic points 
in the detonation structure. The role of both is 
clearly identified in the one-phase theory. Next, 
in most two-phase detonation studies, the equilib- 
rium end states are not identified. Powers et al. 
[15] have studied the complete reaction gas phase 
end state and identified two-phase equivalents to 
the CJ, strong, and weak solutions. To find these 
equivalents, it was necessary to assume that the 
complete reaction state was an equilibrium end 
state. This assumption is questioned because the 
model equations for two-phase granular materials 
are singular at the complete reaction state. The 
singularity arises because the forcing functions in 
the governing equations are inversely proportional 
to the particle radius, which approaches zero near 
complete reaction. The effects of this singular- 
ity have not previously been examined. Finally, 
steady two-phase detonation structures predicted 
by unsteady models do not contain enough resolu- 
tion to distinguish details of the structure. In Refs. 
5 and 6, it appears that the steady detonation reac- 
tion zone structure is defined over a small number 
of finite difference cells. As the shock wave is also 
spread through these cells, it is difficult to distin- 
guish the shock from the reaction zone. 

This article focuses on a comparison of two- 
phase detonation theory to one-phase detonation 
theory, the technique and peculiarities of two- 
phase steady state modeling, a detailed example 
of a steady-state two-phase detonation structure, 
and an example of a nonphysical structure. The 
description of the steady-state modeling technique 
can be applied to general two-phase systems and 
should not be thought of as only valid for detona- 
tion systems. The model is an improvement of the 
models of Butler and Krier [5] and Baer and Nun- 
ziato [6]. It was first presented in Ref. 15 and stud- 
ied in more detail in Ref. 16, which accompanies 
this article. The model is presented in both steady 
dimensional and dimensionless form. It will then 
be reduced to four ordinary differential equations 
in four unknowns. Next a technique is described 
for studying the singularity at complete reaction 
and an additional singularity that arises when the 
solid velocity is sonic. For completeness, shock 
waves in two-phase systems and complete reaction 

equilibrium end states are briefly discussed. It is 
then shown how in special limits the four ordi- 
nary differential equations reduce to two ordinary 
differential equations. An analysis of these equa- 
tions in the phase plane is provided. This analysis 
clearly identifies both the gas and solid phase end 
states. The two- and four-equation models are then 
used to predict two-phase analogs to C J, strong, 
and weak detonation structures. Finally it is shown 
how this model can predict a nonphysical solution. 

STEADY-STATE MODEL 

For this article the nomenclature and equations of 
Refs. 15 and 16 are adopted. The steady form of 
the two-phase model equations of Refs. 15 and 
16 is found by transforming the equations to the 
steady wave frame using the transformation ~ = 
x - D t ,  ui = ui - D and assuming in this frame 
that all time derivatives are zero. Here D is the 
steady wave speed, u is the relative velocity, and 

the distance in the steady wave frame. The gas 
and solid mass equations in conservative form are, 
respectively, 

~ - - - ~ ( p l t # 1 O l ) = C ~ ) p 2 t # 2 0 t p l m H ( Z 2 - T i g ) ,  (1) 

J~(O2t#2u2)=-C!)O2t#2°tplmH(T2-Tig) • 
(2) 

The gas and solid momentum equations in conser- 
vative form are, respectively, 

d 2 ~(Pl t# l  Vl +Pi t# l )  

= (~)P2t#20tplmv2H(T2-rig) 

+/~ t#tt#2 (v2 - vl), (3) 
r 

d 2 
~'~ (P2t#2 V2 + P2t#2) 

--B~lt#2(02 --Vl). (4) 
r 
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The gas and solid energy equations in conservative 
form are, respectively, 

f---~[p14)lvl(el + o12/2 + P 1 / p l ) ]  

=(~)p2#a2od:~lmH(r2-Tig)(e24-v22/2) 

• ¢ 1 6 2  . _  
+/3 ~1~---32 (rE - vl) + n - v w  t~2 - TI), 

r r,/~ 
( 5 )  

d •  [p2q~2 v2(e2 + v 2 2 / 2  + P 2 / 0 2 ) ]  

=-(~)p2(a2~plmH(T2-Tig)(e2+v22/2) 

- / 3  4~14~2r (02 - 01) - n r-~/3  ~12 - Tx).  (6)  

The compaction equation is given by 

P2O - P l O  , x 
v2 d~- #c 

-(~)dP2otplmH(T2-Tig).  

(7) 

Number conservation is expressed as 

d (#}202 ~ 
d-~ \ r 3 J =0"  (8) 

The gas phase is described by a virial state equa- 
tion. Expressions for the thermal and caloric state 
equations and frozen sound speed are 

PI = plRTI(1 4 - b p l ) ,  (9) 

el  = cvxT1 ,  (10) 

co 2 = R T l [ 1 4 - 2 b p l 4 - ( R / c v l ) ( 1 4 - b p 0 2 ] .  (11) 

The solid phase is described by a Tait equation of 
state. The thermal and caloric state equations and 
frozen sound speed are given by 

P 2  = ("/2 --  1)Cv2P2T2 - - -  P20 o 

3'2 
(12) 

e2 = cv2T2 4- P200 4- q ,  (13) 
"}'202 

6022 = "Y2(')'2 --  1)c~2T2. (14)  

The mixture is constrained to be saturated so that 

~l  + ~2 : 1. (15) 

For the eight ordinary differential equations eight 
initial conditions are chosen. At ~ -- 0 it is re- 
quired that 

p~ : P10, P2 = P20, T1 = To, T2 = To, 

4)1 =4~1o, r = r o ,  vl = - D ,  v 2 = - D .  

(16) 

By substituting the initial equations into the differ- 
ential Eqs. 1-8, it is seen that the ambient state is 
an equilibrium state, that is, all forcing functions 
are identically zero at the ambient state. 

Though this model has been developed to de- 
scribe general reactive granular materials, the 
granular explosive HMX will be studied here. Nu- 
merical values for the parameters for HMX are 
listed in Table 1. When available, references are 

TABLE 1 

Dimensional Input Parameters 

Parameter Reference Unit Value 

a [5] [m/(s Pa)] 2.90 x 10 -9 
plo [kg/m 3] 1.00 × 10 l 
m [5] 1.00 x 10 ° 
/3 [kg/(s m2)] 1.00 )< 104 

02o [5, 6] [kg/m 3] 1.90 × 103 
h [J/(s K mS/3)] 1.00 x l07 

c~1 [6] [J/(kg K)] 2.40 X 103 
Cv2 [5, 6] [J/(kg K)] 1.50 × 103 
R [J/(kg K)] 8.50 × 102 
o [21] [(m/s) 2] 8.98 x 106 
q [5] [J/kg] 5.84 )< 106 
ro [5, 6] [m] 1.00 x 10 -4 
b [mS/kg] 1.10 × 10 -3 
73 [21] 5.00 × 10 ° 
#e [kg/(m s)] 1.00 × 106 
To [K] 3.00 x 102 
T~g [K] 3.00 x 102 + 
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listed in Table 1 for each of the parameters. Other 
parameters have been estimated for this study. 
Some parameter values were estimated so that a 
steady two-phase detonation structure could be 
predicted. The initial gas density, gas temperature, 
and ignition temperature have been arbitrarily cho- 
sen to be 10 kg/m 3, 300 K, and 300+ K, respec- 
tively. The ignition temperature was chosen to be 
the ambient temperature because it represents a 
bulk solid temperature. For the flow of a shocked 
gas past particles, there will be an energy transfer 
to the solid that could cause the local solid surface 
temperature to reach ignition level. At the same 
time the majority of the solid remains at the am- 
bient temperature. Thus it was hypothesized that 
reaction could begin when the bulk solid temper- 
ature was arbitrarily near the ambient tempera- 
ture. Drag and heat transfer parameters roughly 
match empirical formulae given in Ref. 17. Com- 
parisons of the drag and heat transfer models can 
be found in Ref. 11. The gas constant R and virial 
coefficient b have been chosen such that predic- 
tions of CJ detonation states match the CJ detona- 
tion states predicted by the thermochemistry code 
TIGER [18] as reported in Ref. 5. Detailed com- 
parisons are found in Ref. 15. The solid param- 
eters o and 3'2 have been chosen such that solid 
shock and compaction wave predictions match ex- 
perimental shock [19] and compaction wave data 
[20]. These comparisons are described in Ref. 21. 
As reported by Baer and Nunziato [6], there are 
no good estimates for the compaction viscosity #c. 
In Ref. 6, a value for compaction viscosity of 103 
kg m - I s  -1 was chosen. To demonstrate the exis- 
tence of a two-phase detonation, it was necessary 
to choose a higher value, 106 kg m -1 s -1 , for the 
compaction viscosity. 

The model equations are written next in dimen- 
sionless form, where an asterisk indicates a di- 
mensionless quantity: 

~, = ~ / L ,  o,i = v i / O ,  P , i = P i / ( P i o O 2 ) ,  

with the reaction zone length. The following in- 
dependent dimensionless parameters are defined: 

7rl ~- 3OtplomD 2m-l, 7r2 = 13/(o2oD), 

7r3 = h L  2/3 /(O20cvlD),  re4 = m ,  

71"5 = 0 1 0 / 0 2 0 ,  71"6 = Cvl ICy2, 

7r7 = R/Col  + 1, lr8 = o'/('y2D2), 

7r9 = p2oDL / # c ,  7qo = q / D  2, 

71"11 = ¢~10,  71"12 = rolL,  

~13 = bplo ,  ~14 = cv2To /D2 ,  7r17 = ' / 2 .  

The following dependent dimensionless parame- 
ters are defined: 

1 - 7rll 
71"18 = 71"11 - } - - - ,  

71" 5 

71"19 = (71" 7 - -  1)71"671"14(1 + "x13 ) ,  

71"20 ~ 1 - -71"11 ,  

71"21 ----- (71"17 - -  1)71"14 - -  71"8, 

I 1 l 11"22 ~--- 71"11 "/r6~r14 -+- ~ + 71"19 

+ - -  1 - 7 1 " 1 1  

71- 5 I ' 1 ' / r l4  q -  11"10 ql_ ~ --F- 71"21 , 

1 - -  71"11 
71"23 = "/1"11~19 + 

71" 5 
71"21, 

71"21 - -  7 r 5 ~ 1 9  
"/1"15 = 

1 - "/r l l  

P*i = Pi /PiO, e , i  = ei / O  2, 

T , i  = c v i T i / O  2, r .  = r / L ,  i = 1, 2. 

Here L is a length scale which can be associated 

The dimensionless solid phase mass, momen- 
tum, and energy equations written in nonconser- 
vative form are given below (for compact notation, 
the asterisks are dropped, and it is understood 
that unless otherwise indicated, all variables are 
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dimensionless): 

d~  [P2t~21)2] = -71"1 P202P1 ~r4 (17) 
r 

d 1)ll~LCh2, 02~21)2 d~°~2°~ 2 + ~ [ P 2 q ~ 2 ]  -- -71"211)2 -- r 

(18) 

deE d1)2 (al 
+ P 2  ~ -  -- -Tr3[~r6T2 - Tl]r--~/3 . (19) P21) 2 ~ 

The dimensionless compaction equation is 

d¢2 
1)2 ~ -  = "a-9t~lO2[P2 - 7r5Pl - "/r15t~21 

0 2 P l  ~r4 
- 7 r l -  ( 2 0 )  

r 

The gas phase mass, momentum, and energy equa- 
tions are replaced by mixture equations. The mix- 
ture mass, momentum, and energy equations are 
obtained by first adding the constituent mass, mo- 
mentum, and energy equations (Eqs. 1 and 2, 3 
and 4, and 5 and 6, respectively). These homo- 
geneous equations then are integrated to form the 
algebraic mixture equations given below: 

1 
Pl (~1 1)1 + --P2t~202 ---~ --71"18, (21) 

7r5 

Olq~lVl 2 + P l q ~ l  + k[p2t~2v22 +P2t~2]  
7r5 

= r ls  + 7r23, (22) 

I112 P 1 ]  
PI~IVl el +-~-- + ~ + 1---pZ4~202 

71" 5 

1)22 ] P2 
x e 2 + - ~ -  +~-2 = - r 2 2 .  (23) 

The number conservation equation is also homo- 
geneous and thus is integrated to form an algebraic 
equation for particle radius: 

~ -- V2q~2 (24) 
r ~--- 71"12 1 -- 71"11 " 

The dimensionless gas and solid state equations 

and frozen sound speed definitions are 

Pl  = [lr7 - 1]plTl[1 + 71"1301], (25) 

el = T I ,  (26) 

COl 2 = (71"7 -- 1)T1[1 + 27r13Pl 

+ (Tr 7 - 1)(1 + 7r1301)2], (27) 

P2 -- [7r17 - 1102T2 - 7rs, (28) 

e2 = T2 + 7rs/p2 + 7Go, (29) 

W22 = 7r17(Tr17 -- 1)T2. (30) 

The saturation condition is unchanged in dimen- 
sionless form: 

~1 + t~2 ~ 1. (31) 

Undisturbed conditions for the four remaining or- 
dinary differential equations are 

p2 = 1, v2 = -1 ,  T 2 = 7I"14 , 

It is next shown how the coupled 

t~2 = 71"20. 

(32) 

set of 
differential-algebraic equations describing steady 
detonation structure (Eqs. 17-31) can be writ- 
ten as four differential equations in four 
unknowns--p2, ~b2, 1)2, and P2--called the pri- 
mary variables. First the mixture equations (Eqs. 
21-23), state equations (Eqs. 25, 26, 28, and 29), 
and volume fraction definition (Eq. 31) can be 
used to write all gas phase variables in terms of 
the primary variables. By using Eqs. 25, 26, 28, 
and 29 to eliminate gas and solid energy in Eq. 23 
and using Eq. 31 to eliminate gas volume fraction 
in Eqs. 21-23, Eqs. 21-23 can be rewritten as 

PlVl = A ( p 2 ,  q~2, 1)2, P2) ,  

Pl  + 0 1 o l  2 = B(p2, t~2, v2, P2) ,  

Pl  
011)1 (71" 7 -- 1)pl(1 + Wl3Pl) 

: C(p2 ,  t~2, I)2, P2) ,  

(33) 

(34) 

where A, B, C, and D are functions of the primary 

v12 ) P1 

(35) 
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variables as defined below: 

A ( p 2 ,  t~2, 1)2, P 2 )  = 
- -  71"18 - -  (1/ ' /1"5)#2621) 2 

1 - 6 2  
(36) 

B ( p 2 ,  t~2, 1)2, P 2 )  = 
11"18 + 71"23 - -  (1/71"5)(02021)22 + P 2 t ~ 2 )  

1 - 6 2  
(37) 

C(02, dp2, 1)2, P 2 )  ---- 

- -  71"22 - -  _ _  
1 02t~21)2 [P2 + 71"1771"8 1)22 P2]  

J 
1 - t~  2 

(38) 

Equations 33-35 can be combined to form a cu- 
bic equation for gas density. This is done by first 
using Eq. 33 to express gas velocity as a func- 
tion of gas density and solid variables. Then gas 
velocity may be eliminated from Eqs. 34 and 35. 
Thus modified, Eq. 34 can be used to express gas 
pressure as a function of gas density and solid vari- 
ables. This result is used to eliminate gas pressure 
from the modified energy equation (Eq. 35). The 
resulting equation is a cubic equation for gas den- 
sity whose coefficients are functions of the primary 
variables 

[ - - 2 ( ~ ' 7  - -  1 ) T r l 3 C ] p l  3 + [2(7/'7 - 1) 

x (ABr13 - C)]pl 2 

+ [2ABTr7 - (7r7 - 1 )A37r13]P1 

- [ ( r 7 + I ) A  3] : 0 .  (39) 

Equation 39 can be solved exactly for gas den- 
sity in terms of the primary variables. An explicit 
but lengthy solution to Eq. 39 can be written us- 
ing the general cubic equation solution. Three so- 
lutions for Eq. 39 exist. One is associated with 
a shocked gas, another is associated with an un- 
shocked gas, and the third predicts a negative den- 
sity for all cases studied and is thus unphysical. 
This extraneous root is present only when nonideal 
gas effects are included. (It is seen from Eq. 39 
that for no nonideal effects, a-13 -- 0, the equation 
is quadratic, and only two solutions exist.) It is 
possible for Eq. 39 to predict a pair of imaginary 
roots under certain conditions. If such a condition 
is reached, the reaction zone structure is unphys- 
ical. 

With the gas density predicted from Eq. 39 as 
a function of the primary variables, all other gas 
phase variables can be expressed as functions of 
the primary variables. The gas velocity is found 
by using Eq. 33. The gas pressure can ,then be 
determined from Eq. 34 and the gas energy, tem- 
perature, and sound speed from Eqs. 25-27. 

It is now shown how to uncouple the differential 
equations (Eqs. 17-20). Equations 17-20 can be 
expressed in the form 

duj 
hij ~-~ --- Bi, (40) 

where uj : (p, t~2, I)2, t)2) and Aij and Bi 
are functions of the primary variables. To put 
the equations in a form suitable for phase space 
analysis, explicit expressions for the derivatives 
duj/d~ must be obtained. This is done by apply- 
ing the inverse operator A/-~ l to Eq. 40. 

dui _ Aij-IBj (41) 
d~ 

A necessary step to express Eqs. 17-20 in this 
form is to use the solid state equations (Eqs. 28 
and 29) to determine an expression for the deriva- 
tive of solid energy in terms of solid pressure and 
density. Equation 28 can be used to eliminate solid 
temperature from Eq. 29 so that this derivative 
can be determined. 

de2 1 dP2 P2 + 7117718 dp2 
d ~  ('/1"17 - 1)p2 d ~  (71-17 - 1)p22 d ~  " 

(42) 

Expanding the derivative in Eq. 17 and using 
Eq. 42 allows Eqs. 17-20 to be written as a system 
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in the form of Eq. 40: 

- do2 

02132 021)2 0202 0 d~ 
d02 

0 P 2  P2021)2 02 d ~  

P2 + 71"1771"8 1)2 d 1 ) 2  
(-~17 ~1"1~22 1)2 0 P 2  (71"17 - 1) d ~  

0 v2 0 0 dP2 

- -71"1P202P 1 re4/ r  1 
= -- 71"2 ( 1)2 --  1) 1 )01 0 2 / F  • (43)  

-r3(Tr6T2 - TI)01/r  1/3 

LTr9¢102(P2 - a'sPl - 7q502) - 7rlO2Plr4/r 

The left-hand side of Eq. 43 is expressed in terms of the primary variables. Using previous algebraic 
relations, the right-hand side can also be expressed in terms of these variables. By applying the inverse 
operator explicit expressions can be obtained for the derivatives of the fundamental variables. 

= a'17 - 1 LTrl7 - lJ (44) 
d~ 0 2 1 ) 2 (  P2 +'tr8) ' 

71"17 -- 1 I)22 --  7 1 " 1 7 - - 0 2  

d02 0102 02P1 a" 
d~ = 7r9 02 [P2 - 7rsPl - 71"1502] - 71"1--,v2r (45) 

dv2 - D [0r,7 - 1)02 v2j + E [ ~ J  - F[v2] 

7r~7 - 1 022 --  71"17 P2 // 

dP2 
P2 + ~1771"8 1 

7r17~T v2 +F[02022] 

d~ 02v2 I P2 +~rs] 
r~---  1 022 --  "/I"17 P2 

(47) 

where D, E, and F are defined as follows: 

D = -71"9,0201(P2 -- "n'5P1 - "/1"1502), (48) 

E = -rz(v2 - Vl) Ot + P__22 
r o 2 

[ PI~- '~4- 7r901 ( P 2 -  " / r 5 P l -  71"1502)] , X 71" I E 

(49) 

F = -Tr3(71-6T 2 - TOr-~/3 . (50) 

Equations 44, 46, and 47 are singular when the 
following condition is met: 

P2 + 7r8 
02 2 = 7 1 " 1 7 - -  (51)  

02 

By using the solid thermal state equation (Eq. 
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28) to eliminate solid pressure and density in fa- 
vor of solid temperature and using the solid sound 
speed definition (Eq. 30), Eq. 51 can be rewritten 
as 

022 ~---~2 2 . (52) 

Thus when the velocity of the solid relative to 
the wave head equals the local frozen solid sound 
speed, the system of Eqs. 43 is singular. It is seen 
by examination of Eqs. 49 and 50 that the equa- 
tions are also singular at the complete reaction 
state because the particle radius r appears in the 
denominator of the expressions for E and F. Near 
these singularities, numerical methods are unable 
to calculate the derivatives in ~ space. 

In general, steady two-phase systems of the 
form given in Eqs. 1-14 of Ref. 16, that is for gen- 
eral state equations, have singularities in deriva- 
tives when either the gas velocity equals the lo- 
cal frozen gas sound speed or the solid velocity 
equals the local frozen solid sound speed. This 
can be shown by writing the full steady two-phase 
equations in matrix form similar to Eq. 43. The 
derivatives are singular whenever the determinant 
of the coefficient matrix is zero. It is easily shown 
that this occurs when either phase is locally sonic. 

A transformation of independent variables can 
be devised to effectively remove the difficulties as- 
sociated with the solid sonic singularity and com- 
plete reaction singularity. By defining a new inde- 
pendent variable z such that 

d...~ =r(v22 _ w22) with ~ ( Z : 0 ) : 0 ,  
dz  

(53) 

and multiplying Eqs. 44--47 by Eq. 53, Eqs. 
44--47 are transformed into four ordinary differ- 
ential equations with z rather than ~ as the inde- 
pendent variable. These transformed equations are 
not singular at complete reaction or a solid sonic 
condition. However, they contain the added com- 
plexity of an additional differential equation. 

SHOCK DISCONTINUITIES 

As in one-phase ZND theory, one must consider 
shock discontinuities when analyzing two-phase 

detonations. The shock state is not an equilibrium 
state and can serve as an initiation mechanism for 
chemical reaction. In this model a shock wave is 
modeled as an infinitely thin zone where all flow 
variables change values discontinuously. Such dis- 
continuities are admitted by the governing equa- 
tions because they are hyperbolic. In this analysis 
mechanisms that would define a shock structure 
such as diffusive energy .and momentum trans- 
port have been neglected. It is assumed that the 
length scales where these processes are important 
are much smaller than the length scales associ- 
ated with chemical reaction, interphase drag, heat 
transfer, and compaction. 

The shock equations can be derived by consid- 
ering Eqs. 1-7. Through the shock discontinuity, 
reaction, drag, heat transfer, and compaction pro- 
cesses have no time to occur and may thus be ne- 
glected. By neglecting these terms, a discontinuity 
analysis provides the following jump conditions: 

[Old~lvl] = O, (54) 

[024~021 = 0 ,  (55) 

[OtOtvl + P i l l ]  = O, (56) 

[024~v2 + Pz4az] = O, (57) 

[p lq~ lv l (e l  + o12/2  + P l / P l ) ]  --- O, (58) 

[pz4~ v2 (ez + v2 z/2 + P2/P2)] = O, (59) 

[~1 = 0. (60) 

Here the brackets denote a jump condition as de- 
fined below for the general variable ~b: 

[¢,] = ~b(shocked state) - ~b(ambient state). (61) 

From Eq. 60 it is seen that the volume fraction. 
does not change through a shock discontinuity. Us- 
ing this result, the gas shock equations (Eqs. 54, 
56, and 58) along with gas phase state equations 
are sufficient to determine the gas shock state. The 
solid shock equations (Eqs. 55, 57, and 59) along 
with the solid phase state equations are sufficient 
to solve for the solid shock state. When the con- 
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stant factor of volume fraction is removed from 
these equations, they are identical to two sets of 
one-phase shock equations. The shock state for the 
gas and solid are thus identical to their one-phase 
equivalents. Detailed equations for the two-phase 
shock state are reported in Ref. 11. Four physi- 
cal states are admitted by the shock discontinuity 
equations: (1) shocked gas, shocked solid, (2) un- 
shocked gas, shocked solid, (3) shocked gas, un- 
shocked solid, and (4) unshocked gas, unshocked 
solid. 

TWO-EQUATION MODEL 

In certain limits the two-phase equations can be 
reduced to two autonomous ordinary differential 
equations in two unknowns. These limits are taken 
for purely mathematical reasons and are not moti- 
vated by physical considerations. Reduction to two 
differential equations allows one to use an easily 
understood two-dimensional phase plane to study 
the trajectories of the integral curves. To derive 
the two-equation model, one must consider the 
zero-compaction, zero-heat transfer limit, corre- 
sponding to lr9 ~ 0, 7r3 ~ 0. In this limit, Eqs. 
48 and 50 hold that D = F = 0. Then if Eq. 
44 (transformed to z space) is multiplied by solid 
velocity and added to the product of solid den- 
sity and Eq. 46 (also transformed to z space), the 
following homogeneous equation is obtained: 

do2 dr2 
v2 - ~ z  q- P2 ~ = 0 .  ( 6 2 )  

This equation can be integrated to form the alge- 
braic relation 

In applying the initial conditions when inte- 
grating this equation, it is unnecessary to specify 
whether the initial state is shocked or unshocked. 
This arises because Eq. 63 is equivalent to the 
shock relation (Eq. 55) when it is recalled that vol- 
ume fraction does not change through the shock 
discontinuity. 

To determine a second algebraic relation, Eq. 
63 must first be used to eliminate solid velocity in 
favor of solid density in all remaining equations. 
Then if Eq. 47 (in z space) is multiplied by the 
factor 

1 
p2 x17 

and added to the product of the z-space Eq. 44 
and the factor 

P 2  + 7rs 
- -  71-17 p2~rlT+l 

the following homogeneous equation is obtained: 

1 dP2 P2 +Trs dp2 
p2 7r'7 d z  r l 7  p2~r,7+l d z  - O. (64) 

This equation may be integrated to form an alge- 
braic relation between solid pressure and density. 
The constant of integration for this expression is 
dependent on whether the initial state is shocked 
or unshocked. Thus 

P2 ~- Kp2  ~'7 - 71-8, (65) 

p21) 2 ~ --1. (63) with 

2 -7r14(~'17 - 1) 2 [(71"17 - 1)(1 +271-1471-17)] 
71"17 + 1 [ (71"17 T ] )  " J 

71"21 + 71"8. 

TI7 

, shocked solid 

unshocked solid 

When Eqs. 63 and 65 are used to eliminate solid 
velocity and pressure from Eqs. 44 and 45, the 
two-equation model is found: 

dp2 
--~ 71"2(01 - -  132)p22~1 

d z  

- -  ( K P 2  x,7 - -a-8)~-lP23pl  r4 

= f ( P 2 ,  q~2), (66) 

d62 
dz  

91"lO2q~2/~l~r'('/rl7KO2 ~rl7+l - 1) 

= h(p2,  dp2), 

with 

d~ = r(~17Kp2V,7+ 1 _ 1) = g(p2, ck2). 
d z  

(67) 

(68) 
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Equations 66 and 67 are autonomous in p2 and ¢2, 
as all other variables can be expressed as functions 
of p2 and ~b2. Equation 68 may be thought of as an 
auxiliary equation to determine the distance vari- 
able ~ once the structure predicted by Eqs. 66 and 
67 has been determined. The forcing functions in 
Eqs. 66-68 are defined above as f ,  g, and h. 

EQUILIBRIUM END STATE ANALYSIS 

Before considering detonation structure, equilib- 
rium end states should be considered. This anal- 
ysis can be performed without regard to struc- 
ture and identifies the point that the solution much 
reach. An equilibrium end state exists when the 
forcing functions of the ordinary differential equa- 
tions are simultaneously zero. One potential equi- 
librium end state is the complete reaction state 
(r = ~2 = 0). For the two equation model at 
this state Eq. 67 predicts equilibrium. Equation 
66 yields an algebraic condition for solid density 
at equilibrium. In setting f(p2, 0) = 0, one al- 
gebraic equation to be solved for solid density is 
obtained. As all other variables are functions of 
solid density and volume fraction, the equilibrium 
end state is completely specified by this condition. 
It is also noted that at the complete reaction end 
state Eq. 68 is in equilibrium. The complete reac- 
tion solid end state has not been determined alge- 
braically for the four-equation model. It has been 
found by integrating the full four-equation model 
that a well-defined, bounded equilibrium end state 
exists. 

At the compete reaction end state, the mixture 
equations (Eqs. 21-23) and gas phase state equa- 
tions (Eqs. 25 and 26) completely describe the 
gas phase. Furthermore, at the complete reaction 
state, the gas phase is independent of the solid 
state as long as the solid end state is finite. As 
described in detail in Refs. 11 and 15, it is possi- 
ble to derive two-phase equivalents to the Rayleigh 
line and Hugoniot equations of one-phase flow at 
the complete reaction state (and only at the com- 
plete reaction state). It is then possible to describe 
the two-phase CJ condition, the state at which the 
gas velocity is equal to the gas sound speed. Be- 
cause the CJ condition is a sonic condition, it can 
be argued, as for one-phase CJ theory, that the 

CJ wave speed is the unique speed of propagation 
for a two-phase detonation with no piston support. 
Because the end point of the reaction is traveling 
at a sonic speed, no rarefaction waves downstream 
of the reaction zone can catch and interfere with 
the reaction zone. For wave speeds greater than 
CJ wave speeds, two physical solutions are pos- 
sible. One corresponds to the strong detonation 
solution and the other corresponds to the weak 
solution of one-phase CJ theory. As for one-phase 
theory, the gas velocity at the strong point is sub- 
sonic; thus, the wave requires piston support to 
propagate. At the weak point, the gas velocity is 
supersonic; thus, this point cannot be ruled out by 
equilibrium end state analysis. 

STRUCTURE ANALYSIS 

In this section reaction zone structure predicted 
by the two- and four-equation models is consid- 
ered. Most of the discussion refers to the two- 
equation model because of its relative simplicity. 
Predictions of the full model equations are com- 
pared to the two-equation model predictions. 

Whether Eqs. 66 and 67 should be integrated 
forward or backward in z is a relevant question. 
The equations should be integrated so that ~ goes 
from 0 to - cx~. From Eq. 68 it is seen that the 
direction of change of ~ with respect to z depends 
on whether the solid phase is subsonic or super- 
sonic. If the initial state of the solid is unshocked, 
the solid is locally supersonic, g > 0, and a nega- 
tive dz corresponds to a negative d~. If the initial 
state of the solid is shocked, the flow is locally 
subsonic, g < 0, and a positive dz must be cho- 
sen to recover a negative d~. 

There are several requirements for an admis- 
sible detonation structure. An admissible steady 
structure is defined by an integral curve that be- 
gins at the initial point in the p2-~b2 plane and 
travels in that plane to an equilibrium position 
where f and h are simultaneously zero. In addition 
further restrictions are placed on the solution. It 
is required that the gas and solid thermodynamic 
variables density, pressure, and temperature are 
always positive and real. Also it is required that 
all physical variables are single-valued functions 
of the position variable ~. Based on these restric- 
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tions parametric conditions can be obtained for 
admissibility of a detonation solution. 

The conditions under which thermodynamic 
variables become either negative or imaginary are 
checked numerically. By examining a few limited 
cases, it has been found that there are regions in 
the p2-~b2 plane where gas phase pressure, den- 
sity, and temperature are negative. In solving the 
cubic equation for the gas properties, imaginary 
gas phase quantities are sometimes predicted. It 
has been found numerically that the border of the 
imaginary region corresponds to a sonic condi- 
tion in the gas phase. This result is suggested by 
the fact that the more general differential equa- 
tions (Eqs. 1-8) are singular when the gas velocity 
equals the local gas sound speed. 

The geometry of the f -- 0 and h = 0 curves is 
critical in determining the integral curve that de- 
fines the steady-state solution. Depending on the 
relative orientation of these curves and the initial 
state, many classes of solutions exist, each with a 
distinct character. Some solutions reach an equi- 
librium state, defined at the intersection of the 
f -- 0 and h = 0 curves. The existence condi- 
tions for a steady detonation solution are strongly 
influenced by the nature of the equilibrium point, 
which can be classified as a source, sink, saddle, 
or spiral. For example, if the equilibrium point to 
which the integral curve is drawn is a sink, then 
it is relatively easy to find steady solutions as all 
integral curves in the neighborhood of the sink are 
attracted to the sink. If, however, the equilibrium 

point is a saddle, solutions are more difficult to 
find; usually special conditions are required for 
such solutions. For some wave speeds the orienta- 
tion of the f = 0 and h = 0 curves prevents so- 
lutions from reaching an equilibrium state; these 
solutions cannot be classified as steady solutions. 
Among these types of solutions are those that pass 
through a solid sonic point and become physically 
unacceptable, multivalued functions of distance. 

Figure 1 shows sketches of phase planes for 
two classes of solutions, one an acceptable deto- 
nation structure, the other a nonphysical solution. 
Each sketch shows the separatrix lines f -- 0 and 
g = h = 0. The equilibrium position is at the 
intersection of these curves. Each curve shows a 
solid phase sonic line, g = h = 0, forbidden re- 
gions in which gas phase properties are not phys- 
ical, and integral curves that originate from the 
initial condition. For the acceptable structure the 
integral curve travels from the initial state to the 
equilibrium position. By changing the flow condi- 
tions, the topology of this phase plane is altered, 
shown in the adjacent sketch. In this sketch, the in- 
tegral curve is driven through the solid sonic line 
and is incapable of reaching the equilibrium point. 
As explained below, past the solid sonic line, the 
solution is double-valued and therefore not physi- 
cal. 

Thermodynamic variables become double- 
valued functions of distance when a solid sonic 
condition (g = 0) is reached at a nonequilib- 
rium point in the phase plane ( f  # 0). From Eq. 

Acceptable Detonation ~2A Nonphysical Solution 
Phase Plane Structure 

, p  

Ictu~TI \ ~ g=h=O 

Y _ 
.... . /  _ t _ Equilibrium Complete Reaction 

@ 
Sonic 
Point ~ 

• -...-------" f = 0 

4-" Sonic Line 
g=h=O 

Complete Reaction ~'~ 
Equilibrium P2 

Point Line g = h = 0 Point 
g=h=f=O g=h=f=O Line g= h =0 

Fig. 1. Phase plane sketches of physical and nonphysical solutions. 
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68, it is seen that the direction of change of 
with respect to z changes when the solution passes 
through a solid sonic point. Thus ~, which starts 
at zero and moves towards - o ~  as reaction pro- 
gresses, changes direction and moves towards +co  
at a critical point ~min when a solid sonic condi- 
tion is reached. Through this point Eqs. 66 and 67 
predict a continuous variation of density and vol- 
ume fraction. At the solid sonic point the deriva- 
tives of 02 and 4~2 with respect to z are finite, and 
the derivatives with respect to ~ are infinite. At 
any given location ~, ~ > ~min, two values of each 
thermodynamic variable will be predicted. 

Results analogous to one-phase ZND theory can 
be obtained with the two-equation model. For the 
input conditions of Table 1, with the heat trans- 
fer coefficient h = 0 and compaction viscosity 
/~c ~ ~ ,  an initial solid volume fraction greater 
than 0.19, and an initially shocked gas and un- 
shocked solid, a CJ detonation structure can be 
defined. In these limits there is no heat transfer or 
volume fraction change due to compaction. 

The ordinary differential equations of the two- 

equation model and full, four-equation model 
were solved numerically. Integration was per- 
formed using the IMSL subroutine DVERK, a 
fifth- and sixth-order Runge-Kutta routine, on the 
UIUC Cyber 175. Step sizes were chosen such 
that none of the fundamental variables, 02, t~2, 
v2, and P2, changed by more than 5% in value 
in any given integration step. Typically about 200 
integration steps were sufficient to describe the re- 
action zone. A typical integration took 20 CPU 
seconds to complete. 

For an initial solid volume fraction of 0.70, Fig. 
2 shows a plot of the phase plane for a CJ wave 
speed of 7369 m/s. This curve shows the sonic line 
(g = h = 0) on P~ = 1.35, the complete reaction 
line (g = h = 0) on t~2 - 0,  and the f = 0 line. 
It is seen from this curve that the only equilib- 
rium point is at (02, q~2) = (1.04, 0). The.vector 
field superimposed in Fig. 2, defined by Eqs. 66 
and 67, indicates that this point is a sink that is 
confirmed by a local linear analysis near the equi- 
librium point. The integral curve connecting the 
initial state to the equilibrium point is also plotted 
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in Fig. 2. This curve is obtained by numerical in- 
tegration of Eqs. 66 and 67. This integral curve 
moves in a direction defined by the vector field of 
the phase plane. Curves of zero gas phase pressure 
are plotted in Fig. 2 along with the curve defining 
the boundary between pure real and imaginary gas 
phase quantities. The gas velocity is locally sonic 
(M1 x = 1) on the boundary of the region where 
imaginary gas phase properties exist. 

When the full model equations are considered, 
general results from the two-equation model are 
retained. It is more difficult to interpret these re- 
sults as the phase space is four dimensional. With 
a given set of initial conditions, the gas phase CJ 
end state is the same whether the two- or four- 
equation model is used. The solid phase end state 
and details of the reaction zone structure do de- 
pend on which model equations are used. Plots of 
predicted detonation structure are shown in Fig. 
3, which contains plots of solid and gas density, 
lab velocity u, pressure, temperature, Mach num- 
ber, particle radius, and solid volume fraction ver- 
sus distance ~. Als 9 plotted in Fig. 3 are results 
from the two-equation model. It is seen that both 
models predict results of the same order of mag- 
nitude. Gas phase quantities are nearly identical 
for both models. Although there are small dif- 
ferences in solid phase predictions, these results 
are remarkable as there is no real basis to as- 
sume that the limits taken are appropriate for this 
class of models. These results suggest that in a 
limited region of parameter space, material com- 
paction and heat transfer are not important mech- 
anisms in determining two-phase detonation struc- 
ture. Thus there is some justification in using the 
two-equation model as a tool for understanding 
the full model equations. A comparison of some 
results of the two models is given in Table 2. 

In Fig. 3 it is seen that the gas phase is shocked 
whereas the solid phase is unshocked. It is seen 
from Fig. 3e that the gas pressure continues to rise 
past the initial shocked gas pressure. This is in 
contrast to one-phase ZND theory, which predicts 
the pressure to be a maximum at the shock state. 
The high gas phase temperature ( ~ 10,000 K) 
indicates that ionization, dissociation, and radia- 
tive heat transfer could be important mechanisms 
in the reaction zone. 

Nonphysical solutions are now considered. Such 
solutions exist below a critical value of initial solid 
volume fraction for a structure with a single lead- 
ing gas phase shock and unshocked solid. The 
critical point is shown in Fig. 4, which plots CJ 
wave speed versus initial bulk density Pa (Pa = 

Pl0Ol0 + P20t#20) • Figure 4 also compares predic- 
tions of this model with those of the unsteady 
model of Butler and Krier [5] and those of the 
equilibrium thermochemistry code TIGER given 
in Ref. 5. The feature of a critical initial bulk 
density has not been identified by other models. It 
is emphasized that an algebraic end state analysis 
does not rule out solutions below the critical initial 
bulk density. Only when the structure is examined 
are such solutions ruled out. 

For a value of initial solid volume fraction of 
0.20, very near the critical bulk density, an ac- 
ceptable detonation structure is obtained. A phase 
portrait, vector map, and integral curve is shown 
in Fig. 5. Figure 5 resembles Fig. 2, but the 
curves have all been skewed. Note that the integral 
curve nearly reaches the sonic state before turning 
around and traveling to the complete reaction end 
state. 

For an initial solid volume fraction of 0.15, a 
nonphysical solution is obtained for a CJ wave 
speed and an initial lead shock in the gas and 
unshocked solid. The two-equation model's phase 
plane is shown in Fig. 6. The integral curve in 
this plane passes through the solid sonic line at 
a nonequilibrium point, causing the solution to 
become double-valued. A plot of the solid phase 
Mach number is shown in Fig. 7 for both the two- 
and four-equation models. Again both models pre- 
dict nearly identical results. It is seen from Fig. 
7 that infinite gradients with respect to ~ are pre- 
dicted precisely at the point where the solid phase 
reaches a sonic velocity (M22 = 1). 

Solutions with no leading shock in either the 
gas or solid phase are also admitted by this model. 
Figure 8 shows the phase portrait, vector map, and 
integral curve for a CJ wave with no leading gas 
or solid shock propagating through a mixture with 
an initial solid volume fraction of 0.70. Again, 
the equilibrium point is a sink. As summarized 
in Table 2, the main difference between this case 
and the case with the leading gas phase shock is 
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that the reaction zone is much longer (62 vs. 13 
mm). Again both two- and four-equation models 
predict similar results. The CJ gas phase end state 
is identical regardless of whether the initial gas 
state is shocked or unshocked, or whether the two- 
or four-equation model is used. This is because 
the complete reaction CJ state is independent of 
the structure of the detonation. Small differences 
in the CJ temperatures and gas velocities are due 
to numerical roundoff errors. In general the solid 
end state can vary for each state presented in Table 
2. The solid phase end state predicted by the two- 

equation model is nearly the same for both the 
unshocked and shocked gas, as is the solid phase 
end state for the four-equation model. 

For wave speeds greater than C J, strong and 
weak waves can be predicted. For an initial solid 
volume fraction of 0.70, a wave speed of 8000 
m/s (which is greater than the CJ wave speed of 
7369 m/s), and an unshocked solid, Figs. 9 and 
10 show plots of the two-equation model's phase 
portraits for the strong (initially shocked gas) and 
weak (initially unshocked gas) case. The equilib- 
rium points are sinks in both cases. The results of 
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Fig. 4. CJ wave speed vs. initial bulk density. 
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TABLE 2 

Comparison of Two- and Four-Equation Model Predictions for CJ Waves With and Without Leading Gas Phase Shock 

Leading Gas Shock No Leading Gas Shock 
Two-Equation Full Two-Equation Full 

Initial bulk density 1,333 kg/m 3 1,333 kg/m 3 1,333 kg/m 3 1,333 kg/m 3 
Reaction zone length 13.0 mm 13.0 mm 62.1 mm 62.2 mm 
CJ wave speed 7,369 m/s 7,369 m/s 7,369 m/s 7,369 m/s 
CJ pressure 19.4 GPa 19.4 GPa 19.4 GPa 19.4 GPa 
CJ density 1,821 kg/m 3 1,821 kg/m 3 1,821 kg/m 3 1,821 kg/m 3 
CJ temperature 4,176 K 4,176 K 4,174 K 4,174 K 
CJ gas velocity 1,976 m/s 1,976 m/s 1,974 m/s 1,974 m/s 
(CJ gas Mach number) 2 1 1 1 1 
Maximum gas temperature 11,119 K 11,120 K 4,174 K 4,174 K 
Final solid pressure 0.716 GPa 0.796 GPa 0.716 GPa 0.797 GPa 
Final solid density 1,973 kg/m 3 1,985 kg/m 3 1,973 kg/m 3 1,985 kg/m 3 
Final solid temperature 349 K 353 K 349 K 353 K 
Final solid velocity 272 m/s 121 m/s 272 m/s 120 m/s 
(Final solid Maeh number) 2 4.82 4.96 4.82 4.96 
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these calculations for both two- and four-equation 
models are summarized in Table 3. For the strong 
case the reaction zone is shorter than for the corre- 
sponding CJ wave with a leading gas phase shock. 
For the weak case the reaction zone is longer than 
for the corresponding CJ wave without a leading 

3 - Two and Four Equatim Mod~ 

2' 

0 - ' ' i i | | i '1 

-$ -6 -4 -2 0 2 4 

Fig, 7. Non-physical two-phase structure. 

gas phase shock. Again two- and four-equation 
models predict similar results. 

A continuum of two-phase detonation wave 
speeds as a function of piston velocity is predicted. 
Detonation wave speed is plotted as a function of 
piston velocity in Fig. 11. For wave speeds greater 
than C J, piston support is required to support the 
wave. The CJ wave can propagate with or without 
piston support as the complete reaction point is a 
gas phase sonic point. For piston velocities below 
C J, a continuum of weak waves are predicted. The 
implications of this are unclear. As the complete 
reaction point is supersonic, the piston support is 
not necessary. This suggests that the solution may 
not be unique. Simple one-phase ZND theory also 
predicts a continuum of weak waves. Fickett and 
Davis [ 14] discuss this issue for one-phase theory. 
Although this issue is still not settled for the one- 
phase model, some have suggested that the weak 
waves may be ruled out as unphysical because of a 
lack of an initiation mechanism. Fickett and Davis 
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TABLE 3 

Comparison of Two- and Four-Equation Model Predictions for Strong and Weak Detonations, D = 8,000 m/s 

Leading Gas Shock (Strong) No Leading Gas Shock (Weak) 
Two -Equation Full Two-Equation Full 

Initial bulk density 1,333 kg/m 3 1,333 kg/m 3 1,333 kg/m 3 1,333 kg/m 3 
Reaction zone length 10.2 mm 10.2 mm 71.4 mm 71.5 mm 
Wave speed 8,000 m/s 8,000 m/s 8,000 m/s 8,000 m/s 
Final gas pressure 32.3 GPa 32.3 GPa 13.8 GPa 13.8 GPa 
Final gas density 2,145 kg/m 3 2,145 kg/m 3 1,590 kg/m 3 1,590 kg/m 3 
Final gas temperature 5,274 K 5,274 K 3,710 K 3,710 K 
Final gas velocity 3,029 m/s 3,029 m/s 1,291 m/s 1,291 m/s 
(Final gas Mach number) 2 0.567 0.567 1.99 1.99 
Maximum gas temperature 12,526 K 12,524 K 3,710 K 3,710 K 
Final solid pressure 0.745 GPa 0.810 GPa .657 GPa .771 GPa 
Final solid density 1,976 kg/m 3 1,987 kg/m 3 1,967 kg/m 3 1,982 kg/m 3 
Final solid temperature 351 K 354 K 345 K 352 K 
Final solid velocity 306 m/s 134 m/s 273 m/s 119 m/s 
(Final solid Mach number) 2 5.63 5.82 5.78 5.89 
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show results of more complicated one-phase mod- 
els that indicate that a unique weak wave speed ex- 
ists when such mechanisms as diffusive heat and 
momentum transfer are taken into account. A sim- 
ilar result may hold for two-phase detonations. 

DISCUSSION AND CONCLUSIONS 

The most important result of this study is that exis- 
tence conditions have been predicted for a steady, 
one-dimensional, two-phase detonation in a granu- 
lar material. The available detonation solutions are 
restricted by both algebraic equilibrium end state 
analysis and by an analysis of the structure of the 
steady wave. The structure analysis has shown that 
for a structure with a single lead gas shock and an 
unshocked solid, below a critical initial bulk den- 
sity no steady solution can exist. This particular 

result and the general technique of using structure 
analysis to limit the available solutions is new to 
two-phase detonation theory. 

As a result of this study it is possible to pre- 
dict the features of a steady two-phase detonation 
structure. It has been shown that two-phase equiv- 
alents to the one-phase ZND strong and CJ so- 
lutions can be predicted. As in one-phase ZND 
theory, the two-phase theory predicts that piston 
support is required for the strong solution to exist, 
and that a two-phase CJ detonation can propagate 
with or without piston support. It has also been 
shown that when both the gas and solid phases are 
unshocked, the model equations yield two-phase 
equivalents of weak and CJ solutions. These types 
of solutions are also found using the simple one- 
phase ZND theory but are commonly dismissed 
because it is thought that there is no mechanism 



PART II. S T R U C T U R E  301 

¢ q  

-0- 

Integral Initial 
Curve  Point f = 0 h 

070 , " "  * / , , , g =  
" J P I < 0  / ~  ~"  Pl<O 

°'6°-P 1 =0 / i ~ J g l = 0  

/ -  , , , i v v ~ . ' ' - . . .~ .~ ._  
0 50 - / 'l....~ ,I, V | V V V V /, J- - .c 

, ~ , /  "; , ' !  I¥ Y Y Y Y " ~ . 

• ~vz 1 =x , I t ' i v V V V ~" J" ~ -~ 
s 

0.30 

0.20 

0.10 

Imaginary i 
Region  t 

i t 
V 

y 

i 
0.90 

0 
0.80 

I ' I' ~ v v v ~, 

t v I , w  I .  v v v p 

f I I 
1.00 / 1.10 1.20 

Equil ibrium P 2 
Point  

I 
k 1.30 

Complete 
Reaction 

Line 
g = h = 0  

S o l i d  
Sonic Line 

=0 

.,9 

1.40 

Fig. 10. Phase plane for weak detonation, D > D C j .  

1[ 

13000- 
, 

11000- 

7000" 

0 

Weak Branch Smmg Branch 

Initial Solid Volume Fraction = 0.7 

• l • I I • ! • I • i 

lOOO 20oo 3oo0 4ooo 50oo 6000 

Piston Velocity (m/s) 

Fig. 11. Two-phase detonation wave speed vs. piston velocity. 



302 J . M .  POWERS ET AL. 

to initiate reaction. The model yields such solu- 
tions because the functional form of the combus- 
tion model allows a small amount of reaction to 
occur even at ambient conditions. 

Some results plotted in Fig. 3 and listed in Ta- 
bles 2 and 3 may be viewed by some as unreal- 
istic. For instance the differences in gas and solid 
pressures and temperatures in the reaction zone 
could be seen as large, especially when one con- 
siders common phenomena, which do not occur 
in the extreme conditions of a detonation. Viewed 
in another way these results could be plausible. 
The results are primarily the consequence of cer- 
tain modeling assumptions and parameter choices. 
These choices were made to a large extent to en- 
sure that a steady detonation structure could be 
predicted. As stated earlier, a primary objective 
of this article is to highlight the technique of two- 
phase steady modeling and to place two-phase det- 
onation theory in the context of one-phase detona- 
tion theory. As such, parameters were chosen with 
more freedom than in a study designed to precisely 
predict physical variables. 

Despite this uncertainty, the results here do have 
value and may be as accurate as any other pre- 
diction. There are not good experimental ways to 
determine the details of the detonation reaction 
zone structure. As such, the functional forms of 
the phase interaction terms and state equations are 
uncertain in all models. One reasonable expec- 
tation of a two-phase model is that it be able to 
match predictions of the equilibrium TIGER code, 
which this model is able to do well. 

Although not considered in this study, one may 
ask how the scenario of a shocked gas and un- 
shocked solid could develop. To speculate, one 
could imagine a slow, unconfined burning of re- 
active particles. If  the system were suddenly con- 
fined, a local region of high gas pressure could 
develop, giving rise to a propagating shock wave 
in the gas but not the solid. It should also be noted 
that the idea of shocked gas and unshocked solid is 
common in the literature of shock waves in dusty 
gases. A standard assumption is that there is a 
shock wave in the gas but that the solid parti- 
cles are incompressible, thus unshocked. Rudinger 
[22] provides an example of such a model. 

Much work remains to be done in two-phase 

detonation theory. It is highly likely that other 
classes of steady detonations can be predicted. 
The complexity of the model equations makes this 
search largely a trial and error process. How- 
ever, one can envision several different detona- 
tion scenarios by making minor adjustments in the 
relative positions of the separatrices in the two- 
dimensional phase plane. 

Two-phase steady detonation results can be ef- 
fectively used in the unsteady two-phase DDT 
problem. Predictions of any unsteady model would 
be strengthened by comparing them to the predic- 
tions of a steady model. Unsteady model results 
can be used to verify that the unsupported two- 
phase detonation wave is a CJ wave. This would 
simply require an examination of the two-phase 
end state conditions. 

Reaction zone lengths predicted by the steady 
model must match those predicted by the unsteady 
model. This, however, raises an important ques- 
tion regarding numerical resolution. This study 
predicts reaction zone lengths of the order of 10 
mm. Unsteady two-phase models now use a cell 
size on the order of 1 mm. Thus the results of 
this study suggest that a cell size on the order of 
0.01-0.1 mm be employed in unsteady calcula- 
tions. 

Cell sizes of this magnitude present a dilemma. 
Typical particle sizes for detonation applications 
range from 0.1 to 1 mm. One assumption of con- 
tinuum modeling of granular materials is that a 
large number of particles exist in any averaging 
volume. If  cell sizes of the order of 0.01-0.1 mm 
are employed, as the results suggest is necessary, 
then the continuum assumptions may not be valid. 
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