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Theory of Two-Phase DetonationmPart I: Modeling 

J. M. POWERS,* D. S. STEWART, and H. KRIER 

University of  Illinois at Urbana-Champaign, Urbana, Illinois 61801 

A new, one-dimensional, two-phase model appropriate for describing the detonation of granulated solid propellants 
or explosives is presented. The model satisfies the principle that the mixture mass, momentum, and energy are 
conserved, is strictly hyperbolic, and is frame indifferent. Conditions are presented for satisfying the second law of 
thermodynamics. It is shown that this and previous models do not satisfy the second law under all circumstances. It 
is shown that in the limit of no chemical reaction or gas phase effects that inclusion of compaction work is in violation 
of the energy conservation principle. It is also shown that a complete two-phase particle combustion model with 
constitutive functions dependent on particle radius requires an equation specifying the variation of particle radius; 
such a relation can be given by a number evolution equation. The model equations are solved in a subsequent study 
which follows as a separate article. 

NOMENCLATURE 

ai interphase mass transfer 
Aij general matrix 
b virial gas coefficient 
bi interphase momentum transfer 
B strictly positive drag function 
Bij  general matrix 
ci interphase energy transfer 
co specific heat at constant volume 
C strictly positive heat transfer function 
Ci general vector 
D steady wave speed 
e internal energy 
f configurational stress 
F number density forcing function 
h heat transfer constant 
i subscript, i --- 1, gas; i = 2, solid 
ig ignition 
l i eigenvector 
L tube length 
m burn exponent 
n number density 
P pressure 
q chemical energy 
r particle radius 
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R gas constant 
s entropy 
t time 
u velocity 
uj general vector 
x distance 
X distance 

Greek Symbols 

et burn constant 
/3 drag constant 
7 Gruneisen coefficient + 1 
F general variable 
5a momentum transfer switch (-- 0, 1) 
fia compaction work switch (=  0, 1) 
tic number conservation switch (=  0, 1) 
X characteristic velocity 
/~c compaction viscosity 

wave frame distance 
p density 
tr non-ideal solid parameter 

volume fraction 
~b Helmholtz free energy 
o~ sound speed 

INTRODUCTION 

One-dimensional, two-phase continuum mixture 
models have been extensively used to model re- 
active gas dynamics in heterogeneous mixtures. 
Examples of the use of these models in combus- 
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tion theory are found in the studies of Gough and 
Zwarts [1], Kuo and Summerfield [2], Butler et 
al. [3], Butler and Krier [4], Powers et al. [5], 
Drew [6], Akhatov and Vainshtein [7], Baer and 
Nunziato [8], and Baer et al. [9]. The models have 
been used to describe combustion wave dynamics 
in systems such as mixtures of granulated solid 
propellants and product gases in which it is possi- 
ble to identify two components with distinct mate- 
rial properties. The work of Gough and Zwarts [ 1 ] 
and Kuo and Summerfield [2] is among the first 
to use two-phase models in reactive gas dynamics. 
The models were used to describe flame spread- 
ing and steady combustion in porous materials. 
These studies considered low-speed, low-pressure 
deflagration waves. Recently, Drew [6] has further 
studied low-speed, constant pressure combustion 
waves in two-phase materials. The study of But- 
ler et al. [3] was the first reported in the archival 
open literature to exhibit a detonation wave in a 
two-phase material. Baer and Nunziato [8] have 
also used a two-phase model to describe a det- 
onation in a two-phase reactive system. Using a 
similar model, Akhatov and Vainshtein [7] stud- 
ied high-speed, high-pressure waves in two-phase 
materials. The results of Butler, et al. [3], Butler 
and Krier [4], Baer and Nunziato [8], Baer et al. 
[9], and Akhatov and Vainshtein [7] were obtained 
by numerical solution of time-dependent systems 
of two-phase reactive flow equations. Their mod- 
els predict the transition from a low-pressure com- 
bustion to a high pressure regime associated with 
detonations. 

A basic premise of two-phase mixture theory 
is that the mixture can be separated into discrete 
components. Each of these components behaves as 
a single material except when interacting with an- 
other component. In most two-phase models, the 
hypothesis of phase separation is employed [10]. 
This hypothesis holds that the internal state of one 
phase is not related to the internal state of an- 
other phase. In other words the thermodynamic 
state of a particular phase depends only on the 
properties of that phase. Mass, momentum, and 
energy equations resembling one-phase equations 
are written for each component. Each mass, mo- 
mentum, and energy equation contains terms, not 
present in one-phase models, that are known as 

phase interaction terms. These terms model the 
transfer of mass, momentum, and energy from one 
phase to another. 

The particular form of the phase interaction 
terms is a source of much controversy. Mixture 
conservation principles and frame invariance pro- 
vide restrictions on the functional forms of these 
terms but still allow for a wide variety of mod- 
els. Beyond these rather loose restrictions, there 
are several, sometimes conflicting, rationales for 
choosing phase interaction terms. Because steady 
detonations have been observed in granular ma- 
terials, the primary rationale for choosing phase 
interaction terms in this article is to pick them so 
that a two-phase model can predict a steady deto- 
nation. It is thus implicitly assumed that two-phase 
models are appropriate for describing detonations 
in granular materials. 

Other secondary motivations for the form of 
phase interaction terms exist. The entropy inequal- 
ity provides one such motivation. It is possible to 
determine an expression for the growth of mix- 
ture entropy. This expression suggests functional 
forms for the individual phase interaction terms 
such that the entropy inequality is always satisfied. 
This technique may be overly restrictive as the en- 
tropy inequality only requires that for the mixture, 
entropy must increase. Experiments that measure 
certain phase interactions can also be used as a 
justification for phase interaction models. Also ex- 
amining the two-phase equations in the dilute limit 
can suggest how phase interaction terms must be- 
have in this limit. 

In choosing phase interaction terms it is difficult 
to simultaneously satisfy all the above criteria. As 
such certain compromises have been made in this 
article. Namely, the phase interaction terms cho- 
sen are not guaranteed under all circumstances to 
satisfy the entropy inequality. Also the functional 
form of these terms has not been shown to pre- 
cisely match either experimental data or the dilute 
limit equations. This model, however, is intended 
to describe a two-phase detonation in a granular 
material far from the dilute limit. For solid explo- 
sives and propellants there are no experiments to 
measure phase interactions under detonation con- 
ditions, and for the bulk of the detonation process 
the dilute limit is not appropriate. 
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The goal of this article is to present a general 
two-phase model that satisfies the basic contin- 
uum mechanics principles and is appropriate for 
describing detonation and the transition from de- 
flagration to detonation (DDT) in granulated pro- 
pellants or explosives. This article examines how 
to construct a two-phase model that is consistent 
with these principles while remaining within the 
general framework provided by other two-phase 
models. This article does not address more ba- 
sic issues such as the microstructural justification 
of these models. In presenting this model, some 
of the disparity among two-phase models is dis- 
cussed. 

The required principles are as follows. First it 
is required that, for the mixture, mass, momen- 
tum, and energy are conserved. The mass, mo- 
mentum, and energy of the constituents are al- 
lowed to grow or decay as dictated by the forc- 
ing functions of the balance equations. When the 
constituent mass, momentum, and energy equa- 
tions are added, the forcing functions must cancel 
to yield conservative mixture equations. Next, the 
model equations must be well-posed for the class 
of problems to be considered, which in this case 
is the initial value problem. A sufficient condition 
for the initial value problem to be well-posed is 
that the system of partial differential equations in 
two independent variables is strictly hyperbolic. 
To satisfy the second law of thermodynamics for 
a thermally isolated system, it is required that for 
any process, the entropy of the mixture remain 
constant or increase. It is also required that the 
model predicts an equilibrium condition for the 
material in the ambient state. Finally, it is required 
that the two-phase equations are invariant under a 
Galilean transformation. 

The discussion here is mainly limited to the de- 
tails of two models: the model of Baer and Nun- 
ziato (Eqs. 53-60 of Ref. 8, designated as the 
BN model) [8, 91 and the model of Powers, Stew- 
art, and Krier (designated as the PSK model) [5]. 
To include a discussion of the many other two- 
phase models with the necessary detail is beyond 
the scope of this article. The BN and PSK models 
have been chosen for study because both are mod- 
els for describing DDT in granulated solid pro- 
pellants and thus share many assumptions. Also, 

both are constructed explicitly to conform with the 
principles described above. 

The model of this study is presented as a gen- 
eralized model that incorporates most of the fea- 
tures of the BN and PSK models. The general- 
ized model is examined to see how it conforms 
to the above-mentioned principles. In so doing, 
certain problems in both the BN and PSK model 
are identified. These problems include the issue of 
whether or not an evolutionary equation for parti- 
cle number should be included, the failure of both 
the BN and PSK models to universally satisfy the 
entropy inequality, and the inability to satisfy en- 
ergy conservation in the inert, all-solid limit when 
compaction work is included. Finally, for com- 
pleteness and because many two-phase combus- 
tion models have been presented that have been 
shown not to be hyperbolic under all circum- 
stances [ 12- 141, a discussion of the characteristics 
of the two-phase equations is given. 

GENERAL TWO-PHASE MODEL 

A two-phase model that is a generalization of the 
BN model and the PSK model is given. The gov- 
erning equations in conservative form are given 
below: 

gw#d + ~(PldlUl) = a13 

gw#w1) + &dlu12 +pl+l) 

Nl 
=alu2 +bl +6,Plax, 

gJ2oz112) + &2d2U22 +p242j 

841 
=am +b2 -6,Plax, 

(3) 

(4) 
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O(Ol~b l (e l  + U12/2)) 

0 +-~(pldOlul(el + U12/2 + P l / P l ) )  

= a l ( e2  + U22/2) + blU2 + Cl + 6 a P l U 2 ~ x  1 

+f ib[(P2 -- f 2 ) ( P 2  - f 2  - ( P l  - f l ) ]  ~blq~2 , 
/~c 

(5) 

0 
(02~b2(e2 + 1/22/2)) 

o~ 

0 
q-O-~ (o2~2u2(e2 -+- u22/2 + P2/p2)) 

= a2(e2 + u22/2)  + b2u2 + c2 - ~aPlU2~-~  

--6b(P2 -- f 2 ) [ P 2  - f 2  - (P l  - f l ) ] - -  
~1~2 

#c 

(6) 

002 002 
0--7 + U20x 

~1~2 

#c 
- - - [ P 2  - f2 - (Pl  - f l ) ]  + a2/P2, 

(1-6c)  [~t + ~-~(u2n) ] 

= (1 - ¢$c)F(PI, 01, P2, P2, ~2), 

n -- 
3~b2 

4./rE 3 ' 

O t + ~ 2  = 1, 

P1 = PI(Pl, T1, ~1), 

el = el(P1, Pl, d~l), 

e2 = e2(P2, 02, t~2), 

(13) 

P2 = P2(02, T2, ~b2). (14) 

In these equations, the subscripts "1"  and "2"  
denote the gas and solid phase, respectively. The 
variable 0 represents the material density, that is, 
the mass of an individual phase divided by the 
volume occupied by that phase. The variable 4~ 
represents the volume fraction of each phase, that 
is, the volume of an individual phase divided by 
the total volume. Velocities are denoted by the 
variable u, pressure by P, internal energy by e, 
temperature by T, number density by n, and par- 
ticle radius by r. In Eqs. 1-8, some generality 
has been sacrificed so that differences in the BN 
and PSK model are highlighted. In these equa- 
tions the variable 6 is used to describe either the 
BN formulation (Sa = 5b = 5c = 1) or the PSK 
formulation (Sa = 5b = 5c = 0). For 5 a = 1, 
an additional term proportional to the product of 
gas pressure and volume fraction gradient is in- 
eluded as a phase interaction term in the momen- 
tum and energy equations. For 5b = 1 a work 
term, known as compaction work, is included as 
an energy phase interaction. The compaction work 
term is constructed such that it is equal to the term 

( 002 002 a 2 / P 2 )  (15) tSb(P2 - - f2 )  \ - ~ -  + / ' /2"~-  -- 

For 5c = 0 a number evolution relation is en- 
(7) forced; for 5c = 1 such a relation is not enforced. 

The term f represents the configurational stress as 
used by Baer and Nunziato. As defined in Ref. 8, 
the configurational stress is 

(8) fi  = Piq~i~i i , (16) 

where the Helmholtz free energy of phase i, ~bi, 
(9) is defined as 

(io) ~/i : ei -- T i s i .  (17) 

In Eq. 17 si is defined as the entropy of phase i. 
(11) Here an inconsistency in Ref. 8 is noted. In 

developing the entropy inequality in Ref. 8, the 
(12) definition in Eq. 16 is used; however, in practice, 
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in Ref. 8, and most other two-phase studies, the 
Helmholtz free energy is not a function of vol- 
ume fraction, rendering the configurational stress 
to be zero. In practice, in Ref. 8 and other studies 
the configurational stress is estimated from exper- 
imental data and not required to satisfy the defini- 
tion given by Eq. 16. These experiments suggest 
that the configurational stress f2 is a function of 
solid volume fraction ~ only. The functional form 
of f2  is determined experimentally by measuring 
the equilibrium stress required to compress a gran- 
ular material to a specified volume fraction. It is 
found that the equilibrium stress f2 increases as a 
function of solid volume fraction 02. 

The definition of compaction viscosity #c of the 
BN model is adopted here. Compaction viscosity 
is a constant that determines the relaxation time to 
the equilibrium solid stress and volume fraction in 
a granular material compaction process. The terms 
ai,  bi ,  and ci are constitutive functions represent- 
ing the interphase mass, momentum, and energy 
transport, respectively. The combustion model is 
contained in the term ai, which specifies the rate 
of mass transfer per unit time per unit volume. It 
is assumed that ai, bi ,  and ci can be functions of 
all of the flow variables. 

Equations 1 and 2 are the gas and solid mass 
equations, respectively, Eqs. 3 and 4 the gas and 
solid momentum equations, and Eqs. 5 and 6 the 
gas and solid energy equations. Equation 7 is the 
dynamic compaction equation. The use of such 
an equation is not standard. Passman et al. [15] 
argue that this equation allows volume fractions 
to change without affecting the bulk motion of 
the mixture and thus is able to model microstruc- 
tural details in some way. For this model it is as- 
sumed that the particles are spherical. This as- 
sumption is probably not valid under all circum- 
stances, especially when local deformation due to 
solid compaction is considered. Equation 8 is the 
number evolution equation and Eq. 9 is a definition 
of number density for spherical particles. Equa- 
tion 8 allows for the total number of particles to 
change in response to the general forcing function 
F. For F < 0, particle agglomeration is predicted, 
and for F > 0 particle breakup is predicted. For 
F = 0, the number of particles is conserved. 

It is assumed that the mixture is saturated, that 

is, all the volume is occupied by either gas or 
solid. This is stated in Eq. 10. Equations 11-14 
are generalized caloric and thermal state equations 
for the gas and solid phase. In Eqs. 11-14 it is 
assumed that the pressure and internal energy of 
each constituent can be expressed as functions of 
that constituent's density, temperature, and vol- 
ume fraction. These state equations are written as 
functions of volume fraction for generality in ac- 
cordance with the assumptions of the BN model. 
In invoking specific constitutive theory, the vol- 
ume fraction dependence is removed. 

By applying the Galilean transformation ~ = 
x - D t ,  vi = ui - D  to Eqs. 1-8 where D is a con- 
stant velocity, it can easily be shown that the equa- 
tions are frame indifferent. This holds whether the 
BN or PSK formulations are adopted. 

In examining Eqs. 1-6, it is noted that the mass, 
momentum, and energy of each constituent are not 
conserved but change in response to the forcing 
functions ai, bi ,  and ci.  It is required, however, 
for the mixture that mass, momentum, and energy 
be conserved. To ensure that this holds, Trues- 
dell's axioms of balance for mixtures [16] require 
that 

a l + a 2 = 0 ,  b ] + b 2 = 0 ,  c l + c 2 = 0 .  (18) 

With the adoption of Eq. 18, the following con- 
servative mixture mass, momentum, and energy 
equations are obtained when Eqs. 1 and 2, 3 and 
4, and 5 and 6 are added, respectively: 

0 
o~(Plt~l + P2#)2)+ ~xx(Pl~lUl -}-p2t~U2)= O, 

(19) 

+ + 

+P2(#2U2 2 +PI(#I +P2~2) = O, (20) 

0 
(OlOl(el +/,/12/2) + O2t~(e2 + u22/2)) 

0~- 

0 
+ ~ "  (Olt~lul(el + U12/2 + P I / P l )  

+P2q~2td2(e2 + u22/2 + P 2 / p 2 ) )  ---- O. (21) 
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Equations 19-21 predict that for an isolated sys- 
tem composed of a two-phase mixture the total 
mass, momentum, and energy of that system re- 
mains constant regardless of the processes that 
occur within the system boundaries. Though the 
constituent momentum and energy equations of the 
BN and PSK models differ, both models predict 
identical mixture equations. 

Equations 3-6 can also be rewritten in non- 
conservative form, as is common practice in the 
two-phase literature. The following definition is 
adopted for the material derivative of the general 
variable F: 

0 F i 0 I~i (22) 
r; = 0~- + ui 0~-" 

The momentum and energy equations in noncon- 
servative form are 

m4~U'm + O(p~4~) 

0~1 
= a l (u2  - u l )  + b l  + G P l - o x  ' (23) 

02~2u~ + _~0~. (P2q~2) = - b t  - 6aPi 04~1 (24) 
O x '  U X  

, O u ~  
pl Oletl + / " l  tpl 

= 6aPl(U2 - Ul)~x  1 

+al(e2 - el + (u2 - U l ) 2 / 2 )  

+ b l ( u 2  - u i )  + Cl 

+~b(P2  -- f 2 ) [ P 2  - f 2  - (PI  - f l ) ]  q~lq~2, 
/*c 

Equations 1-14 with ~Sa = ~Sb = ~5c = 1 are now 
compared to the BN model equations (Eqs. 53-60 
of Ref. 8). A few minor differences exist. First, 
in the momentum equations (Eqs. 3 and 4), the 
term aiu2 (i = 1, 2) is included to account for 
momentum introduced by chemical reaction. This 
form assumes that as particles burn, the gas phase 
gains momentum at a rate equal to the product 
of the mass burning rate and the particle veloc- 
ity. However in Refs. 8 and 9, it can be deduced 
that the rate of momentum change attributable to 
chemical reaction is assumed to be equal to the 
product of the particle mass burn rate and the av- 
erage velocity [ai(ul  + u2)/2]. Likewise in the 
energy equations (Eqs. 5 and 6) the rate of ki- 
netic energy exchanged due to chemical reaction 
is taken to be al u22/2,  proportional to the particle 
kinetic energy, whereas it can be deduced that a 
different term, a i u l u 2 / 2 ,  is used in Refs. 8 and 
9. For the one-step irreversible reaction of parti- 
cles reacting to form gas, the formulation of Eqs. 
3-6 is adopted because as the particles react, all 
their momentum and kinetic energy, determined 
by the particle velocity, is transferred to the gas 
phase. Which formulation should be adopted is to 
a certain degree arbitrary, as neither violates the 
frame indifference principle or, as will be seen, is 
suggested by the entropy inequality. The remain- 
ing differences are trivial. The BN model of Refs. 
8 and 9 includes conductive heat transfer, which 
is not modeled in Eqs. 1-6. It is assumed that 
the time scales for conductive heat transfer to be 
important are much larger than the time scales of 
chemical reaction. Finally it is noted that the func- 
tions ai ,  bi ,  and ci are able to accommodate the 
more specific form of interphase transport terms 
given in Refs. 8 and 9. 

(25)  S E C O N D  L A W  OF T H E R M O D Y N A M I C S  

02~b2e~ + P2~b2 

= - C l  - 6b(P2 - - f 2 )  

× [P2 - f2  - (P1 - f l ) ]  ~152. 
#c 

(26) 

The second law of thermodynamics requires that 
the totalentropy of a mixture thermally isolated 
from its surroundings remains constant or in- 
creases for any thermodynamic process within the 
volume occupied by the mixture. Accordingly, fol- 
lowing Truesdell [16] and Baer and Nunziato [8], 
the second law of thermodynamics for a two-phase 
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mixture with no conductive or radiative heat ex- 
change with its surroundings is as follows 

$%d,s* + P242S2) 

d 
+ ~(Plwwl + P242U2S2) > 0. (27) 

To determine if the two phase model satisfies 
the entropy inequality (Eq. 27) requires a defini- 
tion of entropy. In one-phase flows this can be 
accomplished by using the Gibbs equation T ds = 
de - P/p2 dp to eliminate energy in favor of en- 
ergy. An equivalent Gibbs equation for a compo- 
nent of a mixture is adopted identical to that of 
Ref. 8: 

(28) 

In writing Eq. 28, the definitions of configura- 
tional pressure (Eq. 16) and Helmholtz free en- 
ergy (Eq. 17) are also adopted. With this two- 
phase Gibbs relation, the entropy change of a 
phase is a function of the change in volume frac- 
tion in addition to changes in internal energy and 
density. With this assumed form of the Gibbs rela- 
tion, the energy equation can be rewritten in terms 
of entropy to evaluate the entropy inequality. How- 
ever, as used in practice by Baer and Nunziato 
in Ref. 8 and by most other two-phase modelers, 
the thermodynamic state equations for each phase 
are independent of volume fraction, rendering the 
term fi to be zero. In practice, as stated in Ref. 8 
the gas phase configuration pressure is taken to be 
zero and the solid phase configuration pressure is 
estimated from experiment and not required to sat- 
isfy the definition fi = pi& d$i/ld4i. This results 
in two entropy inequalities, one that employs the 
definition off and assumes the state is a function 
of volume fraction and another that assumes that 
the state is not a function of volume fraction and 
that the configurational stress can be determined 
from experiment. In the following section the en- 
tropy inequality will be developed using both Eq. 
28 and the Gibbs relation for the models as they 
are actually used. It will be seen that regardless 
of which Gibbs relation is used both PSK and BN 
models cannot absolutely guarantee the entropy in- 
equality is satisfied. 

In determining the entropy inequality, sev- 
eral restrictive sufficient conditions are developed, 
which, if satisfied, guarantee that the second law is 
satisfied. It should not be regarded that these con- 
ditions must always hold, but rather the more fun- 
damental requirement is that the entropy inequality 
(Eq. 27) always hold. Thus if one of the sufficient 
conditions is not met in a particular calculation, 
the second law is not necessarily violated as long 
as other processes exist that are able to counteract 
the process which predicts an entropy decrease. 

By using the two-phase Gibbs relation (Eq. 28) 
to eliminate the energy ei, the energy equations 
(Eqs. 25 and 26) can be written as follows: 

= 3 
1 PI 

T1 
e2 - ei + 5’242 - u1j2 - pl 

PI -f1 +- +Tlsl 
P2 

+ +2 - UI) 

[p2 -f2 -(PI -fdl41& 

x Vb(P2 -f2) - (Pl -fdl, (2% 

;(P2’#‘2s2) + &(P242uZs2) 

=$(&T2s2) -2 

+(’ -&I) 
-+(P2 - f2W2 -f2 

-(PI -f&k 
PC 

(30) 

By adding the energy equations (Eqs. 29 and 30) 
and using the definition of Helmholtz free energy 
to eliminate internal energy, an expression can be 
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determined for the growth of total entropy: 

0 
0--t (01q~lS1 + P2q~2S2) 

0 
+~-'- (OI~IUlS1 + 02~)2U2S2) 

CtX 

o,( 1 
= T~ ~ 2  - -  ~/1 + sz(T2 - T1) + ~ (u2 - Ul) 2 

+ e~(1/o2 - 1/o,) + \ ~  

mass transfer 

bl 
+ ~ -  (u2 - u,) momentum transfer 

11 

(~__~ 1 ) energy transfer 
+c ,  T2 

U2 - Ul 0~1 
( ~ . P I  - ( t , ~  - f ~ ) ) - ~ - -  

O X  

(1 - 6b) 
-1 - -  ( P 2  - - f 2 )  

T2 

X (P2 -- f2  -- (PI - f , ) )  ~'(~2 
/xc 

P2 - f 2 - ( P ,  - f l) qb,ck2 

T1 /Xc 

x ((5 b (P2 - f2)  - (P1 - f 0 ) .  compaction 

(31) 

In the Eq. 31, the contribution of each thermo- 
dynamic process, mass transfer, momentum trans- 
fer, energy transfer, and compaction, to the mix- 
ture entropy change has been isolated and labeled. 
A sufficient but not necessary condition for satisfy- 
ing the second law is to require that each individ- 
ual thermodynamic process yields an increase in 
the mixture entropy. In other words the sufficient 
condition is that each term on the right side of Eq. 
31, representing mass transfer, momentum trans- 

fer, energy transfer, and compaction, be strictly 
positive. 

For the irreversible mass transfer process of 
solid to gas (al > 0), a positive contribution to 
the entropy change is predicted if the following 
inequality is satisfied: 

1 
1~2 -- ~1 +$2(T2 - T 1 )  + ~(u2 - Ul) 2 

+PI (1 /P2  - 1/pl) 

+ ( T ~ f 2 - f l )  1 ->0"-02 (32) 

Because (u2 - u l )2 /2  is strictly positive it is suf- 
ficient to require that 

~b2 - ~bl + s2(T2 - T l )  + P I ( 1 / p 2  - 1/pi) 

( T l f 2 - f l )  1 > 0 .  (33) + - 

In contrast to this model, Baer and Nunziato 
do not assume that a l is strictly positive. Instead 
they postulate a form for the mass transfer term 
al that is designed to guarantee a positive contri- 
bution to the entropy change for the mass transfer 
process. Here a strictly positive form for al is cho- 
sen. This form can be calibrated at low pressure 
by experiments. In so doing a sacrifice is made 
because the sufficient condition (33) could poten- 
tially be violated in an arbitrary process. If the 
solid Helmholtz free. energy is sufficiently larger 
than the gas energy, which is generally the case 
for an exothermic reaction, the condition can be 
met. If, however, the condition is not met, the 
more fundamental inequality (Eq. 27) can still be 
checked to determine if the second law is satis- 
fied. To calculate if the entropy inequality (Eq. 
27) holds at any given point and time, one checks 
if at that point and time the right-hand side of Eq. 
31 is greater than or equal to zero. 

For momentum transfer if it is assumed that bl 
is of the form 

bt --- B (u2  - u0 ,  (34) 

where B is a strictly positive function of the flow 
variables, then the contribution of the momentum 
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transfer terms to the entropy change is also strictly 
positive and is given by the expression 

B(u2 - Ul) 2. 

Equation 34 has the form of a drag law. It states 
that the momentum transfer is proportional to the 
velocity difference between phases. Equation 34 
holds that the momentum of the gas phase in- 
creases and solid phase decreases if the velocity 
of the solid is greater than that of the gas. 

For energy transfer, if it is assumed that c l is 
of the form 

Cl =C(T2 - T l ) ,  

where C is a strictly positive function of the flow 
variables, then the entropy change due to energy 
transfer is assured to be strictly positive and is 
given by the expression 

C (T2 - T t)2 

TIT2 

Equation 36 holds that the energy of the gas 
phase increases and solid phase decreases when 
the temperature of the solid is higher than that of 
the gas. 

For a compaction process a positive contribution 
to the entropy change is predicted if the following 
inequality holds: 

112 -- Ul ~ X  1 
T-I (6aPl - (P1 - f l ) )  

+ ~ ( P 2  - - f2)  

× (P2 - f2  - (Pl - f l ) )  t~l t~2 
#c 

192 - - f2  -- (Pl - f l )  q~lgb2 
TI #c 

x (/~b(P2 - - f2)  -- (Pl - - f l ) )  _> 0. (38) 

value so that this inequality is not satisfied for ei- 
ther model formulation. Thus in order to ensure 
the second law is satisfied, one must restrict the 

(35) magnitude of this derivative. It is noted that when 
the BN formulation is adopted with f l  -- 0, the 
term on the left-hand side of Eq. 38 is a perfect 
square and guaranteed to be positive. In this case 
the contribution of compaction processes to the en- 
tropy increase is guaranteed to be positive. Again 
if Eq. 38 is not satisfied for a particular process, 
the more fundamental inequality (Eq. 27) should 
be examined. 

When the entropy inequality for the BN and 
PSK models are examined as those models are 

(36) used in practice, a different entropy inequality is 
obtained. In practice, the state is independent of 
the volume fraction; thus O~i /Odpi = O, and a 
Gibbs equation analogous to the Gibbs equation 
from classical thermodynamics is used: 

Ti dsi -- dei ~ dpi. (39) 
(37) Pi 

In practice it is assumed that the definition of f i  
(Eq. 15) does not apply and f is estimated from 
experiment. In practice it is assumed that f l  = 0 
and that f2 is a known function of volume frac- 
tion. With these modifications the mixture energy 
equation in terms of entropy is slightly modified 
so that the change in entropy predicted by the 
model is 

0 
~(/OIt~IS 1 -]- p2q~282) 

0 
+~-- (pll#lUlS1 "~ P2~2M282) OX 

= a._~l ( ~ 2 -  ~1 + s 2 ( T 2 - - T l )  
T1 \ 

1 ) 
+ ~(U2 --Ul) 2 + P l ( 1 / p 2  - 1/pl)  

For both models the entropy change is dependent 
on the gradient of gas phase volume fraction. It is 
possible to construct a situation in which the gas 
volume fraction gradient has an arbitrarily large 

bl 
"q-~l (U2 -- Ul) 

mass transfer 

momentum transfer 
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1) 
+cl  T1 energy transfer 

t~l~2 (P2 - f2  - P I )  

~c T1T2 

× {[(1 - 6b)P 2 -}- 8bf2]Tl 

-+-(6b(P2 -- f 2 )  -- PI)T2 } 

+~7~Pl "Sa - 1)(uz - u l ) ~ x  l compaction 

(40) 

As for Eq. 31 a sufficient condition for satisfying 
the entropy inequality (Eq. 27) is to require each 
term in the right-hand side of Eq. 40 to be pos- 
itive. These conditions are quite similar to those 
yielded by Eq. 31. The conditions on the momen- 
tum transfer and energy transfer terms are identi- 
cal. Slightly different expressions are obtained for 
the mass transfer and compaction conditions. As 
with Eq. 38, the entropy change predicted by a 
compaction process from Eq. 40 can be negative 
for both formulations. 

such that there is an exchange of energy between 
the solid and gas whenever material compaction is 
predicted. This energy exchange due to the com- 
paction process is called compaction work. When 
gas phase effects are included, there is no violation 
of the mixture energy conservation principle. 

When gas phase effects are neglected, however, 
energy conservation is violated because the model 
still predicts an energy loss due to compaction 
work. With no gas phase to absorb the energy of 
compaction work, the energy of compaction work 
necessarily leaves the system. This can be seen by 
examining Baer's form of the solid energy equa- 
tion [11] when gas phase effects are negligible and 
for no chemical reaction. It is argued in Ref. 11 
that in this limit drag and heat transfer effects can 
be ignored; this is essentially the limit where there 
is no gas present in the voids, and thus there can 
be no momentum or energy transfer to the voids. 
The unsteady form of the energy equation in this 
limit is 

O(02~b2(e2 + 1/22/2)) 

0 
-+- ~~(P2q~2u2(e2 -+- u22/2 +P2/o2)) 

COMPACTION WORK 

In this section an argument is presented for not 
including the compaction work term of the BN 
model (present when 8b = 1). It is shown that 
when 8b = 1 for an inert material when gas 
phase effects are negligible that the compaction 
work term leads to a violation of the mixture en- 
ergy conservation principle. Material compaction 
is predicted by the compaction equation (Eq. 7). 
For the limit of an inert solid (ai = 0) and negli- 
gible gas phase effects, this equation predicts that 
the volume fraction of solid changes if the in- 
stantaneous stress P2 differs from its equilibrium 
value f2 ,  where f2  is an experimentally deter- 
mined function of equilibrium solid volume frac- 
tion q~2. The compaction equation predicts that the 
material is driven to a volume fraction where the 
instantaneous stress equals the equilibrium stress. 
To model hypothesized hot spot formation [17], 
the BN energy equations have been constructed 

= -6b(P2 -- f2)  2 ~bl~b2. (41) 
/*c 

By considering the following problem, sketched 
in Fig. 1, it is clear that compaction work leads 
to violation of energy conservation in this limit. 
Consider a tube of length L closed at both ends 
filled with a granular material. The voids contain 
no gas mass. If  one drives a piston into the gran- 
ular material and then brings it to rest, the static 
equilibrium will be disturbed so that P2 - f 2  # 0. 
In other words the tube is in an initial state where 
the instantaneous pressure P2 has not yet relaxed 
to its equilibrium value f2 .  Both ends of the tube 
are stationary; consequently, a boundary condi- 
tion for this problem is that u2 = 0 at x = 0 
and x = L. If  the energy equation (Eq. 41) is 
integrated in space from x = 0 to x = L, an ex- 
pression can be written for the time rate of change 
of total energy (internal plus kinetic) contained in 
the tube. The spatially integrated energy equation 
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P2-f2>0 

x=0 x=L 
Fig. 1. Sketch of compaction problem. 

is 

0 f L 
~ J o  P24,2(e2 + u 2 2 / 2 ) d x  

L 
: --~b~0 (P2 _ f2)2 4,1#c4,2 d x .  (42) 

This equation shows that the time rate of change 
of total energy in the tube is zero if there is no 
compaction work (6b --- 0) and negative if com- 
paction work is included (6b = 1). By integrating 
Eq. 42 with respect to time, one would conclude 
that for no compaction work, the energy in the 
tube remains constant and when compaction work 
is included, the energy in the tube decreases. Thus 
in the limits considered, inclusion of compaction 
work violates the principle of energy conserva- 
tion. This analysis suggests that an alternative to 
compaction work to describe hot spots should be 
considered. 

CONSTITUTIVE RELATIONS 

A set of specific constitutive relations is intro- 
duced to model the combustion of granular ex- 
plosives or propellants. As discussed in the in- 
troduction, these relations are to a certain extent 
arbitrary. Their choice is motivated with varying 
degrees by a desire to predict a steady detonation 
structure, satisfy the entropy inequality, maintain 
some consistency with other models, match some 
limited experimental data, and, insofar as possi- 
ble, retain a simple algebraic form. These consti- 
tutive relations are also used in Refs. 5 and 18. 
The constitutive relations are 

al = ( ! )  p24,2otP~H(T2 - Tig), (43) 

B = / 3  4,14,2, (44) 
r 

• 4,14,2 
C = n r--i- 5 , (45) 

f t  = 0, (46) 

f2  -- P20 - P10 4,2, (47) 
4,20 

el = cv lT l ,  (48) 

e2 = cv2T2 + 02oo + q, (49) 
7202 

P l  = o I R T I ( 1  + b p l ) ,  (50) 

P2 m_ (72 -- 1)cv2o2T2 -- - -  
P20ff , (51) 

72 

O~l 2 = RTI[1 + 2bOl + (R/cot ) (1  + bol)2], (52) 

6022 = 72(72 -- 1)co2T2, (53) 

s l - - c o l  In (T~-~o) -R  In (0~ll0) 

- -  R b ( 0 1  - 01o) + Slo. (54) 

$2 = Cv2 In - ( 7 2  - 1)co2 In ~20 +s20, 

(55) 

F = 0. (56) 

Equation 43 is the combustion model. It assumes 
that the mass transfer rate to the gas phase is a 
function of the particle radius, solid volume frac- 
tion, solid density, and gas phase pressure. The 
unit step function H ( T 2 -  Tig) is included in the 
combustion model to prevent combustion from be- 
ing predicted until an ignition temperature Tig is 
reached. The function at is strictly positive for 
r, ,02, 4,2, or, IO 1 > 0, and thus an irreversible re- 
action of solid to gas is modeled. This combus- 
tion model has been constructed such that empir- 
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Burning Surface 

275 

'oduct Gas, Pressure = P 
1 

~ dX m 
" ~  = " ~ PI = surface regression rate 

X 

Fig. 2. Sketch of strand burning experiment used to determine combustion rate. 

ical data that describe the rate of burning of a 
strand of propellant can be used to fix the coeffi- 
cients a and m. It is found from experiment that 
when a linear strand of propellant is burned, the 
rate of regression of the strand is proportional to 
the gas pressure raised to some power. That is, 
d X / d t  -- -o tP1  m , where X is defined as the po- 
sition of the burning surface. A sketch of such an 
experiment is shown in Fig. 2. 

Here it is assumed this experimental burning 
relation can be adopted to describe the combus- 
tion of compressible propellant spheres. With a l 
of Eq. 43 substituted into Eq. 2 and with use of 
the number equation (Eq. 8) (with number con- 
servation implied by Eq. 56) and number density 
definition (Eq. 9) to eliminate the derivative of 
volume fraction from Eq. 2, an expression can be 
derived for the variation of particle radius: 

Or Or 
O-'t + u 2 - ~  = - o t p r ~ H ( T 2  - Tig) 

r (~t2+u2~--~Px2) . (57) 
302 

The model predicts that the particle radius can 
change in response to either combustion or den- 
sity changes. As seen from Eq. 57 the experi- 
mental result d X / d t  = -OtPl  m is incorporated 
in the combustion model. However, Eq. 57 has 
more generality, as it also accounts for compress- 
ibility and convective effects. This has not been 
emphasized in many studies. If number is to be 
conserved and a compressible solid is assumed, 
then the model must necessarily predict that the 
particle radius changes in response to a change in 
particle density. 

Because the BN model does not include an 
equation for variation of particle radius or number 
evolution, it has no counterpart to Eq. 57; thus, 
one is unable to determine how the radius varies 
as combustion or density changes occur. The com- 
bustion model of Butler and Krier [4] does include 
a relation for change in particle radius, which as 
implemented in the numerical model is given by 
the relation Or /Ot = - o t p I m H ( T 2  - Tig). This 
equation is inconsistent with Eq. 57. It can thus 
be concluded that the number of particles is not 
conserved in the model of Ref. 4; that is, parti- 
cles are allowed to split or coalesce without an 
apparent rationale for such an action. 

The drag function B and heat transfer function 
C have been defined as functions of volume frac- 
tion and particle radius. The positive constants/3 
and h have been introduced. These functions are 
somewhat arbitrary but when appropriate values 
for/3 and h are chosen can be shown to roughly 
correlate to particle gas drag and heat transfer data 
[18]. The configurational stress f2 is taken in Eq. 
47 to be a linear function of solid volume fraction. 
The function f2 is constructed such that in the ab- 
sence of combustion (ai --- 0), no volume frac- 
tion change is predicted in the ambient state. This 
function is chosen for its simplicity and because it 
follows the same trend as experiments, that is, the 
equilibrium pressure is found to increase as the 
granular material is pressed to higher solid vol- 
ume fraction. In the BN model a curve fit of the 
actual data is used. 

For the gas, a virial state relation has been cho- 
sen; a caloric state equation, thermal state equa- 
tion, sound speed definition, and entropy definition 
are given in Eqs. 48, 50, 52, and 54, respectively. 
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It is assumed that the specific heat at constant vol- 
ume Cog is a constant. The variables 00, R, and b 
are the sound speed, gas constant, and virial coef- 
ficient, respectively. For the solid, a Tait equation 
of state has been chosen; a caloric state equation, 
thermal state equation, sound speed definition, and 
entropy definition are given in Eqs. 49, 51, 53, 
and 55, respectively. The specific heat at constant 
volume c~2 is assumed to be a constant. The con- 
stant 72 is defined as the Tait parameter, analogous 
to the ideal gas ratio of specific heats. The con- 
stant o is defined as the nonideal solid parameter. 
Numerical values for the gas and solid state pa- 
rameters can be chosen to match detonation wave 
speed data for the gas and shock impact data for 
the solid [5]. The subscript "0"  denotes the initial 
state. 

For these constitutive relations, sufficient con- 
ditions for the model equations to predict equi- 
librium in the ambient state are O2(x, 0) = 
constant, ul(x ,  O) = u2(x, O) -~- O, TI(X, O) = 
T2(X, 0) : constant < Tig, p g ( X ,  0 )  ~--- constant, 
and 02(x, 0) = constant. 

CHARACTERISTIC FORM OF 
TWO-PHASE EQUATIONS 

Following Whitham [19] for a system of partial 
differential equations of the form 

OUj OUj 
A i j  - ~ -  + B i j - ~  -- Ci, (58) 

the characteristic velocities X are found by solving 
the linear algebra problem 

[ ~ i j  - -  BijI = 0. (59) 

For each )~, a vector li is determined such that 

l i (kA 0 - B i j  ) --= O. (60) 

The characteristic equations are then given by the 
equation 

duj  
l i A i j - - ~  : iiCi, (61) 

which is valid on the curves specified by 

d x  
- X .  (62) 

dt 

The PSK model equations are written here in a 
form suitable for determining the characteristics. 
In these equations, the solid is assumed to be a Tait 
solid and the gas assumed to be an ideal gas (b = 
0). This analysis could also be performed for more 
general state equations; however, by making these 
assumptions, the results can be easily compared 
with well-known one-phase results. 

The vector uj for the eight partial differen- 
tial equations of the PSK model is chosen to be 
uj = (pl, p2, Ul,/,/2, Sl, $2, r, th2). As the mo- 
mentum equations contain derivatives of pressure, 
it is necessary to express the derivatives in terms 
of uj in order to find the characteristics. For both 
the ideal gas and Tait solid the pressure derivative 
can be written in terms of entropy and density 
derivatives as 

dPi -- pi6oi2 dsi + oJ 2 dpi, (63) 
"yi C vi 

where 71 = 1 +R/Cvl .  
The unsteady two-phase equations in the form 

of Eq. 58 are given below: 

04~i O pi 
+ p i U i - ~  -[- Ui~)i'-A"-- : ai, 

tJx 
(64) 

OUi OUi 20pi 
pi4~i ~i-  + pi4~iUi ~x  + 4~io~i -~x 

_~ Pi~iOJi2 ~Si O~i 
"yiCv~ OX + Pi 

= (2 - i)al(u2 - ul) + bi, (65) 

Od#i _ P iUiO0~ 

1 

+ b l ( u 2 - u l )  1 -aiPipi +ci '  (66) 
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(67) 

842 4142 
-7g +u2g =- ~uc (P2 -f2 -PI) +a2lP2. 

(68) 

By solving Eq. 59 for the system of Eqs. 
64-68, six characteristic velocities X are found: 
X = ~1, ~2, ~1 fwi, u2 f~2. A detailed calcu- 
lation shows that the characteristic ordinary differ- 
ential equations of the form of Eq. 61 are given 

1 d(Pi&) * J_ du; 
pi+iwi2 dtih - wi dti* 

=J- aif 1 (2 - i)al(u;? - Ul) + bi 

Pi& Wi 

1 
+ 

YiCuiPihTi { 
-ais +Ci +(2-i) 

I 

[ ( 1 
x al e2 - el + 2(u2 - ~1)~ 

1 

+ bl(U2 - Ul) II 
+g$ (723 -P2) 

X ( y%P2-f2-Pd+~ , 
> 

pi4iTi 2 - Pi $ 
10 10 

=-ai:+Ci+(2-i) al 
[ ( e2 -el 

I 

+ $u2 - Ulj2 
> 

fbl (u2 -u1) 
I 

9 

(69) 

(70) 

$$ =(P2 -f2 --PI)% +z, 

where 

d 
--=g+(Ui*COi)$ on 
dtik 

dx =u. fw. 
dt ’ ’ 

and 
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(71) 

(72) 

dx 
dt =ui. 

Equation 69 applies under the condition 
u2 f~2 # ut +wl and u1 fwl # u2 $02. 

In the one phase limit (42 or 41 = 0) the char- 
acteristic equations properly reduce to the one- 
phase characteristic equations found for example 
in Courant and Friedrichs [20]: 

IdP*s!L=O, 
pa2 dt+ w dt, (73) 

(74) 

Here the i subscripts have been dropped to indicate 
the one-phase equations. 

DISCUSSION 

A two-phase model has been presented that meets 
most basic requirements of any fluid flow model. 
The model equations conserve mass, momentum, 
and energy for the mixture and are frame indiffer- 
ent. These conditions are not really controversial 
and satisfied by most current two-phase models. 

In other respects, the model presented here has 
certain advantages over other two-phase detona- 
tion models and some weaknesses. First, since 
the model equations are hyperbolic, there can be 
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no question that the initial value problem is well- 
posed. In many other two-phase combustion and 
detonation models, the characteristics are shown 
to be imaginary in some circumstances or simply 
are not discussed. In many of these studies the 
conditions for a well-posed problem are not well- 
defined. If not studied carefully, this could lead to 
inherent instabilities in the solution of these equa- 
tions. Ermolaev et al. [12] take the cautious, but 
proper, step of checking the characteristics at each 
point in their calculations. If imaginary character- 
istics are found, they cease calculating the solu- 
tion. 

A distinguishing feature of both the BN and 
PSK models that guarantees the hyperbolicity of 
the equations and makes such attention to detail 
unnecessary is the dynamic compaction equation. 
None of the two-phase models that exhibit flow 
regimes with imaginary characteristics contains a 
dynamic compaction equation. Instead for closure 
it is generally assumed that the instantaneous parti- 
cle stress equals the sum of the gas phase pressure 
and equilibrium configurational stress. Thus, it is 
suggested that the dynamic compaction equation is 
responsible for guaranteeing real characteristics. 

However, the dynamic compaction equation is 
one of the most uncertain aspects of the present 
model. One of the most important parameters of 
this model, the compaction viscosity, has never 
been measured. Also, there is no clear reason why 
a mass transfer term must appear as a forcing term 
in the dynamic compaction equation. Neverthe- 
less, the use of this equation significantly clarifies 
many issues in two-phase modeling. In addition to 
hyperbolicity, use of this equation results in eas- 
ily interpreted shock discontinuity equations. The 
shock relations are essential in describing detona- 
tions in two-phase systems. As discussed in Ref. 
5, the dynamic compaction equation holds that the 
volume fraction does not change through a shock 
jump. As a result, the gas shock state is inde- 
pendent of both the solid state and volume frac- 
tion. Likewise, the solid shock state is independent 
of the gas state and volume fraction. Both shock 
states are precisely the same as predicted by a sin- 
gle phase analysis. Consequently, this equation is 
viewed as a modeling convenience that, though 
it has some desirable features that lead to simple 

interpretations, still needs further theoretical and 
experimental justification. 

The PSK model contains an evolutionary equa- 
tion for particle number. For models that describe 
the burning of moving particles, it would seem 
that such an equation is a necessity. However, this 
idea is not universally found in two-phase com- 
bustion models. For instance a number conserva- 
tion equation is included in Refs. 5-7, whereas 
no comparable relation is found in Refs. 2, 8, and 
9. In other studies [3, 4, 12], expressions for the 
evolution of particle radius are given. However, 
in these studies number is not conserved, and it is 
not clear what physical process is responsible for 
the breakup or agglomeration of particles. 

A weakness of the PSK model is that it is not 
always guaranteed to satisfy the entropy inequal- 
ity. The same can be said for the BN model, al- 
though the BN model is in general less restrictive 
than the PSK model. Most other two-phase deto- 
nation studies do not examine the implications of 
the second law. The idea of constructing a model 
to satisfy the entropy inequality is appealing but 
has led to very complicated expressions for phase 
interaction terms that have no other real justifica- 
tion. As it stands two-phase theory still needs an 
justification founded on more fundamental theory. 

A two-phase theory based on the microstruc- 
tural flow details could potentially determine the 
proper form for phase interaction terms. This the- 
ory could make the physical meaning of such 
things as particle and gas temperature and pres- 
sure clear. The present interpretation is that these 
terms are equivalent to their one-phase counter- 
parts; however, two-phase theory lacks the mi- 
crostructural rigor that is used to define these one- 
phase variables. At this point it may be best to 
view the two-phase variables only as state vari- 
ables defined by a theory that is consistent with 
certain modeling principles and to realize that the 
physical interpretation of these variables may or 
may not be the same as for one-phase theory. 

Finally, an advantage of the model proposed 
here is the simplicity of the constitutive relations. 
Although the model is admittedly complicated, 
when compared to many other models, it is more 
compact. If one's goal is to match experimen- 
tal data under a wide variety of flow conditions, 
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then this model is inadequate. Many of  the choices 
made are arbitrary and have not been confirmed 
by experiment of  microstructural theory. It should 
be emphasized again, however, that for detonation 
conditions, no constitutive models have been ver- 
ified. If one's goal is to describe a detonation, it 
would seem that such simple constitutive relations 
are as likely to be as valid as more complicated re- 
lations. As shown in Ref. 21, this model is indeed 
capable of  describing a detonation in a two-phase 
system. 
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