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A conservative, upwind numerical method is formulated for the solution of a
two-phase (reactive solid and inert gas) model of deflagration-to-detonation transi-
tion (DDT) in granular energetic solids. The model, which is representative of most
two-phase DDT models, accounts for complete nonequilibrium between phases and
constitutes a nonstrictly hyperbolic system of equations having parabolic degenera-
cies. The numerical method is based on Godunov’s methodology and utilizes a new
approximate solution for the two-phase Riemann problem for arbitrary equations
of state. The approximate solution is similar to the Roe-type Riemann solution for
single-phase systems. The method is able to accurately capture strong shocks as-
sociated with each phase without excessive smearing or spurious oscillations and
can accurately resolve fine-scale detonation structure resulting from interaction be-
tween phases. The utility of the method is demonstrated by comparing numerical
predictions with known solutions for three test cases: (1) a two-phase shock tube
problem; (2) the evolution of a steady compaction wave in a granular material result-
ing from weak piston impact (∼100 m/s); and (3) the evolution of a steady two-phase
detonation wave in an energetic granular material resulting from weak piston impact.
The nominally second-order accurate numerical method is shown to have global con-
vergence rates of 1.001 and 1.670 for inert test cases with (case 1) and without (case 2)
discontinuities, respectively. For the reactive test case having a discontinuity (case 3),
a convergence rate of 1.834 was predicted for coarse grids that seemed to be approach-
ing the expected value of unity with increasing resolution.c© 2000 Academic Press

1. INTRODUCTION

In this paper we give a detailed description of the numerical method first used by Gonthier
and Powers [21] to simulate deflagration-to-detonation transition (DDT) in granular ener-
getic solids. This and other research studies on DDT have largely been motivated by concerns
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FIG. 1. Schematic of a piston-induced two-phase detonation.

over the increased sensitivity of damaged high explosives and propellants to mechanical im-
pact. Experiments have shown that weak mechanical shock (∼0.2 GPa) is often sufficient to
initiate detonation in granulated energetic material through various mechanisms of hot-spot
formation [34, 36, 53], whereas only strong shocks (>10 GPa) provide sufficient energy to
initiate detonation in cast material. Here, we first briefly introduce the physical problem,
focusing on issues relevant to the numerical solution of two-phase DDT models, and then
describe a new high-resolution numerical method for accurately solving these models.

Figure 1 shows a simple schematic of a paradigm problem for the initiation of detonation
in damaged high explosives by weak, planar mechanical shock. This problem, which is well
characterized by experiments [36, 53], involves the low-velocity impact of a moving piston,
having velocityvp ∼ 100 m/s, with a stationary bed of granular explosive. In this figure,
transition to detonation, which results from a complex, not well-understood sequence of
physical events, has already occurred. The resulting detonation wave, composed of a thin
lead shock followed by a thick reaction zone, is propagating to the right at speedD, where
D À vp, and is supersonic with respect to both the ambient gas and the solid. As shown
by Gonthier [22], the lead shock may be in the gas and/or solid depending on the relative
rates of the various physical processes occurring within the reaction zone structure; such
processes will be discussed in detail. Typically, the shocks are modeled as discontinuities
since the length scales associated with diffusive processes, which define a shock structure,
are thin compared to length scales associated with reaction and other relaxation processes.
Adiabatic compression of the ambient material by the lead shock and compaction-induced
dissipation provide sufficient energy to initiate chemical reaction. Due to reaction, solid
particle mass, momentum, and energy are converted into gas mass, momentum, and energy.
This conversion process sustains propagation of the wave through the material by means of
acoustic energy transmission from the point of local reaction, through the subsonic region
of the reaction zone, and to the lead shock. At the end of the reaction zone, all of the solid is
completely consumed by reaction. The reaction rate determines both the time required for
complete reaction and the length of the reaction zone; typical reaction times areO (1 µs)
and typical reaction zone lengths areO (1 mm).

To gain better understanding of combustion in porous solids and DDT, a number of two-
phase continuum models have been developed [3, 6, 8, 13, 35, 41, 44]. The models are posed
as coupled time-dependent partial differential equations (PDEs) which track the evolution of
mass, momentum, and energy of an inert gas and reactive solid particles. For mathematical
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closure, some models include an additional PDE to account for the dynamic compaction of
the solid particles [3, 6, 35, 44], while others use an algebraic stress relation to account for
compaction [8]. Physical processes accounted for by most models include (1) convective
transport in both the gas and solid, (2) mass, momentum, and energy transfer from the solid
to the gas due to chemical reaction, (3) momentum and energy exchange between the gas
and the solid due to drag interaction, (4) thermal energy exchange between the gas and the
solid due to convective heat transfer, and (5) material compaction due to a stress imbalance
between the gas pressure, the solid pressure, and an intragranular stress. Though various
two-phase DDT models have common features, they often differ in the functional forms of
the evolution equations. Some of the relevant differences are discussed in detail by Powers
et al. [44], and more recently by Bdzilet al. [6] and Saurel and Abgrall [58].

One relevant difference concerns the inclusion of nonconservative “nozzling” terms in
the gas and solid momentum and energy equations which are proportional to the spatial
derivative of solid volume fraction. Some models include these terms [3, 35], whereas others
exclude them [8, 44]. Inclusion of such terms introduces additional asymmetry into a model,
which in principle should be indifferent to the description of individual phases. The primary
rationale for including nozzling terms, which are constructed in a nonunique manner, is to
ensure that another asymmetry, known as a dynamic compaction model, identically satisfies
the strong form of the second law of thermodynamics [6]; plausibility arguments that relate
the behavior of the nozzling terms to one-dimensional flow in a variable cross-sectional
area duct are also given.

While we find no fault in the rationale given in Ref. [6], we exclude nozzling terms in
our model, and we offer the following arguments for doing so. First, no rigorous micro-
scale justification for either the inclusion or the exclusion of nozzling terms currently
exists. Consequently, all current multiphase flow models remain open to such scrutiny.
Second, as noted by Powerset al. [44], satisfaction of the strong form of the second law,
while appealing, may be overly restrictive. Even if dynamic compaction induces a decrease
in entropy, there may be sufficient compensation from competing dissipative processes to
guarantee satisfaction of the more general weak form of the second law, which only requires
a global increase in entropy. Third, as noted in Ref. [6], nozzling does not significantly
affect low-pressure compaction waves, a key ingredient for DDT, becoming less important
as pressure increases. This result suggests that nozzling may play a small role in the DDT
process, though there is some belief that nozzling could play an important role in low-speed
gas permeation scenarios [1]. We also recognize that its role under detonation conditions is
not currently well characterized. Our results without nozzling have shown good agreement
with existing experimental DDT [22] and compaction wave [43] data. Fourth, we avoid
mathematical and numerical difficulties in the analysis of shocks associated with models
having a nonconservative form. Such difficulties are often addressed by simply grouping
the nonconservative terms together with algebraic source terms and proceeding in a manner
similar to what will be done here (cf. [58]), albeit with slightly modified source terms. We
also note that, in contrast to what is stated in Refs. [50, 58], the exclusion of nozzling terms
is not necessary to retain hyperbolicity of our model, as similar models containing nozzling
terms are known to also be hyperbolic [6, 15]. So, while a definitive argument for nozzling
remains to be found, the numerical technique given here can be applied in either case, and
the predicted results will be similar.

There are a number of difficulties in numerically solving two-phase DDT models that
stringently test the capabilities of the method. First, the numerical method must be ca-
pable of capturing strong shocks in each phase with minimal numerical diffusion and
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dispersion. This requirement is especially important for two-phase DDT simulations since
such numerical artifacts can substantially affect local phase interaction processes, resulting
in severe numerical inaccuracies. Second, the numerical method must be capable of han-
dling mathematical stiffness, which arises due to the disparate time scales associated with
both gas and solid convection, and phase interaction processes. For instance, gas and solid
acoustic speeds and particle speeds can differ by an order of magnitude, and the rates of
phase interaction processes can differ by several orders of magnitude. This problem has
partly motivated the development of reduced two-phase DDT models based on asymptotic
analyses [30]. Third, the numerical method must be capable of handling a local loss of
hyperbolicity, as most current two-phase DDT models possess singularities for which the
equations become parabolic [15, 21]. As discussed later, the physical implications of these
singularities are unclear, but the loss of hyperbolicity results in numerical instabilities that
must be suppressed. Last, the numerical method must accommodate nonideal equations of
state for both the gas and the solid to characterize their thermodynamic behavior under the
extreme conditions of detonation. The numerical method formulated in this paper satisfies
each of these requirements.

Most commonly used numerical methods for simulating DDT are based on either con-
ventional method of lines (MOL) or MacCormack predictor/corrector techniques, relying
on explicitly added artificial viscosity to capture shocks and maintain numerical stability
[3, 4, 8, 46, 54]. It is likely that this added viscosity reduces the ability of such methods to
accurately resolve fine-scale detonation structure due to excessive numerical smearing. Fur-
thermore, the optimal amount of artificial viscosity needed to reasonably capture shocks is
largely problem-specific. Though several modern high-resolution upwind numerical meth-
ods have been developed and applied to dilute two-phase compressible flows [55–57] (i.e.,
the dilute phase is assumed to occupy negligible volume), these methods are not applica-
ble to the particle-laden flows of interest here. Saurel and Abgrall [58] recently applied a
Godunov-based method using the existing numerical flux functions of Rusanov [51] and
Hartenet al. [26] to nondilute compressible flows. Their method is robust, as it can be
applied to both multifluid and multiphase compressible flows, though it generates notice-
able dispersion for the test cases shown in Ref. [58], likely due to the low accuracy of the
Riemann solvers employed.

The work contained in this paper provides two original contributions to the numerical
modeling and theory of two-phase detonation. First, we give a new approximate solution
for the two-phase Riemann problem and use it with Godunov’s methodology to obtain
an accurate numerical method for computing DDT. In addition to increased computational
efficiency, the use of an approximate solution is necessitated by the lack of an exact solution.
The approximate Riemann solution is formulated following the approach used by Roe and
Pike [48] to obtain an approximate Riemann solution for the Euler equations for ideal
equations of state and that used by Glaister [18] to obtain an approximate solution for
nonideal equations of state. Consequently, the method formulated in this paper has the
shock resolution property common to Roe-type solvers and is applicable to general gas
and solid equations of state. Second, based on detailed comparisons between numerical
predictions and results of a steady, two-phase detonation wave analysis [22], we predict
for the first time the evolution of a two-phaseweakdetonation structure, indicating that
the Chapman–Jouguet (CJ) wave speed is not the unique wave speed for a self-propagating
two-phase detonation. Together with Ref. [21], which gives predictions of the evolution of
the steady CJ detonation structure identified by Powerset al. [45], this work gives the only
known detailed comparison between unsteady numerical predictions and steady-state results
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for two-phase detonation wave structure. Further, these comparisons conclusively show that
all relevant detonation length scales are fully resolved, in contrast to most published work
in this area, which is underresolved.

The plan of the paper is as follows. We first give the model equations and perform a char-
acteristic analysis to determine the mathematical framework needed for the construction of
the approximate Riemann solution. Next, we briefly discuss the two-phase Riemann prob-
lem and obtain an exact solution for the linearized Riemann problem. Based on this exact
solution, we then formulate an approximate solution valid for arbitrary initial data. We give
a technique for suppressing numerical instabilities associated with a loss of hyperbolicity
and summarize the techniques used for increasing both the spatial and the temporal accuracy
of the method and for the coupling of the Godunov-based method with a standard ordinary
differential equation (ODE) solver to account for the influence of inhomogeneous phase in-
teraction terms. Last, we illustrate the performance of the method based on detailed compar-
isons between numerical predictions and known theoretical solutions for granular energetic
solids, and we quantify its convergence rate for both continuous and discontinuous solutions.

2. MATHEMATICAL MODEL

The model adopted for this work is a variant of the unsteady, two-phase continuum model
formulated by Powerset al. [44, 45]. As discussed later, we have modified their model to
include an additional evolution equation for an ignition variable and have incorporated an
intragranular stress relation that better describes dynamic compaction of granular explosives
[43]. The model assumes the existence of reactive, spherical solid particles and an inert gas,
both having fixed composition, and further assumes that both phases are compressible,
all intraphase diffusive transport is negligible, body forces are negligible, each phase is
in complete nonequilibrium with the other, and the two-phase flow is one-dimensional in
a macroscopic sense. The model is representative of other two-phase continuum models
commonly used to predict detonation in granulated material [3, 8] and is able to predict
most experimentally observed features of DDT [22].

The two-phase model equations are given by the following:
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In these equations, the subscripts “1” and “2” denote quantities associated with the gas
and solid, respectively. Quantities labeled with subscripto are associated with the ambi-
ent state. The independent variables are timet and positionx. Dependent variables are as
follows: the phase densityρi (i = 1, 2), defined as the mass of phasei per unit volume
occupied by that phase; the phase pressurePi ; the phase temperatureTi ; the particle ve-
locity ui ; the specific internal energyei ; the volume fractionφi ; the radius of the spherical
solid particlesr ; the number of particles per unit volumen; the intragranular stressf ; and
the ignition variableI . In Eqs. (2.1)–(2.9),H(I − I ig) is the Heaviside unit step function,
and I ig, a, m, β, h, µc, kI , andTI are constant parameters, which are described below.
Equations (2.1)–(2.16) constitute a system of 16 equations in 16 unknowns; thus, the sys-
tem of equations is mathematically closed and, in principle, can be solved provided that
appropriate initial and boundary conditions are supplied.

Equations (2.1), (2.2), and (2.3) are evolution equations for the mass, momentum, and
total energy of the gas. Equations (2.4), (2.5), and (2.6) are evolution equations for the mass,
momentum, and total energy of the solid. Equations (2.7)–(2.9) are evolution equations for
the solid volume fraction, the particle number density, and the ignition variable, respectively.

The forcing terms in Eqs. (2.1) and (2.4) account for the exchange of mass from the
solid to the gas due to combustion. Here, mass exchange is modeled as a single, irreversible
process(solid→ inert gas), and all chemical reaction is assumed to occur on the particle
surface. Combustion initiation occurs forI ≥ I ig, whereI ig is a constant ignition parameter.
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The combustion rate is modeled by a burn law which depends upon the gas pressure. Values
for the combustion rate parametersa andm are typically correlated to match strand burn
rate data [4].

The forcing terms in Eqs. (2.2) and (2.5) account for two forms of momentum exchange
between the gas and the solid. First, the gas is gaining that momentum associated with the
solid which is being converted into gas due to combustion. Second, there is an exchange of
momentum due to solid particle–gas drag interaction. The drag interaction is modeled by a
drag law which states that the drag is proportional to the difference in velocity between the
phases, and inversely proportional to the particle radius. In the drag law,β is defined as a
drag coefficient which gives the time scale for velocity equilibration between the phases.

The forcing terms in Eqs. (2.3) and (2.6) account for the exchange of energy between the
gas and the solid. Energy exchange associated with combustion, and with particle-gas drag
work, is accounted for, as is thermal energy exchange between the gas and the solid. The
thermal energy exchange rate is assumed to be proportional to the temperature difference
between the gas and the solid, and inversely proportional to the cube root of the particle
radius; here,h is defined as a heat transfer coefficient which gives the time scale for thermal
equilibration between the phases.

Equation (2.7) is a dynamic compaction equation governing changes in solid volume
fraction due to both compaction and combustion of the granular material. This equation
predicts that, in the absence of combustion, the solid volume fraction,φ2, will equilibrate
to a value such that the solid pressure,P2, equals the sum of the gas pressure,P1, and
the intragranular stress,f ; the equilibration rate is governed by the parameterµc, which
is referred to as the compaction viscosity. The use of this equation was first proposed by
Baer and Nunziato [3]. Though this equation is not standard in all multiphase modeling,
it does allow the modeling of rate-dependent material compaction, which is known to be
important in the evolution of detonation in granulated material. Additionally, the use of this
equation ensures that the characteristic wave speeds associated with the model equations
are real [42–44], and that solutions of the governing PDEs are hyperbolic waves. The
characteristic wave speeds of some two-phase models, particularly models which assume
pressure equilibrium between the phases, have been shown to be imaginary; the models
are thus unable to properly model discontinuous solutions as the initial-value problem is
ill-posed [14, 47].

Equation (2.8) expresses that the total number of particles in the system is conserved.
Though not considered here, it is possible to model the break-up of particles by including
an appropriate inhomogeneous term in this equation.

Equation (2.9) is anad hocevolution equation for the ignition variableI . For this study,
0≤ I ≤ 1, where Io = 0 for the ambient state, andI ig = 0.5. This equation is used to
model the observed induction period occurring prior to the onset of vigorous combustion in
piston-initiated DDT experiments [4, 36, 53]. The forcing term in this equation models the
ignition variable as an increasing function of pressure and temperature of the gas and solid.
Consequently, in agreement with experiments, higher temperatures and pressures result in
a decrease in the induction time. In this equation,kI and TI are ignition rate constants.
Similar equations have been used in other two-phase combustion models as “switches” for
controlling the amount of chemical energy released by combustion during the induction
period [5, 46, 60].

Equation (2.10) is an expression for the intragranular stress, which was used by Powers
et al. [43] to analyze steady compaction waves in granular HMX. Equation (2.11) is the
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definition of the local particle number density expressed in terms of the solid volume
fraction and the particle radius, and Eq. (2.12) is a mixture saturation condition (i.e., no
voids are present within the mixture). Equations (2.13) and (2.14), and Eqs. (2.15) and
(2.16) are functional dependencies for the thermal and caloric equations of state for the gas
and the solid, respectively. At this juncture, we choose not to specify exact forms for the
state relations as the formulation of the numerical method in the following section does not
require us to do so. Furthermore, different state relations are used for various problems in
this paper, the exact forms of which are given where appropriate.

As discussed by Powerset al.[44, 45], the phase interaction terms have been constructed
such that (1) the total mass, momentum, and energy of the gas–solid mixture are conserved;
(2) the ambient state of the material is an equilibrium state; and (3) some analytical simplicity
is retained. Additionally, the drag and thermal interaction terms have been constructed to
guarantee a nonnegative change in mixture entropy in accordance with the strong form
of the second law of thermodynamics. The combustion and compaction terms may under
certain circumstances induce negative entropy changes, thus violating the strong form of the
second law, though the less restrictive form may remain satisfied as previously discussed.
Despite their relative simplicity, it is shown in Ref. [45] that these forms do predict the same
trends as more complicated empirical relations.

Equations (2.13)–(2.16) can be used to define expressions for the gas sound speed,c1,
and the solid sound speed,c2. To this end, we solve Eqs. (2.14) and (2.16) forT1 andT2,
respectively, and substitute the results into Eqs. (2.13) and (2.15) to obtain the following
functional dependencies:

P1 = P1(ρ1, e1), (2.17)

P2 = P2(ρ2, e2). (2.18)

The gas and solid sound speed can be expressed in terms of thermodynamic derivatives
obtained from these relations,
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wheres1 ands2 are the specific entropy of the gas and solid, and01 and02 are the Gr¨uneisen
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Finally, the construction of the numerical method requires that Eqs. (2.7) and (2.9) be
expressed in divergence form. To this end, Eq. (2.4) is multiplied byφ2, Eq. (2.7) is multiplied
by ρ2φ2, and the two resulting expressions are added to obtain
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Similarly, Eq. (2.4) is multiplied byI , Eq. (2.9) is multiplied byρ2φ2, and the two resulting
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expressions are added to obtain
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It is noted that spurious wave speeds for discontinuities may be introduced when PDEs
are manipulated in this manner. However, Eqs. (2.7) and (2.9) are already in standard
characteristic form; the characteristics are solid particle paths. Furthermore, as discussed
in the following section, the corresponding characteristic fields are linearly degenerate;
consequently, discontinuities in these fields propagate at speedu2. This result is also obtained
by a formal discontinuity analysis based on integral conservation expressions for Eqs. (2.22)
and (2.23) [22]. Consequently, these manipulations will not affect the solution.

2.1. Characteristic Analysis

Equations (2.1)–(2.6), (2.8), (2.22), and (2.23) form a quasilinear system of nine first-
order PDEs expressed in divergence form. Using vector notation, these equations can be
compactly expressed by
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Here,q ∈ <9 is the vector of conserved quantities,f ∈ <9 is the flux vector, andg ∈ <9 is
the source vector (< is the set of real numbers). Bothf andg are functions ofq.

We now give a standard analysis applicable to systems of first-order quasilinear PDEs
in two independent variables to determine the classification of the model equations and to
provide the mathematical framework needed for the development of the numerical method.
The analysis requires that Eq. (2.24) be expressed in the following nondivergence form
obtained by carrying out the differentiation off with respect tox,

∂q
∂t
+ A(q)

∂q
∂x
= g(q), (2.29)

whereA is the 9× 9 flux Jacobian matrix defined by

A ≡ ∂f
∂q
. (2.30)

If we denote the components ofq andf by qj and f j ( j = 1, . . . ,9), respectively, thenA
is given by

A =


∂ f1/∂q1 ∂ f1/∂q2 · · · ∂ f1/∂q9

∂ f2/∂q1 ∂ f2/∂q2 · · · ∂ f2/∂q9
...

...
...

∂ f9/∂q1 ∂ f9/∂q2 · · · ∂ f9/∂q9

 . (2.31)

For the construction ofA, it is necessary to first expressφ1, ρ1, u1, e1, φ2, ρ2, u2, e2, n, and
I as functions ofq. In particular, we have

φ1 = 1− q7

q4
, ρ1 = q1

1− q7/q4
, u1 = q2

q1
, e1 = q3

q1
− 1

2

(
q2

q1

)2

,

φ2 = q7

q4
, ρ2 = q2

4

q7
, u2 = q5

q4
, e2 = q6

q4
− 1

2

(
q5

q4

)2

, (2.32)

n = q8, I = q9

q4
.

Given these expressions forρ1, e1, ρ2, ande2, and using the functional dependencies of
Eq. (2.18), the derivatives

∂P1

∂qj

∣∣∣∣
qj ′( j ′ 6= j )

and
∂P2

∂qj

∣∣∣∣
qj ′( j ′ 6= j )

( j, j ′ = 1, . . . ,9),

which are needed for the construction ofA, can be computed by direct application of the
chain rule:

∂P1

∂qj

∣∣∣∣
qj ′( j ′ 6= j )

= ∂P1

∂ρ1

∣∣∣∣
e1

∂ρ1

∂qj

∣∣∣∣
qj ′( j ′ 6= j )

+ ∂P1

∂e1

∣∣∣∣
ρ1

∂e1

∂qj

∣∣∣∣
qj ′( j ′ 6= j )

, (2.33)

∂P2

∂qj

∣∣∣∣
qj ′( j ′ 6= j )

= ∂P2

∂ρ2

∣∣∣∣
e1

∂ρ2

∂qj

∣∣∣∣
qj ′( j ′ 6= j )

+ ∂P2

∂e2

∣∣∣∣
ρ2

∂e2

∂qj

∣∣∣∣
qj ′( j ′ 6= j )

. (2.34)

Explicit expressions for the derivatives∂P1
∂ρ1
|e1 and ∂P1

∂e1
|ρ1, and ∂P2

∂ρ2
|e1 and ∂P2

∂e2
|ρ2 can be

obtained when the gas and solid state relations are specified.
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In Eq. (2.35), the total enthalpiesH1 andH2 are defined by

H1 ≡ e1+ u2
1

2
+ P1

ρ1
, H2 ≡ e2+ u2

2

2
+ P2

ρ2
. (2.36)

Additionally, the following variables are introduced for compactness:

η1 ≡ c2
1 − (01+ 1)

P1

ρ1
, η2 ≡ c2

2 − (02+ 1)
P2

ρ2
. (2.37)

Here, it is noted that for a calorically perfect ideal gas and solid,c2
i = γi

Pi
ρi

and0i = γi − 1
(i = 1, 2), whereγi is the specific heat ratio; consequently,η1,2 ≡ 0. Terms in Eq. (2.35)
corresponding to the derivatives of the mass, momentum, and energy flux components with
respect to the conserved mass, momentum, and energy variables for each phase are similar
in form to the derivatives given by Glaister [18] for a single-phase system.

The eigenvalues and right eigenvectors ofA, λ( j ) ( j = 1, . . . ,9) andr ( j ), respectively,
are solutions of the eigenvalue problem

A · r ( j ) = λ( j )r ( j ). (2.38)

Using matrix notation, the right eigenvalue problem can be concisely expressed as

AR = RΛ, (2.39)

whereR is the 9× 9 matrix whose columns consist of the right eigenvectors, andΛ is the
9× 9 diagonal matrix of eigenvalues; i.e.,

R ≡ [r (1)∣∣r (2)∣∣ · · · ∣∣r (9)], Λ ≡


λ(1) 0 · · · 0

0 λ(2) · · · 0
...

...
. . .

...

0 0 · · · λ(9)

 . (2.40)

The eigenvalues are determined to be

λ(1) = u1, λ(2) = u1+ c1, λ(3) = u1− c1,

λ(4) = u2, λ(5) = u2+ c2, λ(6) = u2− c2, (2.41)

λ(7) = u2, λ(8) = u2, λ(9) = u2,

and the corresponding right eigenvectors are determined to be

r (1) = [1, u1, H1− c2
1

/
01, 0, 0, 0, 0, 0, 0

]T
, (2.42)

r (2) = [1, u1+ c1, H1+ u1c1, 0, 0, 0, 0, 0, 0]T , (2.43)

r (3) = [1, u1− c1, H1− u1c1, 0, 0, 0, 0, 0, 0]T , (2.44)

r (4) = [0, 0, 0, 1, u2, H2− c2
2

/
02, φ2, 0, 0

]T
, (2.45)

r (5) = [0, 0, 0, 1, u2+ c2, H2+ u2c2, φ2, n/(ρ2φ2), I ]T , (2.46)

r (6) = [0, 0, 0, 1, u2− c2, H2− u2c2, φ2, n/(ρ2φ2), I ]T , (2.47)
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r (7) =
[

ρ1η1

ρ2φ2
(
(u2− u1)2− c2

1

) , ρ1η1u2

ρ2φ2
(
(u2− u1)2− c2

1

) ,
ρ1η1

(
H1+ u1u2− u2

1

)
ρ2φ2

(
(u2− u1)2− c2

1

) , 0, 0, η2

φ202
, 1, 0, 0

]T

, (2.48)

r (8) = [0, 0, 0, 0, 0, 0, 0, 1, 0]T , (2.49)

r (9) = [0, 0, 0, 0, 0, 0, 0, 0, 1]T . (2.50)

The left eigenvectors ofA, l( j ) ( j = 1, . . . ,9), are solutions of the eigenvalue problem

l( j ) · A = λ( j )l( j ). (2.51)

Using matrix notation, the left eigenvalue problem can be concisely expressed as

LA = ΛL, (2.52)

whereL is the 9× 9 matrix whose rows consists of the left eigenvectors; i.e.,

L ≡


l(1)

l(2)
...

l(9)

 . (2.53)

The left eigenvectors are given by

l(1) = 1

c2
1

[(
H1− u2

1

)
01, u101,−01, 0, 0, 0, 0, 0, 0

]
, (2.54)

l(2) = 1

2c2
1

[
−(H1−u2

1

)
01+c1(c1−u1), c1−u101, 01,

ρ1η1c1

ρ2(u2− (u1+c1))
, 0, 0,

− ρ1η1c1

ρ2φ2(u2− (u1+ c1))
, 0, 0

]
, (2.55)

l(3) = 1

2c2
1

[
−(H1− u2

1

)
01+ c1(c1+ u1),−c1− u101, 01,− ρ1η1c1

ρ2(u2− (u1− c1))
, 0, 0,

ρ1η1c1

ρ2φ2(u2− (u1− c1))
, 0, 0

]
, (2.56)

l(4) = 1

c2
2

[
0, 0, 0,

(
H2− u2

2

)
02− η2, u202,−02, η2/φ2, 0, 0

]
, (2.57)

l(5) = 1

2c2
2

[
0, 0, 0,−(H2− u2

2

)
02+ c2(c2− u2)+ η2, c2− u202, 02,−η2/φ2, 0, 0

]
,

(2.58)

l(6) = 1

2c2
2

[
0, 0, 0,−(H2− u2

2

)
02+ c2(c2+ u2)+ η2,−c2− u202, 02,−η2/φ2, 0, 0

]
,

(2.59)
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l(7) = [0, 0, 0,−φ2, 0, 0, 1, 0, 0], (2.60)

l(8) = n

ρ2φ2c2
2

[
0, 0, 0,

(
H2− u2

2

)
02− c2

2 − η2, u202,−02, η2/φ2, ρ2φ2c2
2

/
n, 0
]
, (2.61)

l(9) = [0, 0, 0,−I , 0, 0, 0, 0, 1]. (2.62)

Each grouping(λ, r , l)( j ) ( j = 1, . . . ,9) is associated with a different mode of wave
propagation. In particular,(λ, r , l)(1), (λ, r , l)(2), and (λ, r , l)(3) are associated with the
propagation of entropy waves, forward traveling acoustic waves, and backward traveling
acoustic waves in the gas, respectively;(λ, r , l)(4), (λ, r , l)(5), and(λ, r , l)(6) are associated
with the propagation of entropy waves, forward traveling acoustic waves, and backward
traveling acoustic waves in the solid, respectively; and(λ, r , l)(7), (λ, r , l)(8), and(λ, r , l)(9)

are associated with the propagation of infinitesimal disturbances in the volume fraction, the
particle number density, and the ignition variable, respectively.

As shown in Ref. [22], the gas entropy field, solid entropy field, compaction field, number
density field, and ignition field are linearly degenerate since∇qλ

( j ) · r ( j ) ≡ 0 for allq, where
∇q = [∂( )/∂q1, . . . , ∂( )/∂q9]. The gas and solid acoustic fields are genuinely nonlinear
provided that

∂2P1

∂µ2
1

∣∣∣∣
s1

6= 0 and
∂2P2

∂µ2
2

∣∣∣∣
s2

6= 0,

whereµ1 andµ2 are the specific volumes of the gas and solid. Each of these conditions is
identical to the convexity requirement for genuinely nonlinear acoustic fields for the Euler
equations of gas dynamics [12, 66]. The distinction between degenerate and nonlinear
characteristic fields is important since discontinuities cannot evolve in degenerate fields
from smooth initial data.

Since the eigenvalues given by Eq. (2.41) are real but not distinct, the model equations
constitute a nonstrictly hyperbolic system provided that the right eigenvectors [Eqs. (2.42)–
(2.49)] are linearly independent. Linear independence requires that the right eigenvec-
tor matrix R be nonsingular or, equivalently, that its inverse exist. Inspection ofR−1

(=L), whose rows consist of the left eigenvectors [Eqs. (2.54)–(2.61)], indicates that
the right eigenvectors are linearly independent except at the singular pointsφ2 = 0 and
u2 = u1± c1.

Forφ2 = 0, it is seen that the forward and backward acoustic eigenvectors for the solid,
r (5) andr (6) respectively, degenerate (upon proper scaling) into the particle number density
eigenvectorr (8):

lim
φ2→0

[
ρ2φ2

n
r (5)
]
= lim

φ2→0

[
ρ2φ2

n
r (6)
]
= r (8). (2.63)

The time-dependent analysis performed in this study does not formally consider the limit
φ2→ 0; rather, the singularity is avoided by terminating combustion when the solid volume
fraction reaches a specified minimum value. As such, the solid particles are assumed to have
an inert core of small diameter. It is noted that this complete combustion singularity also
exist in steady-state models of two-phase detonation [22, 45] and, within the context of
those models, is shown to be inconsequential.
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For u2 = u1+ c1 andu2 = u1− c1, it is seen that the compaction eigenvectorr (7) de-
generates (upon proper scaling) into the forward and backward acoustic eigenvectors of the
gas,r (2) andr (3), respectively:

lim
u2→u1+c1

[
ρ2φ2

(
(u2− u1)

2− c2
1

)
ρ1η1

r (7)
]
= r (2), (2.64)

lim
u2→u1−c1

[
ρ2φ2

(
(u2− u1)

2− c2
1

)
ρ1η1

r (7)
]
= r (3). (2.65)

Inspection of Eqs. (2.55) and (2.56) shows that the sonic singularities, corresponding to
u2 = u1± c1, are removed forη1 ≡ 0; as already mentioned, this condition results when
a calorically perfect ideal equation of state is used for the gas. In this case,r (7) reduces
to

r (7)IG = [0, 0, 0, 0, 0, η2/(φ202), 1, 0, 0]T .

Thus, forη1 6= 0, the model equations constitute a nonstrictly hyperbolic system of equations
that contain a parabolic degeneracy on the manifoldsφ2 = 0 andu2 = u1± c1 in phase
space.

Similar singularities have been identified in the two-phase model proposed by Baer
and Nunziato [3]; a detailed discussion is given by Embid and Baer [15]. The physical
interpretation of these singular points is unclear. Embid and Baer suggest that the sonic
singularities arise since, at the pore level, two-phase granular flow is analogous to flow in
a moving duct of variable cross-sectional area; a choked flow condition is reached when
the relative flow is sonic. Furthermore, Embid and Baer suggested that nonlinear reso-
nant interactions between the compaction mode,(λ, r , l)(7), and the related gas acoustic
mode,(λ, r , l)(2) or (λ, r , l)(3), may occur near these singular points; such resonant inter-
actions are discussed by Isaacson and Temple [29] for a general inhomogeneous system
of conservation laws. Based on this premise, Embidet al. [16] and Embid and Majda
[17] developed and analyzed an asymptotic model describing transition to detonation in
granulated reactive solids. It is demonstrated in Ref. [17] that the asymptotic model does
predict the development of resonant gas acoustic hot spots which may influence the DDT
process.

3. NUMERICAL METHOD

The numerical method is formulated in this section. First, a brief discussion of the two-
phase Riemann problem is given, and an approximate solution is formulated based on the
exact solution of the linearized two-phase Riemann problem. Next, the implementation of
the approximate solution within the framework of a conservative, upwind numerical algo-
rithm for solving nonlinear convection in the gas and solid is given. Since this transport
mechanism is responsible for the evolution of discontinuities, it is important that the method
accurately predict convection effects. Last, the numerical method used to solve the system
of equations governing local phase interaction processes is formulated, and the numeri-
cal splitting technique used to couple this method with the upwind method for nonlinear
convection is given.
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3.1. The Two-Phase Riemann Problem

We consider the initial-value problem (IVP)

∂q
∂t
+ ∂f(q)

∂x
= 0, (3.1)

qo(x) =
{

qL for x < 0

qR for x > 0,
(3.2)

whereq∈<9, f:<9→<9, x ∈ (−∞,∞), and t ∈ [0,∞). The discontinuity in the initial
data is defined by constant states,qL andqR (qL 6= qR), where subscriptsL andR are used
to indicate the states to the left and right of the discontinuity, respectively. We refer to the
IVP defined by Eqs. (3.1) and (3.2), which governs nonlinear convection in the gas and
solid, as the two-phase Riemann problem.

The various waves that compose a typical solution of the two-phase Riemann problem are
shown in thex/t diagram of Fig. 2. Here, it is assumed that both the gas and the solid pressure
associated with the stateqL are higher than that associated with the stateqR. The initial
discontinuity is located atx = 0, and the solution evolves fort > 0. The resulting waves
separate regions having different constant states. Due to the absence of phase interaction
processes, physical diffusion, and physical boundaries, the solution has a self-similar form;
e.g., it can be expressed as a function of the similarity variablex/t . Associated with each
phase is a shock, a contact discontinuity (entropy wave), and a rarefaction (expansion wave).
The shocks, which are driven by the high-pressure stateqL , propagate to the right into the
low-pressure region. The shocks are followed by right-propagating contact discontinuities
which separate regions having different entropy. Since the gas and solid entropy are constant
through their respective rarefactions, the gas and solid entropy to the left of their respective
contact discontinuities are associated with the stateqL , while the gas and solid entropy to
the right of the contact discontinuities are associated with the shocked gas and solid states.
Also, a discontinuity in particle number density advects with the solid contact discontinuity,
as does the initial discontinuity in the volume fraction and the ignition variable (if a jump in

FIG. 2. Sketch of a typical solution of the two-phase Riemann problem.
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the volume fraction and the ignition variable is prescribed across the initial discontinuity).
Rarefactions, which propagate to the left into the high-pressure region, continuously expand
the gas and solid from the stateqL to the constant states to the left of their respective contact
discontinuities.

The order of the gas waves relative to the solid waves for the Riemann problem can
change depending upon the statesqL andqR. However, the order of the waves associated
with each phase is maintained in that the contact discontinuity will always separate the
shock and rarefaction. In general, the relative movement of the gas waves with respect to
the solid waves poses no special problems, but more work needs to be done to verify this
claim; this is beyond the scope of this paper. It is plausible, however, that certain initial
conditions might result in the evolution of specialcompounddiscontinuities consisting of (1)
a shock in each phase (e.g., if both the gas and solid shocks propagate with the same velocity),
(2) a shock in one phase and a contact discontinuity in the other (e.g., if both the gas shock and
the solid contact discontinuity propagate at the same velocity), or (3) a contact discontinuity
in each phase (e.g., if both contact discontinuities propagate with the same velocity). As
shown by Gonthier [22], each of these compound discontinuities satisfies the second law
of thermodynamics for the two-phase mixture and is thus physically admissible; however,
boundary and initial conditions necessary for their evolution are generally unknown. Further,
if the solid contact discontinuity is located within the gas rarefaction wave, then the sonic
conditionu2 = u1− c1 is locally satisfied at the point where the two waves intersect, and
the model equations become parabolic (for a nonideal gas). As such, the wave structure
associated with the solution of the Riemann problem may be considerably more complex
than illustrated here. In particular, it is noted that for arbitraryqL andqR, a single wave will
generally evolve in each characteristic field; such is the case shown in Fig. 2. However, in
contrast to the results for strictly hyperbolic systems, Keyfitz and Kranzer [31] have shown
that the Riemann problem for a class of nonstrictly hyperbolic systems containing parabolic
degeneracies can admit multiple waves in a single characteristic field. A similar result may
hold for Eq. (3.1) for certain values ofqL andqR. Such anomalies are not accounted for by
the numerical method formulated in this paper.

3.2. Exact Solution of the Linear Two-Phase Riemann Problem

The approximate solution of the two-phase Riemann problem is closely coupled to the
exact solution of the linearized two-phase Riemann problem. As such, we first consider the
case where the initial dataqL andqR in Eq. (3.2) are close to a constant reference stateq∗.
This assumption will be later relaxed to account for arbitraryqL andqR.

For qL andqR close toq∗, we can linearize Eq. (2.29) by assuming an expansion of the
form

q(x, t) = q∗ + εq(1)(x, t)+ ε2q(2)(x, t)+ · · · , (3.3)

where 0< ε ¿ 1. The following linear system of equations is obtained at the lowest order
in ε:

ε
∂q(1)
∂t
+ εA(q∗)∂q(1)

∂x
= 0. (3.4)

Or, sinceεq(1) = q− q∗ + O(ε2), we have toO(ε)

∂q
∂t
+ A(q∗)

∂q
∂x
= 0, (3.5)
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whereA(q∗) is the Jacobian matrix evaluated at the constant reference state. This equation,
with the initial data of Eq. (3.2), can be solved using standard techniques applicable to linear
hyperbolic systems [33, 65]; the following solution forq(x, t) is obtained,

q(x, t) = qL +
∑

λ( j )<x/t

(ν j R − ν j L )r ( j )

= qR−
∑

λ( j )≥x/t

(ν j R − ν j L )r ( j ), (3.6)

where the scalarsν j L andν j R are components of the vectors

νL ≡ R−1qL νR ≡ R−1qR, (3.7)

respectively. Furthermore, sinceA is constant for this linear problem,f = Aq, and we obtain

f(x, t) = fL +
∑

λ( j )<x/t

(ν j R − ν j L )λ
( j )r ( j )

= fR−
∑

λ( j )≥x/t

(ν j R − ν j L )λ
( j )r ( j ). (3.8)

Following Roe and Pike [48] and Glaister [18, 19], the eigenvector coefficientsν j L and
ν j R ( j = 1, . . . ,9) are not directly computed using the definitions given in Eq. (3.7). Rather,
the differencesν j R − ν j L are approximated by the coefficientsα( j ) ( j = 1, . . . ,9), which
are determined such that each component of the vector equation

δ(q) =
9∑

j=1

α( j )r ( j ) (3.9)

is satisfied to withinO[δ(qj )
2] ∼ O(ε2), and that each component of the vector equation

δ(f ) =
9∑

j=1

α( j )λ( j )r ( j ) (3.10)

is setisfied to withinO[δ( f j )
2] ∼ O(ε2), where the difference operator is defined byδ(•) ≡

(•)R− (•)L . Expressions forα( j ) ( j = 1, . . . ,9), derived in Appendix A, are given by

α(1) = δ(ρ1φ1)− 1

c2
1

δ(P1φ1)− ρ1η1

c2
1

δ(φ1), (3.11)

α(2) = 1

2c2
1

δ(P1φ1)+ ρ1φ1

2c1
δ(u1)+

(
u2− u1

u2− (u1+ c1)

)
ρ1η1

2c2
1

δ(φ1), (3.12)

α(3) = 1

2c2
1

δ(P1φ1)− ρ1φ1

2c1
δ(u1)+

(
u2− u1

u2− (u1− c1)

)
ρ1η1

2c2
1

δ(φ1), (3.13)

α(4) = δ(ρ2φ2)− 1

c2
2

δ(P2φ2), (3.14)

α(5) = 1

2c2
2

δ(P2φ2)+ ρ2φ2

2c2
δ(u2), (3.15)
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α(6) = 1

2c2
2

δ(P2φ2)− ρ2φ2

2c2
δ(u2), (3.16)

α(7) = ρ2φ2δ(φ2), (3.17)

α(8) = δ(n)− n

ρ2φ2c2
2

δ(P2φ2), (3.18)

α(9) = ρ2φ2δ(I )+ I δ(ρ2φ2)− I

c2
2

δ(P2φ2). (3.19)

Here, it is again noted that these expressions are to be evaluated at the constant reference
stateq∗. The expressions forα(2) [Eq. (3.12)] andα(3) [Eq. (3.13)] are singular when
u2 = u1+ c1 andu2 = u1− c1, respectively; also, the expression forα(8) [Eq. (3.18)] is
singular whenφ2 = 0. These points correspond to the sonic and complete combustion
singularities discussed in the previous section. At these points, the model equations become
parabolic, and the eigenvector expansions given by Eqs. (3.9) and (3.10) are no longer valid.
The methodology used to suppress numerical instabilities at these points is discussed at the
end of this section.

3.3. Approximate Solution of the Nonlinear Two-Phase Riemann Problem

An approximate solution of the nonlinear two-phase Riemann problem for arbitraryqL

andqR will now be formulated. Following Roe [49] and Glaister [18], it is desirable to
construct the approximate solution such that the following criteria are satisfied.

1. The approximate solution reduces to the exact solution of the linear Riemann problem
asqR→ qL → q.

2. The approximate solution is derived from a hyperbolic system of equations.
3. The Rankine–Hugoniot relations are satisfied across all discontinuities.

In essence, these criteria stipulate that the approximate solution be consistent with the
solution of the original system of hyperbolic equations.

The solution of the linear Riemann problem satisfies the above criteria. As such, it is
plausible to use this solution as a basis for constructing the approximate solution. To this
end, we require that the approximate solution have the same functional form as the solution
of the linear Riemann problem evaluated at an average stateq̃ which is different from the
reference stateq∗. The problem then reduces to one of properly definingq̃ as a function of
the arbitrary initial dataqL andqR.

We first reexpress the solution of the linear Riemann problem in a form which better
facilitates the derivation of the approximate solution. In particular, we reexpress the solution
of the linear problem in terms of the quantitiesφ1, u1, e1, φ2, u2, e2, n, andI and the new
quantities(ρ1φ1), (P1φ1), (ρ2φ2), (P2φ2). These latter quantities are the partial density and
partial pressure of the gas and solid, respectively. Also, the derivatives

Fiρi φi
≡ ∂Fi

∂(ρiφi )

∣∣∣∣
φi ,ei

, Fiφi
≡ ∂Fi

∂φi

∣∣∣∣
(ρi φi ),ei

, and Fiei
≡ ∂Fi

∂ei

∣∣∣∣
(ρi φi ),φi

(i = 1, 2)

are introduced, where theFi denote the functional relationshipsPiφi = Fi (ρiφi , φi , ei )

obtained by multiplying Eqs. (2.17) and (2.18) byφ1 andφ2, respectively, and expressing
the results in terms of the desired quantities. We then seek to defineq̃ in terms of the average
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quantitiesρ̃1φ1, ṽ1, ẽ1, H̃1, F̃1ρ1φ1, F̃1φ1, F̃1e1, ρ̃2φ2, φ̃2, ṽ2, ẽ2, H̃2, F̃2ρ2φ2, F̃2φ2, F̃2e2, ñ,
and Ĩ , which are functions ofqL andqR, such that the following algebraic equations are
identically satisfied [average quantities are denoted by˜(•) throughout this analysis],

1(q) =
9∑

j=1

α̃( j )r̃ ( j ), (3.20)

1(f ) =
9∑

j=1

α̃( j )λ̃( j )r̃ ( j ), (3.21)

where

λ̃(1),(2),...,(9) = ṽ1, ṽ1+ c̃1, ṽ1− c̃1, ṽ2, ṽ2+ c̃2, ṽ2− c̃2, ṽ2, ṽ2, ṽ2, (3.22)

r̃ (1) = [1, ṽ1, H̃1− c̃2
1

/
0̃1, 0, 0, 0, 0, 0, 0

]T
, (3.23)

r̃ (2) = [1, ṽ1+ c̃1, H̃1+ ṽ1c̃1, 0, 0, 0, 0, 0, 0]T , (3.24)

r̃ (3) = [1, ṽ1− c̃1, H̃1− ṽ1c̃1, 0, 0, 0, 0, 0, 0]T , (3.25)

r̃ (4) = [0, 0, 0, 1, ṽ2, H̃2− c̃2
2

/
0̃2, φ̃2, 0, 0

]T
, (3.26)

r̃ (5) = [0, 0, 0, 1, ṽ2+ c̃2, H̃2+ ṽ2c̃2, φ̃2, ñ/ρ̃2φ2, Ĩ ]T , (3.27)

r̃ (6) = [0, 0, 0, 1, ṽ2− c̃2, H̃2− ṽ2c̃2, φ̃2, ñ/ρ̃2φ2, Ĩ ]T , (3.28)

r̃ (7) =
[
− F̃1φ1

ρ̃2φ2
(
(ṽ2− ṽ1)2− c̃2

1

) ,− F̃1φ1ṽ2

ρ̃2φ2
(
(ṽ2− ṽ1)2− c̃2

1

) ,
− F̃1φ1

(
H̃1+ ṽ1ṽ2− ṽ2

1

)
ρ̃2φ2

(
(ṽ2− ṽ1)2− c̃2

1

) , 0, 0,− F̃2φ2

ρ̃2φ20̃2

, 1, 0, 0

]T

, (3.29)

r̃ (8) = [0, 0, 0, 0, 0, 0, 0, 1, 0]T , (3.30)

r̃ (9) = [0, 0, 0, 0, 0, 0, 0, 0, 1]T , (3.31)

α̃(1) = 1(ρ1φ1)− 1

c̃2
1

1(P1φ1)+
F̃1φ1

c̃2
1

1(φ1), (3.32)

α̃(2) = 1

2c̃2
1

1(P1φ1)+ ρ̃1φ1

2c̃1
1(u1)−

(
ṽ2− ṽ1

ṽ2− (ṽ1+ c̃1)

)
F̃1φ1

2c̃2
1

1(φ1), (3.33)

α̃(3) = 1

2c̃2
1

1(P1φ1)− ρ̃1φ1

2c̃1
1(u1)−

(
ṽ2− ṽ1

ṽ2− (ṽ1− c̃1)

)
F̃1φ1

2c̃2
1

1(φ1), (3.34)

α̃(4) = 1(ρ2φ2)− 1

c̃2
2

1(P2φ2), (3.35)

α̃(5) = 1

2c̃2
2

1(P2φ2)+ ρ̃2φ2

2c̃2
1(u2), (3.36)

α̃(6) = 1

2c̃2
2

1(P2φ2)− ρ̃2φ2

2c̃2
1(u2), (3.37)

α̃(7) = ρ̃2φ21(φ2), (3.38)
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α̃(8) = 1(n)− ñ

ρ̃2φ2c̃2
2

1(P2φ2), (3.39)

α̃(9) = ρ̃2φ21(I )+ Ĩ1(ρ2φ2)− Ĩ

c̃2
2

1(P2φ2), (3.40)

andc̃2
1, c̃2

2, P̃1φ1, P̃2φ2, 0̃1, and0̃2 are given by

c̃2
1 =

P̃1φ1

ρ̃1φ1
2 F̃1e1 + F̃1ρ1φ1, c̃2

2 =
P̃2φ2

ρ̃2φ2
2 F̃2e2 + F̃2ρ2φ2, (3.41)

P̃1φ1 = ρ̃1φ1

(
H̃1− ẽ1− ṽ

2
1

2

)
, P̃2φ2 = ρ̃2φ2

(
H̃2− ẽ2− ṽ

2
2

2

)
, (3.42)

0̃1 = 1

ρ̃1φ1

F̃1e1, 0̃2 = 1

ρ̃2φ2

F̃2e2. (3.43)

Here, the difference operator is defined by1(•) ≡ (•)R− (•)L , where the differenceqR−
qL is not necessarily small [as opposed to the difference operatorδ(•) defined for the linear
Riemann problem]. If suitable averages can be defined, then the approximate solutions
q(x, t) andf(x, t) are given by

q(x, t) = qL +
∑

λ̃( j )<x/t

α̃( j )r̃ ( j )

= qR−
∑

λ̃( j )≥x/t

α̃( j )r̃ ( j ), (3.44)

f(x, t) = fL +
∑

λ̃( j )<x/t

α̃( j )λ̃( j )r̃ ( j )

= fR−
∑

λ̃( j )≥x/t

α̃( j )λ̃( j )r̃ ( j ). (3.45)

Equations (3.20) and (3.21), and Eqs. (3.44) and (3.45) are analogous to Eqs. (3.9) and
(3.10), and Eqs. (3.6) and (3.8), respectively.

To define the desired average quantities, it is necessary to solve the nonlinear algebraic
problem given by Eqs. (3.20) and (3.21). Though the solution of this problem is nontrivial,
closed form expressions can be obtained for the average quantities. The derivation of these
quantities is given in Appendix B; the results are summarized below (wherei = 1, 2):

ρ̃iφi ≡
√
ρi Lφi Lρi Rφi R, (3.46)

ṽi ≡
√
ρi Lφi L ui L +

√
ρi Rφi Rui R√

ρi Lφi L +
√
ρi Rφi R

, (3.47)

ẽi ≡
√
ρi Lφi L ei L +

√
ρi Rφi Rei R√

ρi Lφi L +
√
ρi Rφi R

, (3.48)

H̃ i ≡
√
ρi Lφi L Hi L +

√
ρi Rφi R Hi R√

ρi Lφi L +
√
ρi Rφi R

, (3.49)

φ̃2 ≡
√
ρ2Lφ2Lφ2L +

√
ρ2Rφ2Rφ2R√

ρ2Lφ2L +
√
ρ2Rφ2R

, (3.50)
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ñ ≡
√
ρ2Lφ2Ln2R+

√
ρ2Rφ2Rn2L√

ρ2Lφ2L +
√
ρ2Rφ2R

, (3.51)

Ĩ ≡
√
ρ2Lφ2L I2L +

√
ρ2Rφ2RI2R√

ρ2Lφ2L +
√
ρ2Rφ2R

, (3.52)

F̃ iρi φi
≡



(
1
4[Fi (ρi Rφi R, φi R, e1R)+ Fi (ρi Rφi R, φi R, ei L )+ Fi (ρi Rφi R, φi L , ei L )

+ Fi (ρi Rφi R, φi L , ei R)] − 1
4[Fi (ρi Lφi L , φi R, ei R)+ Fi (ρi Lφi L , φi L , ei R)

+ Fi (ρi Lφi L , φi R, ei L )+ Fi (ρi Lφi L , φi L , ei L )]
)/
1(ρiφi ) if 1(ρiφi ) 6= 0,

1
4

[
∂Fi

∂(ρi φi )
(ρiφi , φi R, e1R)+ ∂Fi

∂(ρi φi )
(ρiφi , φi R, ei L )+ ∂Fi

∂(ρi φi )
(ρiφi , φi L , ei R)

+ ∂Fi
∂(ρi φi )

(ρiφi , φi L , ei L )
]
, if 1(ρiφi ) = 0,

(3.53)

F̃ iφi
≡



(
1
2[Fi (ρi Rφi R, φi R, e1R)+ Fi (ρi Lφi L , φi R, ei L )]+ 1

2[Fi (ρi Rφi R, φi L , ei R)

+ Fi (ρi Lφi L , φi L , ei L )]
)/
1(φi ) if 1(φi ) 6= 0,

1
2

[
∂Fi
∂φi
(ρi Rφi R, φi , e1R)+ ∂Fi

∂φi
(ρi Lφi L , φi , ei L )

]
if 1(φi ) = 0,

(3.54)

F̃iei
≡



(
1
4[Fi (ρi Rφi R, φi R, e1R)+ Fi (ρi Lφi L , φi L , ei R)+ Fi (ρi Rφi R, φi L , ei R)

+ Fi (ρi Lφi L , φi R, ei R)]− 1
4[Fi (ρi Rφi R, φi L , ei L)+ Fi (ρi Rφi R, φi R, ei L)

+ Fi (ρi Lφi L , φi R, ei L )+ Fi (ρi Lφi L , φi L , ei L )]
)/
1(ei ) if 1(ei ) 6= 0,

1
4

[
∂Fi
∂ei
(ρi Rφi R, φi R, ei )+ ∂Fi

∂ei
(ρi Rφi R, φi L , ei )+ ∂Fi

∂ei
(ρi Lφi L , φi R, ei )

+ ∂Fi
∂ei
(ρi Lφi L , φi L , ei )

]
, if 1(ei ) = 0.

(3.55)

The averages defined by Eqs. (3.46)–(3.52) are similar in form to the “square root” averages
defined in Refs. [18, 49]. Though the averages for the thermodynamic derivatives defined
by Eqs. (3.53)–(3.55) appear complicated, it is shown in the section on numerical simula-
tions that they lead to relatively simple expressions that can be easily evaluated when the
functional form of the equations of state are specified and that the expressions are physically
reasonable. However, these expressions may be difficult and/or computationally expensive
to evaluate for thermodynamic data given in tabular form. Furthermore, these averages re-
quire function evaluations for artificial states constructed from the initial dataqL andqR,
and it is possible that these states lie outside the range of validity of the thermodynamic
data. Glaister [20] has addressed similar deficiencies for his approximate Riemann solution
and has modified his solution to overcome these shortcomings. It is possible that similar
modifications can be made for the approximate solution outlined here.

It is easy to verify that the three criteria stated above are satisfied by the approximate
solution. First, the averages defined by Eqs. (3.46)–(3.55) satisfy the property thatq̃→ q
asqL → qR→ q; consequently, the approximate solution properly reduces to the exact
solution of the linear Riemann problem in this limit. Second, since the approximate solution
was constructed to have the same mathematical structure as the exact solution of the linear
Riemann problem, the approximate solution can be considered to be associated with an
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equivalent linear, constant coefficient system of hyperbolic equations (provided that ˜v2 6=
ṽ1± c̃1 andφ̃2 6= 0). As such, the approximate solution has the same physical interpretation
as the solution of the linear Riemann problem and consists of (at most) nine discontinuous
waves separating seven regions of constant state. Third, the jumps inq andf across thej th
wave are given by

[q] j = α̃( j )r̃ ( j ), (3.56)

[f ] j = α̃( j )λ̃( j )r̃ ( j ). (3.57)

Thus, the Rankine–Hugoniot relations are satisfied across the discontinuities since

[f ] j = λ̃( j )[q] j .

A consequence of this property is that, in the event thatqL andqR can be connected by
a single shock or contact discontinuity, the approximate solution agrees with the exact
solution of the nonlinear Riemann problem [18, 48]. Last, we note that for1(φ1) = 0 [or
1(φ2) = 0], the governing equations for the gas and solid, given by Eq. (2.24), decouple.
Similarly, the approximate Riemann solution given here decouples for the gas and solid,
and the resulting approximate solution for each phase reduces to the approximate solution
given by Glaister [18] for a single-phase nonideal system.

3.4. Implementation of the Numerical Method

It is required that Eq. (3.1) be expressed in conservative form so that the correct propa-
gation speeds of discontinuities are predicted [33]:

Qn+1
k = Qn

k −
1t

1x

[
Fk+1/2(Qn)− Fk−1/2(Qn)

]
. (3.58)

Here, it is assumed that the spatial domain is discretized into uniformly spaced nodes located
at the pointsxk (k = 1, 2, . . .). Each node is located at the center of a computational cell of
width1x. The locations of the left and right boundaries of thekth cell are denoted asxk−1/2

andxk+1/2, respectively. The vector quantitiesQn
k andQn+1

k are numerical approximations
for q at timestn andtn+1 = tn +1t , respectively, where1t is a small time increment. The
vector quantitiesFk±1/2, which are dependent uponQn, are numerical approximations for
f at the cell boundariesxk±1/2.

The implementation of the approximate Riemann solution within the framework of
Godunov’s methodology is now described. First, the statesqL = Qn

k andqR = Qn
k+1 are

defined to the left and right of the computational cell boundary located atxk+1/2; this step is
theprojection stepof Godunov’s methodology. The solution is then allowed to evolve over
a small time increment1t , and the numerical fluxFk+1/2 is computed from the approximate
Riemann solution; this step is theevolution stepof Godunov’s methodology. The numerical
flux is given by either expression in Eq. (3.45) evaluated atx/t = 0. Alternatively, averag-
ing the two resulting expressions for the numerical flux gives the following expression for
Fk+1/2 used in this work:

Fk+1/2 =
f
(
Qn

k

)+ f
(
Qn

k+1

)
2

− 1

2

[
9∑

j=1

α̃( j )
∣∣λ̃( j )

∣∣r̃ ( j )

]
k+1/2

. (3.59)
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The time increment1t is chosen such that waves associated with neighboring Riemann
problems do not interact, giving rise to the Courant–Friedrichs–Lewy (CFL) condition

max
j

∣∣∣∣ λ̃( j )1t

1x

∣∣∣∣
k+1/2

≤ κ; j = 1, . . . ,9; k = 1, 2, . . . . (3.60)

Here, the constantκ, commonly termed the CFL number, lies in the range 0≤ κ ≤ 0.5. The
valueκ = 0.4 was used for all computations presented in this paper. Once the numerical
flux is computed at each cell boundary, the solution at timetn+1 = tn +1t is obtained from
Eq. (3.58); this step is thereconstruction stepof Godunov’s methodology. The process is
then repeated to further advance the solution in time.

The approximate solution has three deficiencies which must be addressed. First, since
all waves are approximated by discontinuities, rarefaction waves, which have a continuous
structure, are not accurately represented. This common deficiency poses no difficulty except
for the case when a gas or solid sonic point exists within a gas or solid rarefaction wave,
respectively. Various techniques can be used to modify the numerical flux at computational
cell boundaries where a sonic rarefaction is predicted. To this end, an entropy criterion is
used to detect sonic rarefactions in both the gas and the solid, i.e., ifλ( j )− < 0< λ( j )+,
where quantities associated with the constant states immediately to the left and right of
the rarefaction shock are labeled with superscript “−” and “+”, respectively. If a sonic
rarefaction is detected, we locally employ a numerical flux which has been modified based
on the technique proposed by Harten and Hyman [25]. As a comprehensive discussion of
this technique is given by LeVeque [33], we refer the reader to this reference for details.

Second, the approximate solution is not uniformly valid since the eigenvector expansions
given by Eqs. (3.20) and (3.21) break down near the singularities ˜v2 = ṽ1± c̃1 andφ2 = 0.
Numerical experiments have shown this deficiency to result in severe numerical instabilities
near these points. Within the context of the approximate Riemann solution, the sonic singu-
laritiesṽ2 = ṽ1± c̃1 occur when the discontinuity in volume fraction, propagating at speed
ṽ2, impinges upon either a gas shock or rarefaction, propagating at speed ˜v1+ c̃1 or ṽ1− c̃1.
For such cases, there may exist complicated wave interactions that are not predicted by the
approximate solution. As shown by Keyfitz and Kranzer [31] for a simple mathematical
system having similar parabolic degeneracies, such interactions may result in a series of
additional waves being produced, with the solution of the Riemann problem consisting of
multiple waves in a single characteristic field. For the approximate solution formulated in
this paper, it was implicitly assumed that a physically relevant unique solution exists which
consists of at most nine waves, one associated with each characteristic field; as such, this
assumption may be invalid near the sonic singularities. In order to properly address this
issue, a more detailed analysis of the Riemann problem would be required. Here, we accept
some uncertainty and choose to only suppress numerical instabilities which are known to
occur near these singularities. Also, we note that if no jump in volume fraction exists [i.e.,
1(φ2) = 1(φ2) = 0], then the sonic singularities are inconsequential because the quanti-
ties α̃(2)r̃ (2), α̃(3)r̃ (3), andα̃(7)r̃ (7) in the eigenvector expansions remain well defined. This
result is easily seen from the definitions given in Eqs. (3.23)–(3.40).

General modifications to the Godunov methodology which are needed to suppress nu-
merical instabilities resulting from a loss of hyperbolicity are discussed by Bellet al. [7].
To avoid numerical difficulties near the singularitiesu2 = u1± c1, we adopt a technique
that is similar to that proposed in Ref. [7]. In particular, we assume that a sonic singularity
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exists if the criterion

|ṽ2− (ṽ1± c̃1)| < cε (3.61)

is satisfied, wherecε is a small positive constant. The valuecε = 50 m/s was used for all
computations performed in this work. In such instances, we collapse the waves propagating
at speed ˜v2 andṽ1+ c̃1 or ṽ1− c̃1 (whichever wave is involved) into a single wave propa-
gating at speed̃λ(‡) = (ṽ2+ ṽ1± c̃1) /2. The jump across this wave, ˜α(‡)r̃ (‡), is then defined
in terms of both the differenceQn

k+1−Qn
k and the jumps across the waves not associated

with the sonic singularity. For example, if the singularity is associated with the gas wave
propagating at speed̃λ(3) = ṽ1− c̃1, then the following quantities are defined,

λ̃(‡) ≡ ṽ2+ ṽ1− c̃1

2
,

α̃(‡) ≡ ∥∥1(q)− α̃(1)r̃ (1) − α̃(2)r (2) − α̃(5)r̃ (5) − α̃(6)r̃ (6)∥∥, (3.62)

r̃ (‡) ≡ 1(q)− α̃(1)r̃ (1) − α̃(2)r (2) − α̃(5)r̃ (5) − α̃(6)r̃ (6)∥∥1q− α̃(1)r̃ (1) − α̃(2)r (2) − α̃(5)r̃ (5) − α̃(6)r̃ (6)∥∥ ,
where‖ • ‖ is the Euclidean norm. Consequently,

Qn
k+1−Qn

k =
∑

j=1,2,5,6,‡
α̃( j )r̃ ( j ) (3.63)

by construction. The following modified numerical flux, denoted by superscript “‡”, is
proposed:

F‡k+1/2 =
f
(
Qn

k

)+ f
(
Qn

k+1

)
2

− 1

2

[ ∑
j=1,2,5,6,‡

α̃( j )
∣∣λ̃( j )

∣∣r̃ ( j )

]
k+1/2

. (3.64)

A similar result holds if the singularity is associated with the gas wave propagating at
speed̃λ(2) = ṽ1+ c̃1. Though the Rankine–Hugoniot relations are not identically satisfied
by this newly defined wave (i.e., [f ]‡ 6= λ̃(‡)[q]‡), they are nearly satisfied; this has been
numerically verified. Comparisons of numerical predictions with exact steady solutions for
two-phase detonation structures possessing these sonic singularities indicate that this error
is inconsequential.

Last, to suppress numerical instabilities nearφ2 = 0, it is necessary to constrainφ2 to
be greater than a constant minimum valueφ2ε . This is achieved by terminating combustion
for φ2 ≤ φ2ε . A large number of numerical experiments that showed the onset of instability
for φ2 ≈ 1× 10−6 were performed, though the instability was not severe; thus, the value
φ2ε = 1× 10−5 was used for all computations performed in this work. This burn termination
was determined to have an insignificant affect on both DDT and detonation wave structure.
Further, our steady-sate analysis did not require burn termination as the particle radius
approached zero without difficulty. As such, the model is well behaved in this limit.

3.5. Higher-Order Spatial and Temporal Accuracy

The upwind numerical method outlined in the previous subsection has only nominal first-
order spatial accuracy and has first-order temporal accuracy. First-order spatial accuracy is
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characteristic of all Godunov-based methods for which the initial state within each compu-
tational cell is assumed constant in theprojection step. In this subsection, approaches used
to increase both the spatial and the temporal accuracy of the method are given.

Using the flux-extrapolation methodology of Chakravarthy and Osher [10] for obtaining
second-order total-variation-diminishing (TVD) methods, we get the following higher-order
numerical flux function,

F(H)k+1/2 = F(L)k+1/2+
1

2

9∑
j=1

(
df̆
( j+)
k−1/2− d ˘̆f

( j−)
k+3/2

)
, (3.65)

where

df̆
( j+)
k−1/2 = L

{[
λ̃( j+)α̃( j )

]
k−1/2,

[
λ̃( j+)α̃( j )

]
k+1/2

}
r̃ ( j )

k+1/2,

d ˘̆f
( j−)
k+3/2 = L

{[
λ̃( j−)α̃( j )

]
k+3/2,

[
λ̃( j−)α̃( j )

]
k+1/2

}
r̃ ( j )

k+1/2.

Here,F(L)k+1/2 denotes the lower-order numerical flux defined in Eq. (3.59). The operator

L{y, z} is a nonlinear flux limiter which limits the amount of numerical diffusion inF(H)k+1/2

based on the approximate Riemann solution at cell boundaries located immediately to the
left (xk−1/2) and right (xk+3/2) of the boundary atxk+1/2. The flux limiter used in this study
is Van Leer’s limiter [63], which is given by

L{y, z} = yz+ |yz|
y+ z

.

Other limiters exist that could be used in place of Van Leer’s limiter, or different limiters
could be used for the gas and solid; this limiter was chosen based on numerical experiments
that indicated that it can accurately capture discontinuities in both the gas and the solid.

The use of the flux given by Eq. (3.65) in Eq. (3.58) results in an explicit TVD numerical
method that has nominally second-order spatial accuracy in smooth regions of the flow,
first-order spatial accuracy near discontinuities, and first-order temporal accuracy. The TVD
flux given by Eq. (3.65) results in a conditionally stable method provided that an additional
constraint on the time step1t is satisfied (i.e., in addition to the CFL condition) [10]. Thus,
it is desirable to increase the temporal accuracy of the method to obtain better stability
properties and to eliminate the need to satisfy an additional time step constraint. To this
end, the following two-step Runge–Kutta predictor/corrector algorithm is used to advance
the solution fromtn to tn+1 = tn +1t [28]:

Q̄k = Qn
k −

1t

21x

[
F(H)k+1/2(Q

n)− F(H)k−1/2(Q
n)
]
,

Qn+1
k = Qn

k −
1t

1x

[
F(H)k+1/2(Q̄)− F(H)k−1/2(Q̄)

]
.

Here, the first step is the predictor step whereby the solution is allowed to evolve over the
time interval1t

2 , and the second step is the corrector step in which the updated solution
is computed using the numerical flux of Eq. (3.65) evaluated in terms of the intermediate
solutionQ̄. Both the predictor and corrector steps are expressed in the conservative form
of Eq. (3.58); as such, conservation is maintained. The resulting method is second-order
accurate in time.
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3.6. Numerical Solution of the Full Two-Phase Equations

The numerical approach used in this study to solve the full model equations is based on
the following time-step splitting procedure [62]:

Qn+2
k = L1t

c L21t
s L1t

c Qn
k. (3.66)

Here,Qn andQn+2 are the numerical solution at timestn andtn+2, respectively,L1t
c is the

convective numerical operator, andL21t
s is the source numerical operator. The convective

operator solves the convection problem using the high-resolution TVD method formulated
in the previous section, and the source operator, which is described below, solves the phase
interaction terms using a high-order time accurate stiff ODE solver. During the convection
steps, the phase interaction processes are suppressed [i.e.,g(q) = 0 in Eq. (2.24)]; likewise,
gas and solid convection are suppressed during the source step [i.e.,∂f(q)

∂x = 0 in Eq. (2.24)].
The splitting procedure requires that the convection step be performed over the time step
1t and that the source step be performed over twice the time step, where1t is chosen based
upon the CFL condition given by Eq. (3.60). Provided that the ODE solver is at least second-
order accurate in time, the splitting procedure given by Eq. (3.66) results in an approximation
which is nominally second-order accurate in both space and time. We recognize that the
splitting technique used here may result in the prediction of erroneous shock speeds due
to the coupling of numerical diffusion and stiff source terms as demonstrated by Colella
et al. [11] and LeVeque and Yee [32], though comparisons of numerically predicted shock
wave speeds with exact values have shown good agreement for all cases considered in this
work.

To account for phase interaction processes, the following autonomous system of five or-
dinary differential equations (ODEs), obtained by setting∂f

∂x = 0 in Eq. (2.24) and reducing
the resulting system, must be solved over the time interval 21t at each computational grid
point,

dys

dt
= hs(ys), (3.67)

where

ys = [ρ2, φ2, u2, e2, I ]T ,

hs(ys) =
[
φ1φ2

µc
(P2− P1− f )− φ2Cm,−ρ2φ1

µc
(P2− P1− f ),− Cd

ρ2φ2
,− Ce

ρ2φ2
,CI

]T

.

The definitions forCm, Cd, Ce, andCI are given in Eq. (2.28). Algebraic expressions for
ρ1, φ1, u1, ande1 in terms ofys are obtained by respectively adding the gas and solid mass,
momentum, and energy equations and integrating the resulting homogeneous ODEs,

ρ1φ1+ ρ2φ2 = [ρ1φ1+ ρ2φ2]n+1
k , (3.68)

ρ1φ1u1+ ρ2φ2u2 = [ρ1φ1u1+ ρ2φ2u2]n+1
k , (3.69)

ρ1φ1

(
e1+ u2

1

2

)
+ ρ2φ2

(
e2+ u2

2

2

)
=
[
ρ1φ1

(
e1+ u2

1

2

)
+ ρ2φ2

(
e2+ u2

2

2

)]n+1

k

, (3.70)

where the right-hand sides of these equations are integration constants obtained using the
dataQn+1

k provided by the preceding convection step in Eq. (3.66). Here, subscriptk is
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used to indicate that the integration constant depends upon the grid cell locationxk, and
the notation superscriptn+ 1 is used to indicate that the constant is based on the data at
time tn+1. The algebraic relations given by Eqs. (3.68)–(3.70), with the saturation condition
φ1 = 1− φ2, are sufficient to express the gas variables as algebraic functions of the desired
solid variables. As these equations are nonlinear, they give multiple roots for the gas-phase
variables corresponding to subsonic and supersonic solutions; thus, the proper root must be
selectively chosen in a problem specific manner. Last, the homogeneous ODE for particle
number density can be directly integrated to give

n = nn+1
k ; (3.71)

thus, the particle number density is constant during the source step.
Equation (3.67) is in a form suitable to be numerically solved using standard ODE solvers.

For this study, an implicit stiff solver contained in the software package LSODE (Liver-
more Solver for Ordinary Differential Equations) [27] was used to numerically integrate
these equations. The solver uses a method based on backward differentiation formulas and
internally generates a full Jacobian matrix (i.e.,∂hs

∂ys
) using finite differencing. The solver

achieves high-order time accurate approximations by adapting the integration time step
such that the truncation error of the scheme meets a user specified tolerance. For the com-
putations performed in this study, an absolute tolerance of magnitude 1.0× 10−9 was used
for each component ofys.

4. NUMERICAL SIMULATIONS

Comparisons are given between numerical predictions and known solutions to three
different test cases in order to demonstrate the numerical method. The test cases include:
(1) an inert two-phase shock tube problem; (2) the evolution of an inert compaction wave
in a granular material induced by a moving piston; and (3) the evolution of a two-phase
detonation wave in an energetic granular material induced by a moving piston. The first
case considers gas and solid convection only, whereas the second and third cases couple gas
and solid convection with phase interaction processes. All computations were performed
on an IBM RS 6000 Model 350 workstation.

4.1. Inert Two-Phase Shock Tube Problem

The shock tube problem provides a stringent test for numerical methods used to solve
hyperbolic systems of conservation laws since it generally requires the resolution of both
contact discontinuities and shocks. As previously discussed, the two-phase shock tube
problem, also known as the Riemann problem, involves the break-up of a single initial dis-
continuity separating constant left (L) and right (R) states into self-similar waves consisting
of a shock, a rarefaction, and a contact discontinuity in both the gas and the solid. As this
problem considers convection only,g(q) = 0 in Eq. (2.24).

For this simulation, ideal equations of state were used for both the gas and the solid
[ P1 = ρ1R1T1, e1 = cv1T1; P2 = ρ2R2T2, e2 = cv2T2] so that the numerical predictions
could be compared to existing closed-form analytical solutions. To this end, no jump in
volume fraction was prescribed across the initial discontinuity; as such, volume fraction
remains constant for all time, and the analytical solution for each phase is simply given by
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FIG. 3. Comparison of the predicted and exact solutions for the inert shock-tube problem att = 6 ms: (a, b)
gas and solid density, (c, d) gas and solid velocity, (e, f ) gas and solid pressure, (g, h) gas and solid temperature,
and (i) particle number density.

the classical solution to the shock tube problem for a single phase system [12]. For these
equations of state, Eqs. (3.53)–(3.55) reduce to

F̃ iρi φi
= γi − 1

2
(ei R + ei L ),

F̃ iφi
= 0,

F̃ iei
= γi − 1

2
(ρi Rφi R + ρi Lφi L ),

whereγi (i = 1, 2) is the specific heat ratio. Values chosen for model parameters and initial
conditions are given in Table I. Different values forcv1 andcv2 were used so that differences
in the gas and solid solutions exist. The computational domain used for this simulation
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FIG. 3—Continued

(−5≤ x ≤ 5 m) was discretized intoN = 200 uniformly spaced nodes, with the initial
discontinuity located at the center of the domain (x = 0 m). The computational run time
for this simulation was approximately 2 min.

Shown in Fig. 3 is a comparison between the numerically predicted solution and the ex-
act solution att = 6 ms. For each phase the solution consists of a right-propagating shock

TABLE I

Parameter Values and Initial Conditions

Used for the Shock-Tube Simulation

Parameter or
initial condition Value Units

cv1 7.18× 102 J/(kg K)
cv2 2.39× 102 J/(kg K)
R1 2.87× 102 J/(kg K)
R2 2.87× 102 J/(kg K)
u1L 0 m/s
u2L 0 m/s
u1R 0 m/s
u2R 0 m/s
ρ1L/ρ1R 1.00× 101

ρ2L/ρ2R 1.00× 101

φ2L/φ2R 1.00× 100

P1L/P1R 1.00× 101

P2L/P2R 1.00× 101

nL/nR 1.00× 100
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wave, followed by a slower right-propagating contact discontinuity and a left-propagating
rarefaction. As a consequence of choosingcv2 < cv1, the solid shock and rarefaction prop-
agate faster than those of the gas, while the solid contact discontinuity propagates more
slowly than that of the gas. The numerical predictions agree well with the exact solution;
both the wave speeds and the magnitudes of the jumps are correctly predicted. Further-
more, the numerical method is able to capture the discontinuities without the generation of
spurious oscillations. The shocks are spread over approximately three computational cells,
while the contact discontinuities are spread over approximately seven cells. Typically, a
larger number of cells are required by shock-capturing methods to capture discontinuities
associated with linearly degenerate characteristic fields (i.e., contact discontinuities). This
is due to the absence of a “steepening” mechanism for linearly degenerate fields, such as
provided by the coalescence of acoustic waves in genuinely nonlinear acoustic fields [63].
Consequently, the numerically predicted spatial profiles for contact discontinuities do not
steepen as time evolves.

To investigate the convergence rate of the numerical method, which provides a measure
of its spatial accuracy, it is necessary to define the error associated with the numerical
predictions. For the test cases given in this paper, the errorE at tn is based on either the gas
or the solid pressure (i = 1, 2) and is defined by the 1 norm

E(tn) = 1

N

N∑
k=1

|Pik(t
n)− Pi (xk, tn)|

Pc
i

, (4.1)

where Pik(t
n) is the numerically predicted pressure at the nodal locationxk, Pi (xk, tn)

is the pressure given by the exact solution at this same location,Pc
i is a characteristic

pressure used to nondimensionalize the error, andN is the total number of computa-
tional cells. This error is the fractional error used by Woodward and Colella [64] and
by Grismer [24] to demonstrate the convergence properties of similar high-resolution nu-
merical methods for the Euler equations. The convergence rate of the method is defined as
the change in this error with respect to a change in grid resolution and is estimated by the
slopep of the best fit line through the data points(E, 1/N) plotted in the log(1/N)-log E
plane.

Convergence data obtained for the inert shock tube problem are plotted in Fig. 4. For sim-
plicity, it was assumed thatR1 = R2 = 287 J/(kg K) andcv1 = cv2 = 717.5 J/(kg K) for this
convergence study. Consequently, identical solutions are obtained for the gas and solid, both
of which are given by the gas-phase solution shown in Fig. 3. The data were obtained using
computational grids for whichN was within the range 1000≤ N ≤ 15000. The character-
istic pressure used to nondimensionalize the error wasPc

1 = Pc
2 = 0.1 MPa, the pressure

associated with the state to the left of the initial discontinuity. Results of this study show
the convergence rate to bep = 1.003. The convergence rates reported in Refs. [24, 64],
based on the exact solution of the inert shock tube problem for an ideal gas, were also
near unity. Though these high-resolution shock-capturing methods have higher spatial ac-
curacy than nominally first-order methods (i.e., the Lax–Friedrichs scheme, Godunov’s
method), the accuracy is less than second-order. This result is expected since these meth-
ods reduce to nominally first-order accuracy near discontinuities due to the flux-limiting
procedure. For the range of nodal points used in this study, machine round-off error was in-
significant.
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FIG. 4. Numerical convergence data for the inert shock tube problem based on the 1 norm for the pressure.

4.2. Inert Compaction Wave Problem

This simulation involves the evolution of an inert compaction wave due to compression
of the granular material by a moving piston. A compaction wave refers to the propagation
of a finite disturbance in volume fraction due to a local mechanical stress imbalance [i.e.,
P2− P1− f 6= 0 in Eq. (2.7)]. Here, the processes of gas and solid convection are coupled
with the processes of interphase drag, interphase heat transfer, and material compaction. It
is not the intent of this section to give a detailed compaction wave analysis; rather, results
that illustrate the evolution of a compaction wave are given, and a comparison between the
numerically predicted compaction wave structure and the steady structure predicted by the
analysis of Powerset al.[43] is given. Also, convergence results are given in order to further
validate the numerical method. The reader is referred to Refs. [2, 43, 52] for a thorough
discussion of compaction waves in energetic granular materials.

As this simulation involves the evolution of a compaction wave resulting from piston
impact, the model equations valid in a fixed laboratory reference frame(x, t), as presented
in this paper, were transformed to a piston-attached reference frame(ξ, t) for convenience.
The transformation, as illustrated in Fig. 5, is given byξ = x − xp(t) andvi = ui − up(t)

FIG. 5. Schematic of the piston-attached coordinate system.
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(i = 1, 2), wherevi is velocity in the piston-attached frame, andxp(t) andup(t) are the
piston position and the prescribed piston velocity in the laboratory frame, respectively.
The piston is continuously accelerated from rest to a constant velocity of 100 m/s in 2µs;
the piston velocity is given by

up(t) =
{
(100 m/s) sin

[
π
2

(
t

2 µs

)]
for 0< t ≤ 2µs

100 m/s fort > 2µs.
(4.2)

This rapid acceleration is chosen so that the piston attains its maximum velocity over a time
interval which is short relative to the time required for the piston-induced compaction wave
to become fully developed. A maximum piston velocity of 100 m/s is chosen since much of
the experimental and numerical compaction and DDT data reported in the literature have
been obtained for piston velocities close to this value [5, 9, 59–61]. Since the piston-attached
frame is noninertial, piston acceleration terms must be included in the momentum and total
energy equations for the gas and solid [Eqs. (2.2), (2.3), (2.5), and (2.6)]. These terms are
treated as time-dependent source terms which slightly modify Eq. (3.67), resulting in a
nonautonomous system; details of the modification are given in Ref. [22].

For this simulation, equations of state representative of the high-explosive HMX (cyclo-
tetramethylene tetranitramine) are adopted [45]. A virial equation of state was used for
the gas [P1 = ρ1R1T1(1− bρ1), e1 = cv1T1, whereb is the constant virial coefficient]
and a nonideal Tait equation of state was used for the solid [P2 = (γ2− 1)cv2ρ2T2−
ρ2oσ/γ2, e2 = cv2T2+ ρ2oσ/(γ2ρ2)+ q, whereγ2 is the Tait parameter,σ is the nonideal
solid parameter, andq is the mass specific chemical energy]. For these equations of state,
Eqs. (3.53)–(3.55) reduce to the following expressions for the gas and solid, respectively:

F̃1ρ1φ1
= R1

cv1

(
1+ 2b

φ1L + φ1R

φ1Lφ1R

ρ1Lφ1L + ρ1Rφ1R

2

)(
e1L + e1R

2

)
,

F̃1φ1
= −1

2

R1b

cv1

[
(ρ1Lφ1L)

2

φ1Lφ1R
e1L + (ρ1Rφ1R)

2

φ1Lφ1R
e1R

]
,

F̃1e1
= R1

cv1

[
ρ1Lφ1L + ρ1Rφ1R

2
+ b

φ1L + φ1R

φ1Lφ1R

(
(ρ1Lφ1L)

2+ (ρ1Rφ1R)
2

4

)]
,

F̃2ρ2φ2
= (γ2− 1)

(
e2L + e2R

2
− q

)
,

F̃2φ2
= −ρ2oσ,

F̃2e2
= (γ2− 1)

(
ρ2Lφ2L + ρ2Rφ2R

2

)
.

The time-dependent boundary conditions that must be satisfied at the piston surface are
easily obtained by requiring the velocity of both the gas and the solid, measured relative to the
piston, to vanish at this boundary [v1(0, t) = v2(0, t) = 0]. This requirement is equivalent to
enforcing a zero mass flux condition at the piston surface. Time is restricted such that there is
insufficient time for waves generated by the moving piston to reach the upstream boundary;
thus, no condition is enforced at this boundary. The computational domain(0≤ ξ ≤ 1.2 m),
which consisted ofN = 600 nodes, was initialized with the ambient conditions given in
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TABLE II

Parameter Values and Ambient Conditions Used for the Compaction

Wave and DDT Simulations

Parameter or Compaction DDT
ambient condition value value Units Ref.

b 7.60× 10−4 7.60× 10−4 m3/kg
R1 8.50× 102 8.50× 102 J/(kg K) [45]
cv1 2.40× 103 2.40× 103 J/(kg K) [3, 45]
cv2 1.50× 103 1.50× 103 J/(kg K) [3, 8, 45]
σ 8.98× 106 8.98× 106 m2/s2 [43, 45]
q 0 5.84× 106 J/kg [8, 45]
kI — 1.00× 106 s−1

TI — 2.69× 103 K
I ig — 5.00× 10−1

a — 2.90× 10−9 m/(Pa s) [8, 45]
h 1.00× 107 1.00× 107 J/(K s m8/3) [45]
β 1.00× 104 1.00× 104 kg/(s m2) [45]
µc 1.00× 103 1.00× 102 kg/(s m) [45]
m — 1.00× 100 [8, 45]
γ2 5.00× 100 5.00× 100 [43, 45]
ro 1.00× 10−4 1.00× 10−4 m [5, 8, 45]
To 3.00× 102 3.00× 102 K
ρ1o 1.00× 101 1.00× 101 kg/m3 [45]
ρ2o 1.90× 103 1.71× 103 kg/m3 [61]
φ2o 7.30× 10−1 7.00× 10−1 [61]

Table II. Values for the model parameters are also given in this table. The computational
run time for this simulation was approximately 45 min.

Figure 6 shows the numerically predicted history for the gas and solid velocity (measured
relative to a fixed laboratory frame), the gas and solid pressure, the solid volume fraction,
and the particle number density. Here,ξ is position measured relative to the piston surface. A
smooth but rapid increase is predicted in all variables in response to the sudden acceleration
of the piston. A dispersed compaction wave quickly develops and propagates away from
the piston with a uniform speed of 418.3 m/s, which is well below the ambient solid sound
speed (∼3000 m/s). A solid shock does not form in response to the accelerating piston
due to the rapid relaxation in solid pressure associated with material compaction (i.e.,
P2→ P1+ f ). The predicted time and length required for transition to a fully developed
compaction wave are approximately 0.1 ms and 10 cm (measured relative to the piston).
The solid volume fraction and pressure in the compacted region are predicted to be 0.96
and 67.1 MPa, respectively. These values for the compaction wave speed, the final volume
fraction, and the final solid pressure agree well with the experimentally determined values
reported by Sandusky and Liddiard [52] for the impact of a 100 m/s piston with a bed of
porous HMX (φ2o = 0.73). Sandusky and Liddiard observed compaction wave speeds of
432 m/s, final solid volume fractions near 0.94, and final solid pressures near 50 MPa; no
values for transition length and time were reported.

Figure 7 shows the numerically predicted variation in solid density, velocity, pressure,
and volume fraction within the compaction zone att = 3.2 ms. Also shown in this figure
are predictions for the steady wave structure given by the simplified analysis of Powers



410 GONTHIER AND POWERS

FIG. 6. Predicted time histories for the inert compaction wave problem: (a, b) gas and solid pressure, (c, d)
gas and solid velocity, (e) solid volume fraction, and (f) particle number density.

et al.[43]. In their analysis, Powerset al.ignore gas effects and describe steady compaction
wave structure in terms of the solid variables. The flow located between the piston (ξ = 0 m)
and the trailing edge of the compaction wave (ξ = 0.82 m) is not shown in this figure. The
prediction labeled Numerical 1 is the solution shown in Fig. 6. The prediction labeled
Numerical 2, also shown att = 3.2 ms, was obtained by ignoring interphase drag and heat
transfer and by ignoring gas effects in Eq. (2.7). As such, a direct comparison can be made
between the numerical and analytical predictions for compaction wave structure. Good
agreement exists between the Numerical 2 prediction and the analytical prediction. It is
noted that a continuous compaction wave structure is predicted and that interphase drag,
interphase heat transfer, and gas effects increase the final solid pressure and decrease the
final solid volume fraction. The results shown here indicate that the gas has little influence
on compaction wave structure. The wave speed predicted by the simulation denoted as
Numerical 2 is 405.8 m/s; this agrees well with the value of 404.7 m/s predicted by the
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FIG. 7. Comparison of the predicted and analytical solutions for the inert compaction wave structure:
(a) solid density, (b) solid velocity, (c) solid pressure, and (d) solid volume fraction.

steady analysis of Powerset al. The compaction wave trajectories for the simulations
denoted as Numerical 1 and Numerical 2 are shown in Fig. 8.

Convergence data obtained for this test case based on a comparison of the Numerical 2
prediction with the analytical compaction wave structure are plotted in Fig. 9. Here, the error
is based on the definition in Eq. (4.1), wherePc

2 = 8.21 MPa is the ambient pressure of the

FIG. 8. Predicted compaction wave trajectories for the inert compaction wave problem.
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FIG. 9. Numerical convergence data for the inert compaction wave problem based on the 1 norm for the solid
pressure.

solid. The scatter in the data from the linear curve fit is greater than that in the convergence
data obtained for the inert shock tube problem. This increased scatter is likely due to
inaccuracies in the placement of the exact solution relative to the numerically predicted
solution in computing the error. As such, the exact solution was placed at the location which
minimized the computed error. These inaccuracies do not exist for the shock tube simulation
since the exact time-dependent solution is known. Since the compaction wave structure is
continuous, this test case provides a good measure for determining the spatial accuracy of
the method for a continuous solution. The computed convergence rate isp = 1.647. Though
this rate is substantially higher than the rate computed for the test case having discontinuous
solutions, it is lower than what would be expected from a truly second-order method. This
result is likely due to numerical diffusion introduced by the flux-limiting procedure. It is
possible that the convergence rate might improve for more resolved computational grids
than used here. However, it is not feasible to investigate this claim since the most resolved
case performed as part of this study (N = 4000) required nearly 100 h of CPU time.

4.3. Two-Phase Detonation Problem

This simulation involves the evolution of a self-propagating, two-phase detonation wave
due to compression of the granular material by a moving piston. Here, the processes of gas
and solid convection are coupled with the local processes of combustion, interphase drag,
interphase heat transfer, and material compaction. The results given illustrate the evolution
of a detonation wave, and the numerically predicted detonation wave structure and the
structure predicted by a steady-state analysis are compared [22]. The reader is referred to
Refs. [3, 8, 44, 45] for a discussion of two-phase detonation waves in energetic granular
materials.

As was done for the inert compaction wave problem, we numerically solve the model
equations in the piston-attached frame where the piston velocity is given by Eq. (4.2).
Additionally, the same equations of state and boundary conditions used for the compaction
wave problem are used here; as such, this problem simulates DDT in granular HMX. Model
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parameters and initial conditions used for this simulation are given in Table II. While most of
these values are consistent with experimental data for HMX, the value of the drag parameter
β is an order of magnitude smaller than suggested by gas permeation experiments [1]. Also,
the initial gas densityρ10 is approximately an order of magnitude larger than typically
found in DDT experiments. These values were largely chosen to facilitate comparisons
with the work of Powerset al.[45], as well as to illustrate the evolution of a new two-phase
weak detonation structure. Even so, many experimentally observed features are correctly
predicted. The computational domain(0≤ ξ ≤ 50 cm) consisted ofN = 1500 uniformly
spaced nodes. The CPU time for this simulation was approximately 6 h.

Shown in Fig. 10 are the predicted velocity (measured relative to the laboratory frame),
pressure, and temperature history of the gas. Also shown in this figure are the spatial profiles
at t = 210µs. The predicted solid velocity, pressure, and temperature history are shown
in Fig. 11. Each of the curves for the solid variables is plotted up to the point of complete
combustion (φ2ε = 1× 10−5). In these figures,ξ is position measured relative to the piston
surface.

FIG. 10. Predicted time histories for theshocked gas–unshocked solidweak detonation simulation: (a) gas
velocity, (b) gas pressure, and (c) gas temperature.
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FIG. 11. Predicted time histories for theshocked gas–unshocked solidweak detonation simulation: (a) solid
velocity, (b) solid pressure, and (c) solid temperature.

A dispersed compaction wave quickly forms and propagates away from the piston at
constant speed; the predicted wave speed relative to the fixed laboratory frame is 401.98 m/s.
The predicted compaction zone thickness is approximately 5.0 mm. A continuous variation
in all variables is predicted within the compaction zone. The gas pressure and temperature
increase from their ambient values of 2.57 MPa and 300 K to approximately 19.81 MPa
and 330.25 K, and the solid pressure and temperature increase from their ambient values
of 8.21 MPa and 300 K to approximately 55.59 MPa and 304.53 K, respectively. The gas
and solid velocity increase from 0 to 100 m/s, as required by the zero mass flux boundary
condition at the piston surface.

As time advances, the width of the compacted region increases as the compaction wave
propagates away from the piston. Combustion initiation is predicted to occur at the pis-
ton surface after an induction period of approximately 135µs. Induction periods prior to
the onset of sustained combustion are characteristic of piston-initiated DDT in granular
high explosives [5, 36, 37]. It is widely accepted that during the induction period, weakly
exothermic chemical reactions take place due to localized heating of the explosive material
as it is compacted. Possible heating mechanisms include adiabatic shear localization within
particles, friction between particles, and adiabatic compression of the gas contained within
the interstices of particles, the analysis of which is beyond the scope of this work. See
Gonthieret al. [23] for the modeling and analysis of compaction-induced heating in gran-
ular HMX. As progressively more energy is liberated due to combustion, the reaction rate
increases, resulting in a self-accelerating process. Since chemical reaction is local in nature,
the compacted explosive nearest the piston surface incubates the longest and, consequently,
is first to undergo sustained combustion. The onset of sustained combustion marks the end
of the induction period.

As seen in Figs. 10 and 11, a rapid increase in the velocity, pressure, and temperature
of both the gas and solid is predicted following the onset of combustion. Transition to
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detonation is predicted to occur almost immediately. The detonation continuously accel-
erates and strengthens as it propagates through the compacted material. The solid is first
completely consumed at the piston surface approximately 140µs after piston impact; con-
sequently, the solid is not directly affected by the moving piston fort ≥ 140 µs. The
accelerating detonation overtakes the compaction wave approximately 145µs after pis-
ton impact. Since the gas and solid pressure, gas and solid temperature, and solid volume
fraction continuously decrease immediately in front of the detonation as it traverses the
compaction zone structure, both a left-propagating rarefaction and a right-propagating en-
tropy wave are produced by the interaction. For this case, the entropy wave has a continuous
structure (i.e., it is not a contact discontinuity). Subsequently, the left-propagating rarefac-
tion reflects off the piston, the entropy wave continues to propagate slowly to the right, and
the accelerating detonation relaxes to a steady detonation propagating at speed 6168 m/s.
Following the detonation is a right-propagating rarefaction which reduces the gas velocity
at the end of the reaction zone to that of the piston (100 m/s). The rarefactions are indi-
cated in the spatial profiles for the gas velocity and pressure att = 210µs (Figs. 10a and
10b), and the entropy wave is indicated in the spatial profile for the gas temperature at
t = 210µs (Fig. 10c). Because the gas velocity (measured relative to the piston) is zero
through the entropy wave att = 210µs, and because thermal diffusion is absent from the
model, the wave does not move relative to the piston, nor does its amplitude decrease as time
advances.

Also indicated in the gas temperature profile of Fig. 10c is an entropy layer immediately
next to the piston surface which is generated during the transition process. Menikoff [38, 39]
and Menikoff and Lackner [40] have shown that shock-capturing methods predict a spurious
entropy layer when a shock interacts with a solid boundary and have proposed a production
mechanism for this anomalous structure which is a direct consequence of the artificial width
of the numerically predicted shock. For hyperbolic equations, the time interval associated
with the shock–boundary interaction is zero since the shock is a discontinuity. However,

FIG. 12. Numerically predicted solid volume fraction history for theshocked gas–unshocked solidweak
detonation simulation.
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FIG. 13. Comparison of theshocked gas–unshocked solidweak detonation structures predicted by the steady
and unsteady detonation analyses: (a, b) gas and solid density, (c, d) gas and solid velocity, (e, f ) gas and solid
pressure, (g, h) gas and solid temperature, (i, j) gas and solid Mach number squared (relative to the wave),
(k) solid volume fraction, and (l) particle radius.

numerical shocks, having an artificial width due to numerical diffusion, interact with the
boundary over a finite time interval. Since entropy production occurs only during the inter-
action period, the predicted width of the spurious entropy layer is close to the artificial shock
width. Though not shown here, spurious entropy layers were also numerically predicted
near the piston surface when the piston was impulsively set into constant velocity mo-
tion. Glaister [18] has also predicted spurious entropy layers for similar types of problems.
Since the piston was continuously accelerated from rest to a constant velocity, the effects
of the spurious entropy production mechanism may be minimal. Furthermore, the width
of the entropy layer predicted here is much larger than the length of three computational
cells, the typical length needed to numerically capture shocks. Nevertheless, it is difficult to
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FIG. 13—Continued

conclusively determine if this entropy layer is physical or if it is a numerical artifact of the
shock-capturing method.

The predicted solid volume fraction history is shown in Fig. 12. Here, the inert compaction
wave is seen propagating away from the piston for early time. Across this wave, the ambient
mixture is compacted from a solid volume fraction of 0.70 to 0.94. Following combustion
initiation at the piston surface att = 135µs, combustion consumes the solid as the resulting
detonation propagates through the compacted material. As seen in this figure, the detonation
is about to overtake the compaction wave att = 141.95 µs. Soon afterward, the steady
detonation forms. The solid volume fraction continuously decreases from 0.70 toφ2ε =
1× 10−5 through the steady detonation structure.

The model reasonably predicts many experimentally observed features. Given in Table III
are comparisons of numerically predicted and experimentally measured quantities for the
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TABLE III

Comparison of Numerically Predicted Quantities with the

Results of the DDT Experiment Given in Ref. [36]

Quantity Experiment Model

Compaction wave speed 400 m/s 401.98 m/s
Compaction wave thickness 2 mm 5 mm
Solid volume fraction behind 0.90 0.94

the lead compaction wave

Time to detonation 142µs 138µs
Distance to detonation measured 25 mm 10 mm

relative to the piston
Detonation wave speed 6200 m/s 6169.4 m/s

DDT of granular HMX [36]. However, experiments indicate a more complex transition
process than predicted here involving the propagation of a low-speed combustion front
away from the piston following initiation (∼400 m/s), the subsequent formation of an inert
solid plug slightly ahead of the combustion front, followed by the formation of a shock
immediately ahead of the plug which induces a prompt transition to detonation. Sonet al.
[59, 60] have modified the conventional two-phase DDT model of Baer and Nunziato [3]
to better account for the transition process including plug formation. Similar modifications,
which only involve the forcing terms of the governing differential equations, can be made
to the present model, and the high-resolution numerical method outlined in this paper can
be applied without difficulty.

A comparison of the numerically predicted detonation structure with the structure pre-
dicted by a steady analysis is given in Fig. 13; details of the steady analysis are given in
Ref. [12]. This figure shows the variation in density, velocity, pressure, temperature, and
Mach number squared (measured relative to the wave) of the gas and solid and in the
solid volume fraction and particle radius within the reaction zone. The flow located be-
tween the piston surface (ξ = 0 cm) and the end of the reaction zone (ξ = 43.4 cm) is not
shown in this figure. Good agreement exists between the predicted solutions. As such, it is
clear that ashocked gas–unshocked soliddetonation structure has evolved. Moreover, since
the Mach number of the gas at the end of the reaction zone is greater than unity (M2

1 =
1.094), this structure is classified as a two-phaseweak detonation; such structures have
not been previously predicted. The numerical method is able to capture the gas shock with
approximately three computational cells without the generation of spurious oscillations.
Though not very evident here, the numerical method has difficulty accurately predicting
the variation in solid quantities near the end of the reaction zone; this difficulty is slightly
noticeable in the numerically predicted solid density profile. Reasons for this difficulty are
unclear, but it is possibly a consequence of the burn termination technique used in this work.

Convergence data based on a comparison of the unsteady numerical prediction for the
weak detonation structure with the result given by the steady analysis are plotted in Fig. 14.
Here, the error is based on the definition in Eq. (4.1), wherePc

1 = 12.75 GPa is the weak
detonation gas pressure at the end of the reaction zone. As with the compaction wave test
case, the steady-state solution was placed at the location which minimized the computed er-
ror. As indicated by lines I and II in the figure, the convergence rate of the numerical method
for this problem depends on grid resolution. For relatively coarse grids (400≤ N ≤ 2000),
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FIG. 14. Numerical convergence data for the two-phase detonation problem based on the 1 norm for the gas
pressure.

the computed convergence rate isp = 1.843, which is substantially higher than typical rates
for problems having discontinuous solutions (∼1.0). In this case, the convergence rate is
dominated by the integrated numerical error over the continuous reaction zone structure
(∼1 GPa) rather than by diffusive errors associated with the lead shock (∼0.01 GPa). As
the computational grid is refined (2000≤ N ≤ 4000), the convergence rate is observed to
decrease top = 1.324 as diffusion at the shock becomes increasingly important. If the grid
were further refined (N > 4000), it is plausible that the convergence rate would approach
unity as expected, but it is impractical to completely address this issue due to computa-
tional constraints. The most resolved case performed in this study (N = 4000) required
nearly 24 h of CPU time. Fully resolved simulations would take considerably longer to
compute.

5. CONCLUSIONS

A high-resolution, upwind numerical method was formulated for the accurate solution of
a two-phase DDT model which is representative of a class of models used in current practice.
The numerical method is a substantial improvement over conventional methods commonly
used to simulate two-phase DDT. The method utilizes a new approximate solution for the
two-phase Riemann problem, valid for general equations of state, which has the “shock
resolution” property common to Roe-type solvers; thus, if the discontinuous initial data
can be connected by a single shock in the gas and/or solid, the approximate solution is
exact. Though less computationally expensive, the use of an approximate solution was
necessitated by the lack of an exact solution for the general two-phase Riemann problem
for complex equations of state. In addition to documenting full details of the approximate
Riemann solver, this paper has given a technique for suppressing numerical instabilities
near singularities associated with a local loss of hyperbolicity.

The model was shown to predict experimentally observed features associated with DDT
induced by low-velocity impact of granular energetic solids, including the initial evolution
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of a dispersed compaction wave, a subsequent induction period prior to the onset of vigorous
combustion, and the final transition to detonation. Experimentally observed time scales,
wave speeds, and stresses are correctly predicted. Further, the results conclusively show
for the first time the evolution of a two-phase weak detonation structure; thus, contrary to
conventional assumptions, the Chapman–Jouguet wave speed is not the unique wave speed
for a self-propagating two-phase detonation. Detailed comparisons of numerical predictions
with known theoretical results for the steady weak detonation structure indicated that the
method can accurately capture strong shocks induced by detonation with minimal numerical
diffusion and dispersion. Based on a detailed convergence study, the nominally second-order
method was shown to have a global convergence rate of 1.001 for discontinuous solutions,
which is comparable to modern high-resolution methods developed for the Euler equations
of gas dynamics, and a rate of 1.670 for continuous solutions.

Finally, we give the following remarks. First, there exists some uncertainty about the
implications of the model singularities on the approximate two-phase Riemann solution.
It is possible that the approximate solution may not properly represent the true solution
behavior in the neighborhood of these singularities in all cases, though it is impossible
to know definitively in the absence of exact solutions. In this work, we have chosen to
suppress only numerical instabilities induced by these singularities; however, comparisons
of predicted detonation structures having embedded singularities with the corresponding
structures given by a formal steady-state analysis of the model have shown good agreement.
Second, the shock resolution property comes with additional computational expense as
much effort is required to compute the square-root averages for system variables. Though
not explored in this study, one could replace the square-root averages with simple arithmetic
averages. As such, arithmetic averages for complex thermodynamic derivatives could be
easily evaluated circumventing the need to compute the potentially cumbersome averages
defined in this paper. In this case, the shock resolution property will not be maintained,
but a more computationally efficient algorithm will result with potentially little sacrifice in
performance.

APPENDIX A

Derivation of the Eigenvector Expansion Coefficients

The eigenvector expansion coefficientsα( j ) ( j = 1, . . . ,9) [Eqs. (3.11)–(3.19)] associ-
ated with the solution of the linear two-phase Riemann problem are derived in this appendix.

To this end, we choose theα( j ) such that each component of the vector equation

δ(q) =
9∑

j=1

α( j )r ( j ) (A.1)

is satisfied to withinO[δ(qj )
2], and such that each component of the vector equation

δ(f ) =
9∑

j=1

α( j )λ( j )r ( j ) (A.2)

is satisfied to withinO[δ( f j )
2], where the difference operator is defined byδ(•) ≡ (•)R−

(•)L . Substituting the expressions forr ( j ) ( j = 1, . . . ,9) [Eqs. (2.42)–(2.50)] into Eq. (A.1),
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and fully expanding the resulting system of equations give

δ(ρ1φ1) = α(1) + α(2) + α(3) + α(7) ρ1η1

ρ2φ2
(
(v2− v1)2− c2

1

) , (A.3)

δ(ρ1φ1v1) = α(1)v1+ α(2)(v1+ c1)+ α(3)(v1− c1)

+α(7) ρ1η1v2

ρ2φ2
(
(v2− v1)2− c2

1

) , (A.4)

δ
(
ρ1φ1

(
e1+ v2

1

/
2
)) = α(1)(H1− c2

1

/
01
)+ α(2)(H1+ v1c1)+ α(3)(H1− v1c1)

+α(7) ρ1η1
(
H1+ v1v2− v2

1

/
2
)

ρ2φ2
(
(v2− v1)2− c2

1

) , (A.5)

δ(ρ2φ2) = α(4) + α(5) + α(6), (A.6)

δ(ρ2φ2v2) = α(4)v2+ α(5)(v2+ c2)+ α(6)(v2− c2), (A.7)

δ
(
ρ2φ2

(
e2+ v2

2

/
2
)) = α(4)(H2− c2

2

/
02
)+ α(5)(H2+ v2c2)

+α(6)(H2− v2c2)+ α(7)η2
/
(φ202), (A.8)

δ
(
ρ2φ

2
2

) = α(4)φ2+ α(5)φ2+ α(6)φ2+ α(7), (A.9)

δ(n) = α(5)n/(ρ2φ2)+ α(6)n/(ρ2φ2)+ α(8). (A.10)

δ(ρ2φ2I ) = α(5) I + α(6) I + α(9). (A.11)

With the assumption thatqL is close toqR, the left-hand sides of Eqs. (A.4), (A.5), (A.7),
(A.8), (A.9), and (A.11) can be approximated by the following expressions valid toO(δ2),
respectively:

δ(ρ1φ1v1) ∼ v1δ(ρ1φ1)+ ρ1φ1δ(v1),

δ
(
ρ1φ1

(
e1+ v2

1

/
2
)) ∼ (e1+ v2

1

/
2
)
δ(ρ1φ1)+ ρ1φ1δ(e1)+ ρ1φ1v1δ(v1),

δ(ρ2φ2v2) ∼ v2δ(ρ2φ2)+ ρ2φ2δ(v2),

δ
(
ρ2φ2

(
e2+ v2

2

/
2
)) ∼ (e2+ v2

2

/
2
)
δ(ρ2φ2)+ ρ2φ2δ(e2)+ ρ2φ2v2δ(v2),

δ
(
ρ2φ

2
2

) ∼ φ2δ(ρ2φ2)+ ρ2φ2δ(φ2),

δ(ρ2φ2I ) ∼ ρ2φ2δ(I )+ I δ(ρ2φ2).

Substituting these expressions into Eqs. (A.3)–(A.11) and solving the resulting coupled
system of equations forα(1), α(2), . . . , α(9) give

α(1) = δ(ρ1φ1)− 1

c2
1

δ(P1φ1)− ρ1η1

c2
1

δ(φ1), (A.12)

α(2) = 1

2c2
1

δ(P1φ1)+ ρ1φ1

2c1
δ(v1)+

(
v2− v1

v2− (v1+ c1)

)
ρ1η1

2c2
1

δ(φ1), (A.13)

α(3) = 1

2c2
1

δ(P1φ1)− ρ1φ1

2c1
δ(v1)+

(
v2− v1

v2− (v1− c1)

)
ρ1η1

2c2
1

δ(φ1), (A.14)

α(4) = δ(ρ2φ2)− 1

c2
2

δ(P2φ2), (A.15)
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α(5) = 1

2c2
2

δ(P2φ2)+ ρ2φ2

2c2
δ(v2), (A.16)

α(6) = 1

2c2
2

δ(P2φ2)− ρ2φ2

2c2
δ(v2), (A.17)

α(7) = ρ2φ2δ(φ2), (A.18)

α(8) = δ(n)− n

ρ2φ2c2
2

δ(P2φ2), (A.19)

α(9) = ρ2φ2δ(I )+ I δ(ρ2φ2)− I

c2
2

δ(P2φ2). (A.20)

It is easily checked by directly substituting the expressions forλ( j ) [Eq. (2.41)], r ( j )

[Eqs. (2.42)–(2.50)], andα( j ) [Eqs. (A.12)–(A.20)] into Eq. (A.2) that the required identities
are satisfied to withinO[δ( f j )

2].

APPENDIX B

Averages for the Approximate Riemann Solution

In this appendix, Eqs. (3.20)–(3.43) are solved for the average quantitiesρ̃1φ1, ṽ1, ẽ1,

H̃1, F̃1ρ1φ1, F̃1φ1, F̃1e1, ρ̃2φ2, φ̃2, ṽ2, ẽ2, H̃2, F̃2ρ2φ2, F̃2φ2, F̃2e2, ñ, andĨ . To this end, it
is convenient to first substitute the expressions given by Eqs. (3.22)–(3.31) into Eq. (3.20)
and to fully expand the resulting expressions:

1(ρ1φ1) = α̃(1) + α̃(2) + α̃(3) −
α̃(7) F̃1φ1

ρ̃2φ2
[
(ṽ2− ṽ1)2− c̃2

1

] , (B.1)

1(ρ1φ1v1) = α̃(1)ṽ1+ α̃(2)(ṽ1+ c̃1)+ α̃(3)(ṽ1− c̃1)

− α̃(7)ṽ2F̃1φ1

ρ̃2φ2
[
(ṽ2− ṽ1)2− c̃2

1

] , (B.2)

1
(
ρ1φ1

(
e1+ v2

1

/
2
)) = α̃(1)(H̃1− c̃2

1

/
0̃1
)+ α̃(2)(H̃1+ ṽ1c̃1)+ α̃(3)(H̃1− ṽ1c̃1)

− α̃
(7)
(
H̃1+ ṽ1ṽ2− ṽ2

1

)
F̃1φ1

ρ̃2φ2
[
(ṽ2− ṽ1)2− c̃2

1

] (B.3)

1(ρ2φ2) = α̃(4) + α̃(5) + α̃(6), (B.4)

1(ρ2φ2v2) = α̃(4)ṽ2+ α̃(5)(ṽ2+ c̃2)+ α̃(6)(ṽ2− c̃2), (B.5)

1
(
ρ2φ2

(
e2+ v2

2

/
2
)) = α̃(4)(H̃2− c̃2

2

/
0̃2
)+ α̃(5)(H̃2+ ṽ2c̃2)

+ α̃(6)(H̃2− ṽ2c̃2)−
α̃(7) F̃2φ2

ρ̃2φ20̃2

, (B.6)

1
(
ρ2φ

2
2

) = α̃(4)φ̃2+ α̃(5)φ̃2+ α̃(6)φ̃2+ α̃(7), (B.7)

1(n) = α̃(5)ñ/ρ̃2φ2+ α̃(6)ñ/ρ̃2φ2+ α̃(8), (B.8)

1(ρ2φ2I ) = α̃(5) Ĩ + α̃(6) Ĩ + α̃(9). (B.9)
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Likewise, we substitute the expressions given by Eqs. (3.22)–(3.31) into Eq. (3.21) and
fully expand the resulting expressions:

1(ρ1φ1v1) = α̃(1)ṽ1+ α̃(2)(ṽ1+ c̃1)+ α̃(3)(ṽ1− c̃1)−
α̃(7)ṽ2F̃1φ1

ρ̃2φ2
[
(ṽ2− ṽ1)2− c̃2

1

] , (B.10)

1
(
ρ1φ1v

2
1+ P1φ1

) = α̃(1)ṽ2
1+ α̃(2)(ṽ1+ c̃1)

2+ α̃(3)(ṽ1− c̃1)
2− α̃(7)ṽ2

2 F̃1φ1

ρ̃2φ2
[
(ṽ2− ṽ1)2− c̃2

1

] ,
(B.11)

1
(
ρ1φ1v1

(
e1+ v2

1

/
2+ P1/ρ1

))
= α̃(1)ṽ1

(
H̃1− c̃2

1

/
0̃1
)+ α̃(2)(ṽ1+ c̃1)(H̃1+ ṽ1c̃1)

+ α̃(3)(ṽ1− c̃1)(H̃1− ṽ1c̃1)−
α̃(7)
(
H̃1+ ṽ1ṽ2− ṽ2

1

)
F̃1φ1

ρ̃2φ2
[
(ṽ2− ṽ1)2− c̃2

1

] , (B.12)

1(ρ2φ2v2) = α̃(4)ṽ2+ α̃(5)(ṽ2+ c̃2)+ α̃(6)(ṽ2− c̃2), (B.13)

1
(
ρ2φ2v

2
2 + P2φ2

) = α̃(4)ṽ2
2 + α̃(5)(ṽ2+ c̃2)

2+ α̃(6)(ṽ2− c̃2)
2, (B.14)

1
(
ρ2φ2v2

(
e2+ v2

2

/
2+ P2/ρ2

)) = α̃(4)ṽ2
(
H̃2− c̃2

2

/
0̃2
)+ α̃(5)(ṽ2+ c̃2)(H̃2+ ṽ2c̃2)

+ α̃(6)(ṽ2− c̃2)(H̃2− ṽ2c̃2)−
α̃(7) F̃2φ2

ρ̃2φ20̃2

, (B.15)

1
(
ρ2φ

2
2v2
) = α̃(4)ṽ2φ̃2+ α̃(5)(ṽ2+ c̃2)φ̃2+ α̃(6)(ṽ2− c̃2)φ̃2+ α̃(7)ṽ2, (B.16)

1(v2n) = α̃(5)(ṽ2+ c̃2)ñ/ρ̃2φ2+ α̃(6)(ṽ2− c̃2)ñ/ρ̃2φ2+ α̃(8)ṽ2, (B.17)

1(ρ2φ2I v2) = α̃(5)(ṽ2+ c̃2) Ĩ + α̃(6)(ṽ2− c̃2) Ĩ + α̃(9)ṽ2. (B.18)

Equations (B.4)–(B.9) and (B.13)–(B.18) are first solved for̃ρ2φ2, φ̃2, ṽ2, ẽ2, H̃2, ñ, and
Ĩ in Section B.1. Next, Eqs. (B.1)–(B.3) and (B.10)–(B.12) are solved for̃ρ1φ1, ṽ1, ẽ1,
and H̃1 in Section B.2. Last, expressions forF̃1ρ1φ1, F̃1φ1, F̃1e1, F̃2ρ2φ2, F̃2φ2, and F̃2e2 are
postulated in Section B.3 to complete the construction of the approximate solution.

B.1. Averages for the Solid Quantities

In this section, Eqs. (B.4)–(B.9) and Eqs. (B.13)–(B.18) are solved forρ̃2φ2, φ̃2, ṽ2, ẽ2,
H̃2, ñ, and Ĩ . It is noted that by substituting the expressions for ˜α(4), α̃(5), α̃(6), andα̃(8)

[Eqs. (3.35)–(3.37) and (3.39), respectively] into Eqs. (B.4) and (B.8), that the latter two
equations are identically satisfied by any averages we define. Also, it is noted that Eqs. (B.5)
and (B.13) are identical expressions. Therefore, only Eqs. (B.5)–(B.7), (B.9), and (B.14)–
(B.18) can be considered in determining the required average quantities for the solid phase.
To this end, the following relations will prove useful:

α̃(4) + α̃(5) + α̃(6) = 1(ρ2φ2), (B.19)

α̃(5) + α̃(6) = 1

c̃2
2

1(P2φ2), (B.20)

α̃(5) − α̃(6) = ρ̃2φ2

c̃2
1(v2). (B.21)
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First, we rearrange terms in Eq. (B.5) to get

1(ρ2φ2v2) = ṽ2
(
α̃(4) + α̃(5) + α̃(6))+ c̃2

(
α̃(5) − α̃(6)).

Substituting the expressions given by Eqs. (B.19) and (B.21) into the above equation, we
obtain

1(ρ2φ2v2) = ṽ21(ρ2φ2)+ ρ̃2φ21(v2).

This equation can be solved for̃ρ2φ2 to give

ρ̃2φ2 = 1(ρ2φ2v2)− ṽ21(ρ2φ2)

1(v2)
. (B.22)

Next, we expand the left-hand side of Eq. (B.14) and rearrange terms on the right-hand side
of this same equation to get

1
(
ρ2φ2v

2
2

)+1(P2φ2) = ṽ2
2

(
α̃(4) + α̃(5) + α̃(6))+ 2ṽ2c̃2

(
α̃(5) − α̃(6))+ c̃2

2

(
α̃(5) + α̃(6)).

Substituting the expressions given by Eqs. (B.19)–(B.21) into this equation and simplifying
the result gives

1
(
ρ2φ2v

2
2

) = ṽ2
21(ρ2φ2)+ 2ρ̃2φ2ṽ21(v2). (B.23)

Substituting the expression for̃ρ2φ2 [Eq. (B.22)] into Eq. (B.23) and rearranging terms
yield the following quadratic equation for ˜v2:

1(ρ2φ2)ṽ
2
2 − 21(ρ2φ2v2)ṽ2+1

(
ρ2φ2v

2
2

) = 0.

This equation has two solutions given by

ṽ2 =
1(ρ2φ2v2)±

√
[1(ρ2φ2v2)]2−1(ρ2φ2)1

(
ρ2φ2v

2
2

)
1(ρ2φ2)

.

Performing the difference operations1(•) [≡(•)R− (•)L ] in these solutions and simplify-
ing the result give the following expression for the solution corresponding to positive (+)
root:

ṽ2 =
√
ρ2Lφ2Lv2L −

√
ρ2Rφ2Rv2R√

ρ2Lφ2L −
√
ρ2Rφ2R

.

Likewise, the following expression is obtained for the solution corresponding to the negative
(−) root:

ṽ2 =
√
ρ2Lφ2Lv2L +

√
ρ2Rφ2Rv2R√

ρ2Lφ2L +
√
ρ2Rφ2R

. (B.24)

Clearly, to obtain a physically meaningful average we must choose the solution corre-
sponding to the negative root. Now, substituting this expression for ˜v2 into Eq. (B.22) and
simplifying the result yield

ρ̃2φ2 =
√
ρ2Lρ2Rφ2Lφ2R. (B.25)
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Next, we multiply Eq. (B.7) by ˜v2 and subtract the result from Eq. (B.16) to obtain

1
(
ρ2φ

2
2v2
)− ṽ2

(
ρ2φ

2
2

) = φ̃2c̃2
(
α̃(5) − α̃(6))

= ρ̃2φ2φ̃21(v2).

This equation can be solved forφ̃2 to give

φ̃2 =
1
(
ρ2φ

2
2v2
)− ṽ21

(
ρ2φ

2
2

)
ρ̃2φ21(v2)

.

Since exact expressions for the averages ˜v2 andρ̃2φ2 are known, this equation for̃φ2 reduces
to

φ̃2 =
√
ρ2Lφ2Lφ2L +

√
ρ2Rφ2Rφ2R√

ρ2Lφ2L +
√
ρ2Rφ2R

. (B.26)

Similarly, we multiply Eq. (B.9) by ˜v2, and subtract the result from Eq. (B.18) to obtain

1(ρ2φ2I v2)− ṽ21(ρ2φ2I ) = Ĩ c̃2
(
α(5) − α(6))

= ρ̃2φ2φ̃21(v2).

Solving this equation for̃I , substituting in the definitions for ˜v2 andρ̃2φ2, and simplifying
the result gives

Ĩ =
√
ρ2Lφ2L IL +

√
ρ2Rφ2RI R√

ρ2Lφ2L +
√
ρ2Rφ2R

. (B.27)

Next, we multiply Eq. (B.8) by ˜v2 and subtract the result from Eq. (B.17) to obtain

1(v2n)− ṽ21(n) = c̃2ñ

ρ̃2φ2

(
α̃(5) − α̃(6))

= ñ1(v2).

Solving this equation for̃n, substituting in the definition for ˜v2, and simplifying the result
gives

ñ =
√
ρ2Lφ2LnR+

√
ρ2Rφ2RnL√

ρ2Lφ2L +
√
ρ2Rφ2R

. (B.28)

Now, we consider Eqs. (B.6) and (B.15). Expanding the left-hand side of Eq. (B.6) and
rearranging terms on the right-hand side of this same equation yield

1(ρ2φ2e2)+1
(
ρ2φ2v

2
2

/
2
)

= H̃2
(
α̃(4) + α̃(5) + α̃(6))− α̃(4)c̃2

2

0̃2
+ ṽ2c̃2

(
α̃(5) − α̃(6))− α̃(7) F̃2φ2

ρ̃2φ20̃2

. (B.29)

Substituting the expressions given by Eqs. (B.19) and (B.21), and the expressions for ˜α(4)

[Eq. (3.14)] and ˜α(7) [Eq. (3.17)] into Eq. (B.29), using the second expression in Eq. (3.42)
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to replaceH̃2 in favor of ρ̃2φ2, ṽ2, P̃2φ2, andẽ2, and recognizing that the second term on
the left-hand side of Eq. (B.29) is simply the expression given in Eq. (B.23) divided by 2,
we obtain the following expression after performing some simple algebra:

1(ρ2φ2e2)− ẽ21(ρ2φ2)=
(

P̃2φ2

ρ̃2φ2

− c̃2
2

0̃2

)
1(ρ2φ2)+ 1

0̃2
1(P2φ2)−

F̃2φ2

0̃2
1(φ2). (B.30)

Now, upon using the second expression in Eq. (3.41) to replacec̃2
2 in Eq. (B.30) in favor

of ρ̃2φ2, P̃2φ2, F̃2ρ2φ2, andF̃2e2, using the second expression in Eq. (3.43) to replace0̃2 in

Eq. (B.30) in favor ofρ̃2φ2 and F̃2e2, subtracting the term̃ρ2φ21(e2) from both sides of
Eq. (B.30), and simplifying the result, we obtain

1(ρ2φ2e2)− ẽ21(ρ2φ2)− ρ̃2φ21(e2)

= ρ̃2φ2

F̃2e2

1(P2φ2)−
ρ̃2φ2F̃2ρ2φ2

F̃2e2

1(ρ2φ2)−
ρ̃2φ2F̃2φ2

F̃2e2

1(φ2)− ρ̃2φ21(e2). (B.31)

At this point, a number of assumptions can be made in order to defineF̃2ρ2φ2, F̃2φ2, F̃2e2,
andẽ2. Following the analysis of Glaister [18], it is plausible to choose

1(ρ2φ2e2)− ẽ2(ρ2φ2)− ρ̃2φ21(e2) = 0, (B.32)

in which case the right-hand side of Eq. (B.31) reduces to

1(P2φ2)− F̃2ρ2φ21(ρ2φ2)− F̃2φ21(φ2)− F̃2e21(e2) = 0. (B.33)

Equation (B.32) can then be solved forẽ2:

ẽ2 = 1(ρ2φ2e2)− ρ̃2φ21(e2)

1(ρ2φ2)
.

In this equation, we replace the term̃ρ2φ2 with the expression given by Eq. (B.25) and
simplify the result to get

ẽ2 =
√
ρ2Lφ2Le2L +

√
ρ2Rφ2Re2R√

ρ2Lφ2L +
√
ρ2Rφ2R

. (B.34)

It remains to define the quantities̃F2ρ2φ2, F̃2φ2, andF̃2e2 such that Eq. (B.33) is identically
satisfied. Definitions for these quantities are postulated in a following section.

Last, we multiply Eq. (B.6) by ˜v2, subtract the result from Eq. (B.15), and simplify the
resulting expression to get

1
(
ρ2φ2v2

(
e2+ v2

2

/
2+ P2/ρ2

))− ṽ21
(
ρ2φ2

(
e2+ v2

2

/
2
))

= c̃2H̃2
(
α̃(5) − α̃(6))+ ṽ2c̃2

2

(
α̃(5) + α̃(6)). (B.35)

Upon substituting the expressions given by Eqs. (B.20) and (B.21) into Eq. (B.35), re-
expressing the left-hand side of Eq. (B.35) in terms of the total enthalpy of the solidH2

(=e2+ v2
2/2+ P2/ρ2), and simplifying the result, we obtain

1(ρ2φ2v2H2)− ṽ21(ρ2φ2(H2− P2/ρ2)) = ρ̃2φ2H̃21(v2)+ ṽ21(P2φ2). (B.36)
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Now, expanding the second term on the left-hand side of this equation and canceling the
appropriate terms give

1(ρ2φ2v2H2)− ṽ21(ρ2φ2H2) = ρ̃2φ2H̃21(v2).

This equation is solved for̃H2 yielding

H̃2 = 1(ρ2φ2v2H2)− ṽ21(ρ2φ2H2)

ρ̃2φ21(v2)
.

Sinceρ̃2φ2, φ̃2, andṽ2 are all known quantities, this expression forH̃2 reduces to

H̃2 =
√
ρ2Lφ2L H2L +

√
ρ2Rφ2RH2R√

ρ2Lφ2L +
√
ρ2Rφ2R

. (B.37)

In summary, definitions for the solid phase average quantitiesρ̃2φ2, φ̃2, ṽ2, ẽ2, H̃2, ñ, and
Ĩ are given by Eqs. (B.25), (B.26), (B.24), (B.34), (B.37), (B.28), and (B.27), respectively.

B.2. Averages for the Gas Quantities

In this section, Eqs. (B.1)–(B.3) and Eqs. (B.10)–(B.12) are solved forρ̃1φ1, ṽ1, ẽ1, and
H̃1. It is noted, by substituting the expressions for ˜α(1), α̃(2), α̃(3), andα̃(7) into Eq. (B.1),
that Eq. (B.1) is satisfied by any averages we define; also, Eqs. (B.2) and (B.10) are identical
expressions. Therefore, only Eqs. (B.2), (B.3), (B.11), and (B.12) can be used to determine
the required averages for the gas phase. In defining these average quantities, the following
relations will prove useful:

α̃(1) + α̃(2) + α̃(3) = 1(ρ1φ1)−
F̃1φ1

(ṽ2− ṽ1)2− c̃2
1

1(φ1), (B.38)

α̃(2) + α̃(3) = 1

c̃2
1

1(P1φ1)−
(ṽ2− ṽ1)

2F̃1φ1

c̃2
1

[
(ṽ2− ṽ1)2− c̃2

1

]1(φ1), (B.39)

α̃(2) − α̃(3) = ρ̃1φ1

c̃1
1(v1)−

(ṽ2− ṽ1)F̃1φ1

c̃1
[
(ṽ2− ṽ1)2− c̃2

1

]1(φ1). (B.40)

First, we rearrange Eq. (B.2) to get

1(ρ1φ1v1) = ṽ1
(
α̃(1) + α̃(2) + α̃(3))+ c̃1

(
α̃(2) − α̃(3))− α̃(7)ṽ2F̃1φ1

ρ̃2φ2
[
(ṽ2− ṽ1)2− c̃2

1

] .
By substituting the expressions given by Eqs. (B.38) and (B.40) and the expression for ˜α(7)

[Eq. (3.17)] into the above equation and simplifying the resulting expression [recognizing
that1(φ2) = −1(φ1)], we obtain

1(ρ1φ1v1) = ṽ11(ρ1φ1)+ ρ̃1φ11(v1).

This equation is solved for̃ρ1φ1 to obtain

ρ̃1φ1 = 1(ρ1φ1v1)− ṽ11(ρ1φ1)

1(v1)
. (B.41)



428 GONTHIER AND POWERS

Also, expanding the left-hand side of Eq. (B.11) and rearranging the terms on the right-hand
side of this same equation give

1
(
ρ1φ1v

2
1

)+1(P1φ1) = ṽ2
1

(
α̃(1) + α̃(2) + α̃(3))+ 2ṽ1c̃1

(
α̃(2) − α̃(3))

+ c̃2
1

(
α̃(2) + α̃(3))− α̃(7)ṽ2

2 F̃1φ1

ρ̃2φ2
[
(ṽ2− ṽ1)2− c̃2

1

] .
Now, substituting in the expressions given by Eqs. (B.38)–(B.40) and the expression for ˜α(7)

[Eq. (3.17)] into the above expression, the following result is obtained upon simplifying:

1
(
ρ1φ1v

2
1

) = ṽ2
11(ρ1φ1)+ 2ρ̃1φ1ṽ11(v1). (B.42)

Substituting the expression for̃ρ1φ1 [Eq. (B.41)] into this expression and rearranging terms
result in a quadratic equation for ˜v1:

ṽ2
11(ρ1φ1)− 2ṽ11(ρ1φ1v1)+1

(
ρ1φ1v

2
1

) = 0.

This equation has two solutions given by

ṽ1 =
1(ρ1φ1v1)±

√
[1(ρ1φ1v1)]2−1(ρ1φ1)1

(
ρ1φ1v

2
1

)
1(ρ1φ1)

.

Once again, the negative root leads to the physically relevant solution

ṽ1 =
√
ρ1Lφ1Lv1L +

√
ρ1Rφ1Rv1R√

ρ1Lφ1L +
√
ρ1Rφ1R

. (B.43)

With ṽ1 known, Eq. (B.41) reduces to

ρ̃1φ1 =
√
ρ1Lρ1Rφ1Lφ1R. (B.44)

Next, we consider Eqs. (B.3) and (B.12). Expanding the left-hand side of Eq. (B.3) and
rearranging terms on the right-hand side of this same equation yields

1(ρ1φ1e1)+1
(
ρ1φ1v

2
1

/
2
)= H̃1

(
α̃(1) + α̃(2) + α̃(3))− α̃(1)c̃2

1

0̃1

+ ṽ1c̃1
(
α̃(2)− α̃(3))− α̃(7)(H̃1+ ṽ1ṽ2− ṽ2

1

)
F̃1φ1

ρ̃2φ2
[
(ṽ2− ṽ1)2− c̃2

1

] . (B.45)

Substituting the expressions given by Eqs. (B.38) and (B.40) and the expressions for ˜α(1)

[Eq. (3.11)] and ˜α(7) [Eq. (3.17)] into Eq. (B.45), using the first expression in Eq. (3.42)
to replaceH̃1 in favor of ρ̃1φ1, ṽ1, P̃1φ1, andẽ1, recognizing that the second term on the
left-hand side of Eq. (B.45) is simply the expression given in Eq. (B.42) divided by 2, and
using the equality1(φ2) = −1(φ1), we obtain the following expression after performing
some simple algebra:

1(ρ1φ1e1)− ẽ11(ρ1φ1) =
(

P̃1φ1

ρ̃1φ1

− c̃2
1

0̃1

)
1(ρ1φ1)+ 1

0̃1
1(P1φ1)−

F̃1φ1

0̃1
1(φ1).

(B.46)
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Now, using the first expression in Eq. (3.41) to replacec̃2
1 in Eq. (B.46) in favor ofρ̃1φ1,

P̃1φ1, F̃1ρ1φ1, and F̃1e1, using the first expression in Eq. (3.43) to replace0̃1 in Eq. (B.46)
in favor of ρ̃1φ1 and F̃1e1, subtracting the term̃ρ1φ11(e1) from both sides of Eq. (B.46),
and simplifying the result, we obtain

1(ρ1φ1e1)− ẽ11(ρ1φ1)− ρ̃1φ11(e1)

= ρ̃1φ1

F̃1e1

1(P1φ1)−
ρ̃1φ1F̃1ρ1φ1

F̃1e1

1(ρ1φ1)−
ρ̃1φ1F̃1φ1

F̃1e1

1(φ1)− ρ̃1φ11(e1). (B.47)

Here, as was done for the solid-phase analysis, we choose

1(ρ1φ1e1)− ẽ1(ρ1φ1)− ρ̃1φ11(e1) = 0, (B.48)

in which case Eq. (B.47) reduces to

1(P1φ1)− F̃1ρ1φ11(ρ1φ1)− F̃1φ11(φ1)− F̃1e11(e1) = 0. (B.49)

Substituting the expression for̃ρ1φ1 [Eq. (B.41)] into Eq. (B.48) and solving the resulting
expression for̃e1 yield

ẽ1 =
√
ρ1Lφ1Le1L +

√
ρ1Rφ1Re1R√

ρ1Rφ1R+
√
ρ1Rφ1R

. (B.50)

Similar to the solid-phase analysis, it is necessary to define the quantitiesF̃1ρ1φ1, F̃1φ1,
and F̃1e1 such that Eq. (B.49) is identically satisfied. Definitions for these quantities are
postulated in the following section.

Last, we multiply Eq. (B.3) by ˜v1, subtract the result from Eq. (B.12), and simplify the
result to get

1
(
ρ1φ1v1

(
e1+ v2

1

/
2+ P1/ρ1

))− ṽ11
(
ρ1φ1

(
e1+ v2

1

/
2
))

= c̃1H̃1
(
α̃(2) − α̃(3))+ ṽ1c̃2

1

(
α̃(2) + α̃(3))− α̃(7)(ṽ2− ṽ1)

(
H̃1+ ṽ1ṽ2− ṽ2

1

)
F̃1φ1

ρ̃2φ2
[
(ṽ2− ṽ1)2− c̃2

1

] .

(B.51)

Upon substituting the expressions given by Eqs. (B.39) and (B.40), and the expression for
α̃(7) [Eq. (B.17)] into Eq. (B.51), reexpressing the left-hand side of Eq. (B.51) in terms
of the total enthalpy of the gasH1 (=e1+ v2

1/2+ P1/ρ1), and simplifying the result, we
obtain

1(ρ1φ1v1H1)− ṽ11(ρ1φ1(H1− P1/ρ1)) = ρ̃1φ1H̃11(v1)+ ṽ11(P1φ1). (B.52)

Expanding the second term on the left-hand side of this equation and canceling like terms
gives

1(ρ1φ1v1H1)− ṽ11(ρ1φ1H1) = ρ̃1φ1H̃11(v1).

Sinceρ̃1φ1 andṽ1 are known quantities, this equation can be solved forH̃1 to give

H̃1 =
√
ρ1Lφ1L H1L +

√
ρ1Rφ1RH1R√

ρ1Lφ1L +
√
ρ1Rφ1R

. (B.53)

In summary, the required gas phase average quantitiesρ̃1φ1, ṽ1, ẽ1, andH̃1 are given by
Eqs. (B.44), (B.43), (B.50), and (B.53), respectively.
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B.3. Averages for the Thermodynamic Derivatives

In this section, definitions for̃F1ρ1φ1, F̃2ρ2φ2, F̃1φ1, F̃2φ2, F̃1e1, andF̃2e2 are are postulated
such that Eqs. (B.33) and (B.49) are identically satisfied. These approximations are all that
is needed to complete the approximate Riemann solution. For convenience, Eqs. (B.33) and
(B.49) are given below in a slightly rearranged form:

1(P1φ1) = F̃1ρ1φ11(ρ1φ1)+ F̃1φ11(φ1)+ F̃1e11(e1), (B.54)

1(P2φ2) = F̃2ρ2φ21(ρ2φ2)+ F̃2φ21(φ2)+ F̃2e21(e2). (B.55)

Since each of these equations contains the three average derivatives, these averages cannot
be uniquely defined. As such, the methodology proposed by Glaister [18] is adopted in
which artificial states are introduced in order to define the averages.

The following approximations for̃F1ρ1φ1, F̃1φ1, andF̃1e1 are proposed:

F̃1ρ1φ1 =
{

1

4
[F1(ρ1Rφ1R, φ1R, e1R)+ F1(ρ1Rφ1R, φ1R, e1L)+ F1(ρ1Rφ1R, φ1L , e1L)

+ F1(ρ1Rφ1R, φ1L , e1R)] − 1

4
[F1(ρ1Lφ1L , φ1R, e1R)+ F1(ρ1Lφ1L , φ1L , e1R)

+ F1(ρ1Lφ1L , φ1R, e1L)+ F1(ρ1Lφ1L , φ1L , e1L)]

}/
1(ρ1φ1), if 1(ρ1φ1) 6= 0,

(B.56)

F̃1φ1 =
{

1

2
[F1(ρ1Rφ1R, φ1R, e1R)+ F1(ρ1Lφ1L , φ1R, e1L)] + 1

2
[F1(ρ1Rφ1R, φ1L , e1R)

+ F1(ρ1Lφ1L , φ1L , e1L)]

}/
1(φ1), if 1(φ1) 6= 0, (B.57)

F̃1e1 =
{

1

4
[F1(ρ1Rφ1R, φ1R, e1R)+ F1(ρ1Lφ1L , φ1L , e1R)+ F1(ρ1Rφ1R, φ1L , e1R)

+ F1(ρ1Lφ1L , φ1R, e1R)] − 1

4
[F1(ρ1Rφ1R, φ1L , e1L)+ F1(ρ1Rφ1R, φ1R, e1L)

+ F1(ρ1Lφ1L , φ1R, e1L)+ F1(ρ1Lφ1L , φ1L , e1L)]

}/
1(e1), if 1(e1) 6= 0.

(B.58)

Similarly, the following approximations for̃F2ρ2φ2, F̃2φ2, andF̃2e2 are proposed:

F̃2ρ2φ2 =
{

1

4
[F2(ρ2Rφ2R, φ2R, e2R)+ F2(ρ2Rφ2R, φ2R, e2L)+ F2(ρ2Rφ2R, φ2L , e2L)

+ F2(ρ2Rφ2R, φ2L , e2R)] − 1

4
[F2(ρ2Lφ2L , φ2R, e2R)+ F2(ρ2Lφ2L , φ2L , e2R)

+ F2(ρ2Lφ2L , φ2R, e2L)+ F2(ρ2Lφ2L , φ2L , e2L)]

}/
1(ρ2φ2), if 1(ρ2φ2) 6= 0,

(B.59)
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F̃2φ2 =
{

1

2
[F2(ρ2Rφ2R, φ2R, e2R)+ F2(ρ2Lφ2L , φ2R, e2L)] + 1

2
[F2(ρ2Rφ2R, φ2L , e2R)

+ F2(ρ2Lφ2L , φ2L , e2L)]

}/
1(φ2), if 1(φ2) 6= 0, (B.60)

F̃2e2 =
{

1

4
[F2(ρ2Rφ2R, φ2R, e2R)+ F2(ρ2Lφ2L , φ2L , e2R)+ F2(ρ2Rφ2R, φ2L , e2R)

+ F2(ρ2Lφ2L , φ2R, e2R)] − 1

4
[F2(ρ2Rφ2R, φ2L , e2L)+ F2(ρ2Rφ2R, φ2R, e2L)

+ F2(ρ2Lφ2L , φ2R, e2L)+ F2(ρ2Lφ2L , φ2L , e2L)]

}/
1(e2), if 1(e2) 6= 0.

(B.61)

In Eqs. (B.56)–(B.61), the functionsF1(ρ1φ1, φ1, e1) and F2(ρ2φ2, φ2, e2) are obtained
from the thermodynamic state relations for each phase. In the event that1(ρiφi ), 1(φi ),
or1(ei ) (i = 1, 2) vanishes, we take the appropriate limits of Eqs. (B.56)–(B.61) (i.e., as
1(ρiφi )→ 0,1(φi )→ 0, or1(ei )→ 0) to obtain the following expressions, respectively:

F̃1ρ1φ1 =
1

4

[
∂F1

∂(ρ1φ1)
(ρ1φ1, φ1R, e1R)+ ∂F1

∂(ρ1φ1)
(ρ1φ1, φ1R, e1L)

+ ∂F1

∂(ρ1φ1)
(ρ1φ1, φ1L , e1R)+ ∂F1

∂(ρ1φ1)
(ρ1φ1, φ1L , e1L)

]
, if 1(ρ1φ1) = 0,

(B.62)

F̃1φ1 =
1

2

[
∂F1

∂ρ1
(ρ1Rφ1R, φ1, e1R)+ ∂F1

∂ρ1
(ρ1Lφ1L , φ1, e1L)

]
, if 1(φ1) = 0, (B.63)

F̃1e1 =
1

4

[
∂F1

∂e1
(ρ1Rφ1R, φ1R, e1)+ ∂F1

∂e1
(ρ1Rφ1R, φ1L , e1)

+ ∂F1

∂e1
(ρ1Lφ1L , φ1R, e1)+ ∂F1

∂e1
(ρ1Lφ1L , φ1L , e1)

]
, if 1(e1) = 0, (B.64)

F̃2ρ2φ2 =
1

4

[
∂F2

∂(ρ2φ2)
(ρ2φ2, φ2R, e2R)+ ∂F2

∂(ρ2φ2)
(ρ2φ2, φ2R, e2L)

+ ∂F2

∂(ρ2φ2)
(ρ2φ2, φ2L , e2R)+ ∂F2

∂(ρ2φ2)
(ρ2φ2, φ2L , e2L)

]
, if 1(ρ2φ2) = 0,

(B.65)

F̃2φ2 =
1

2

[
∂F2

∂ρ2
(ρ2Rφ2R, φ2, e2R)+ ∂F2

∂ρ2
(ρ2Lφ2L , φ2, e2L)

]
, if 1(φ2) = 0, (B.66)

F̃2e2 =
1

4

[
∂F2

∂e2
(ρ2Rφ2R, φ2R, e2)+ ∂F2

∂e2
(ρ2Rφ2R, φ2L , e2)

+ ∂F2

∂e2
(ρ2Lφ2L , φ2R, e2)+ ∂F2

∂e2
(ρ2Lφ2L , φ2L , e2)

]
, if 1(e2) = 0, (B.67)

It is easily checked by direct substitution that the expressions given by Eqs. (B.56)–(B.67)
identically satisfy Eqs. (B.54) and (B.55). Though these definitions for the derivatives appear
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complicated, they can generally be reduced when the equations of state are specified, and
the reduced forms can be directly implemented into a computer algorithm.
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