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A two-phase continuum mixture model is used to analyze steady compaction waves 
in porous materials_ It is shown that such a model admits both subsonic and super-
sonic steady compaction waves in response to a piston-driven boundary condition 
when a Tait equation is used to describe a solid matrix material and a generic static 
compaction relation is used to describe col/apse of the matrix. Parameters for the 
Tail equation are chosen to match shock and compaction wave data. The model is 
able to predict compaction wave speed, final pressure, and final volume fraction in 
porous HMX. The structure of the compaction wave is also studied. A shock 
preceding the compaction wave structure is predicted for compaction waves travel-
ling faster than the ambient sound speed of the solid. For subsonic compaction 
waves no leading shock is predicted. The compaction zone length is studied as a 
function of initial volume fraction, piston velocity, and compaction viscosity. 

Introduction 
It has been established by experiments with granular high 

energy solid propellants (Bernecker and Price, 1974; Price and 
Bernecker; 1975) and by numerical solution of unsteady two-
phase reactive flow models (Bulter and Krier, 1986; Baer and 
Nunziato; 1986) that deflagration to detonation transition 
(DDT) in a confined column of such granular energetic 
material involves material compaction and heat release. In 
many cases the origin of such a DDT can be traced to the in-
fluence of a compaction wave, defined as a propagating 
disturbance of the solid volume fraction of the granular 
material. Steady compaction waves in porous HMX (cyclic 
nitramine) were observed by Sandusky and Liddiard (1985) 
and Sandusky and Bernecker (1985) arising from the impact of 
a constant velocity piston (piston velocity < 300 m/s). Com-
paction waves in these experiments travel at speeds less than 
800 mis, wen below the ambient solid sound speed, which is 
near 3000 m/s. To understand compaction waves it is 
necessary to explain why this nonclassical result is obtained. 

The first step in modeling compaction waves is to study 
steady compaction waves. With understanding gained from 
steady waves, it is easier to understand the time-dependent 
development of a compaction wave and how such a compac-
tion wave can further evolve into a detonation wave. Although 
it is possible to numerically solve the coupled unsteady partial 
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differential equations which model such dynamic compaction 
processes (including the formation of shock waves) (Krier and 
Stewart, 1985), it is difficult to interpret from such models 
what physical properties dictate the speed, pressure changes, 
and porosity changes of compaction waves. It is the goal of 
this paper to provide a simple method to predict these 
parameters as a function of material properties with a 
representative model. 

We simulate the experiments of Sandusky and Liddiard by 
studying steady solutions to two-phase flow model equations. 
Without considering wave structure, Kooker (1986) has used 
an algebraic end state analysis to predict compaction wave 
speed as a function of piston velocity for full two-phase model 
equations. It is possible to extend this analysis in the limit 
where the effect of one of the phases is dominant. This ap-
proach was first used by Baer (1988) in his study of steady 
compaction wave structure. Here we provide a more detailed 
discussion of steady structure and basic parameter dependen-
cies. Throughout this paper, we will compare our assumptions 
and results to those of Baer. 

Our results show a continuous dependence of compaction 
wave structure with supporting piston velocity; depending on 
the piston velocity, two broad classes of compaction zone 
structure exist. At low piston velocities the compaction wave 
travels at speeds less than the ambient solid sound speed. We 
call such waves subsonic compaction waves. The structure is 
characterized by a smooth rise in pressure from the ambient to 
a higher pressure equal to the static pore collapse stress level. 
Subsonic compaction waves have been observed in experiment 
(though compaction zone widths have not been measured) and 
predicted by Baer. Above a critical piston velocity the compac-
tion wave travels at speeds greater than the ambient solid 
sound speed. A discontinuous shock wave leads a relaxation 
zone where the pressure adjusts to its equilibrium static pore 
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collapse value. We call such waves supersonic compaction 
waves. Supersonic compaction waves with leading shocks have 
not been observed nor predicted in previous studies. 

A shock wave in compaction wave structure is admitted 
because the model equations are hyperbolic. Our model ig-
nores the effects of diffusive momentum and energy 
transport. If included, these effects would define the width of 
the shock structure. Here it is assumed that the length scales 
on which these processes are important are much smaller than 
the relaxation scales which define compaction zone structure. 

As mentioned by a reviewer, compaction wave phenomena 
predicted here have analogies in gas dynamics. As described 
by Becker and Bohme (1969), gas dynamic models which in-
clude thermodynamic relaxation effects predict a dispersed 
wave to result from the motion of a piston into a cylinder of 
gas. Steady solutions with and without discontinuous jumps 
are identified. These solutions have features which are similar 
to those predicted by our compaction wave model. 

Here we comment on the differences and similarities of the 
original Baer study and the present study. We have relaxed 
Baer's incompressibility assumption and assume a fully com-
pressible solid. We give a complete characterization of com-
paction wave structure as a function of piston speed including 
an analysis of the supersonic case. With our analysis many 
new results are obtained. We obtain a unique algebraic 
equilibrium condition for a generic static pore collapse func-
tion. As does Baer, we demonstrate that the problem of deter-
mining compaction wave structure can be reduced to solving 
one ordinary differential equation for volume fraction. We 
show that other thermodynamic quantities (pressure, density, 
etc.) are algebraic functions of volume fraction. An analytic 
solution in the strong shock limit is given. 

Compaction Wave Model 
We write two-phase continuum mixture equations to 

describe the motion of a mixture of solid particles and gas. 
The model, discussed in more detail by Powers, Stewart, and 
Krier (1987), describes two-phase flow with interphase mass, 
momentum, and energy transport. A density, Pj; pressure, Pj; 
energy, ej; temperature, T;; velocity, Uj; and volume fraction, 
I/Ij, is defined for each phase (for the gas; = 1, for the solid 
; = 2). We define the volume fraction as the ratio of the volume 
of a constituent to the total volume. It is assumed that at each 
point in space both phases simultaneously exist; each phase 
may possess a distinct pressure, velocity, temperature, etc. For 
each phase mass, momentum, and energy evolution equations 
are written. A thermal and caloric state relation is assumed for 
each phase. To close the system, a compaction equation 
similar to that of Baer and Nunziato is utilized. The compac-
tion equation models the time-dependent pore collapse of a 
porous matrix and is based on the dynamic pore collapse 
theory of Carroll and Holt (1972). Details about the rationale 
for the model are given by Baer and Nunziato and Gokhale 
and Krier (1982). Compaction work is assumed to be 
negligible. 

Unsteady Model. The unsteady two-phase equations are 
a a at (Pjl/l/) + ax (pjl/ljUj) =A j (1) 

a a 2 at (Pjl/ljUj ) + ax (Pjl/l j + Pjl/ljUj) = B j (2) 

a 2 a 2 at (pjl/lj[e,+u;l2))+ ax (Pjl/ljuj[ej+u j12+P/p;])=Cj (3) 

01/12 +u 01/12 = 1/111/12 (P -P -/(1/1» (4) at 2 ax ILc 2 1 2 
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Pj=Pj(Pj, Tj ) 

ej =ej(Pj, Pj} 

(5) 

(6) 

(7) 

Equations (1), (2), and (3) describe the evolution of mass, 
momentum, and energy, respectively, of each phase. Inter-
phase transport is represented in these equations by the terms 
A j , B j , and C j , which are assumed to be algebraic functions of 
Pi' Uj, Pj, etc. These terms are specified such that the follow-
ing conditions hold: 

2 2 

EAi=O, EBj=O, (8) 
j=1 ;=1 j=1 

This insures that the mixture equations obtained by adding the 
constituent mass, momentum, and energy equations are 
conservative. 

For each phase we define an initial temperature, density, 
velocity, and volume fraction. The subscript 0 is taken to 
represent an initial condition. 

(9) 

Other variables are determined by the algebraic relations (5), 
(6), and (7). 

Equation (4) is the compaction equation. A similar model 
equation has been used by Butcher, Carroll, and Holt (1974) 
to describe time-dependent (dynamic) pore collapse in porous 
aluminum. The parameter ILc is defined as compaction viscosi-
ty, not to be confused with the viscosity associated with 
momentum diffusion. The compaction viscosity defines the 
only length scale in this problem. The existence of such a 
parameter is still a modeling assumption and its value has not 
been measured. There is, however, a theoretical justification 
for the dynamic pore collapse model. It has been shown (Baer 
and Nunziato) that when dynamic compaction is incorporated 
into two-phase model equations, the equations are hyperbolic. 
We require the initial value problem to be hyperbolic in order 
to insure a stable solution. 

In the compaction equation (4) / represents the in-
tragranular stress in the porous medium. It is assumed to be a 
function of the volume fraction. Baer has estimated / from 
Elban and Chiarito's (1986) empirical quasi-static data ob-
tained by measuring the static pressure necessary to compact a 
porous media to a given volume fraction. Carroll and Holt 
have suggested an analytical form for / for three regimes of 
pore collapse, an elastic phase, an elastic-plastic phase, and a 
plastic phase. In this work we will model/with an equation 
similar to Carroll and Holt's plastic phase equation. Here we 
make two a prior; assumptions about/. First, we assume/is a 
monotonically increasing function of volume fraction so that 
an increasing hydrostatic stress is necessary to balance the in-
creased intragranular stress which arises due to an increasing 
solid volume fraction. Second, we assume that at the initial 
state/must equal the difference of the solid and gas pressures 
so that the system is initially in equilibrium. Our results show 
that with these assumptions, compaction wave phenomena are 
relatively insensitive to the particular functional form of /. 

Equations (5) and (6) are state relations for each phase. 
Equation (7) arises from the definition of volume fraction. It 
states that all volume is occupied by either solid or gas. Using 
standard techniques it can be shown that these equations are 
hyperbolic; thus, initial value problems are well posed. The 
characteristic wave speeds are UI' U2' UI ±c1, and U2 ± C2' 
where Cj represents the sound speed of phase i. 

Dimensionless Steady Model. To study compaction waves 
in the context of this model, we make the following assump-
tions: (1) a steady wave travelling at speed D exists, (2) gas 
phase equations may be neglected, (3) interphase transport 
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terms may be neglected, and (4) the solid phase is described by 
a Tait equation of state. As a result of Assumption I, equa-
tions (1) through (4) may be transformed to ordinary differen-
tial equations under the Galilean transformation =x-Dt, 
v=u-D. By examining the dimensionless form of equations 
(1) through (7), it can be shown that in the limit as the ratio of 
initial gas density to initial solid density goes to zero, that we 
are justified in neglecting gas phase equations and interphase 
transport. To prove this contention, one can integrate the 
steady mixture mass, momentum, and energy equations 
formed by adding the component equations to form algebraic 
mixture equations. By making these equations dimensionless 
(as shown by Powers, Stewart, and Krier), it is seen that all gas 
phase quantities are multiplied by the density ratio PIOI P20. As 
long as dimensionless gas phase properties are less than 
O(P201 PIO), we are justified in neglecting the effect of the gas 
phase. 

As the gas phase is neglected, the subscripts 1 and 2 are 
discarded. All variables are understood to represent solid 
phase variables. The caloric Tait equation (Bdzil et aI., 1981) 
for the solid is 

P+POS e=----'--(-y - I)p 
(to) 

Here 'Y and s are parameters that define the Tait state equa-
tion. The value of 'Y is chosen to match shock Hugoniot data 
(Marsh, 1980). It is analogous to the specific heat ratio for an 
ideal equation of state. We define s as the nonideal solid 
parameter. In this study we view s as an adjustable parameter 
which allows us to vary the equation of state in a simple way in 
order to show how the results are sensitive to nonideal state ef-
fects. When s = 0, the state equation is an ideal state equation. 
For this study a value of s was chosen to match the compac-
tion wave data of Sandusky and Liddiard. 

To determine the ambient solid sound speed, an important 
term in this analysis, it is necessary to specify a thermal equa-
tion of state. By assuming a constant specific heat at constant 
value cv , a thermal equation of state consistent with equation 
(10) can be derived: 

(11) 

Based on equations (to) and (11) an equation for the solid 
sound speed c is easily derived by using the thermodynamic 
identity Td-,,=de-Plp2dp, where 11 is the entropy. 

oP I c2 =-- ='Y('Y-1)cvT op (12) 

To simplify the analysis, dimensionless variables are 
denoted by an asterisk subscript and are defined as follows 

P.=p/Po, v.=vID, e.=eIDl, T.=cvTIDl, 

p.=PI(PoDl), 
With this choice of dimensionless variables four dimensionless 
parameters arise. 

'Y = Tait Solid Parameter, ;. =u=Nonideal Solid 
'Y Parameter 

'II" = initial pressure, 

</>0 = initial volume fraction 

For materials of interest </>0 and 'Y are of order 1. Interesting 
limiting cases can be studied when s-O, corresponding to the 
strong shock or weak nonideal effect limit, or when '11"-0, cor-
responding to the strong shock limit. 

With the assumptions made, we can write steady dimen-
sionless equations to describe the compaction of an inert solid 
porous material as follows: 
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d</> </>(1-</» (P. _j.(</») 
v. 

p. +'Yu 
('Y- 1)P. 

Initial conditions are specified as 

p.=I, </>=</>0' v.=-I, p.='II". 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

Equations (13)-(17) are equivalent to Baer's steady model 
except a term Baer calls "compaction work" is not included 
and a simpler state equation is used. Equations (13), (14), and 
(15) may be integrated subject to initial conditions (18) 
resulting in the following set of equations: 

d</> = </>(1-</» (P._j.(</>)) 
v. 

P.</>v.= -</>o 

p.</> +P.</>V; = </>0('11" + 1) 

p.</>v.(e. + v;I2+P.lp.)= +112+'11") 

p. +'Yu 
('Y- 1)P. 

(19) 

(20) 

(21) 

(22) 

(23) 

From equations (20) through (23), equations for pressure 
and velocity as functions of volume fraction can be written. 
Equation (23) is used to eliminate energy from equation (22). 
Velocity is eliminated from equations (21) and (22) by using 
equation (20). Then density is eliminated from equation (22) 
by using equation (21). What remains is a quadratic equation 
involving only pressure and volume fraction. It is possible to 
solve this equation for pressure explicitly in terms of volume 
fraction. The solution is 

p. </>0 ('Yu</> _ I _ '11") 
</>(-y+ 1) </>0 • 

[-1' 
The solution corresponding to the positive branch is the 

physically relevant one. The negative branch is associated with 
negative pressure. Equations (20) and (21) may be 
simultaneously solved for velocity as a function of pressure 
and volume fraction. The velocity is given by 

p.</>-</>o(1+'II") v.=------
</>0 

(25) 

By using equation (24) to substitute for pressure in equation 
(25), velocity is available as a function of volume fraction 
alone. The mass equation (20) can be used to give density as a 
function of volume fraction and then the state equation (17) 
can be used to give energy as a function of volume fraction. 

MARCH 1989, Vol. 56/17 



Thus all variables in the compaction equation (19) can be ex-
pressed as functions of volume fraction; the compaction wave 
problem is reduced to solving one ordinary differential equa-
tion (19) for volume fraction subject to the condition I/> = 1/>0 at 
t=O. 

Next we describe the technique for determining wave speed 
as a function of piston velocity. This calculation is algebraic 
and can be made without regard to structure. The solution is 
parameterized by the wave velocity through the definitions of 
11' and 11. Instead of using a piston velocity as an input condi-
tion. it is easier to consider the wave speed to be known and 
from that wave speed calculate a piston velocity. By assuming 
static pressure equilibrium end state in equation (19) 
(P. (41) =/.(41». it is possible to determine the equilibrium 
volume fraction and thus. from equations (24) and (25). the 
final velocity v •. The piston velocity (up) is found by trans-
forming the final velocity to the lab frame by using the 
transformation up =D(v. + 1). 

Pressure equilibrium end states are found when a volume 
fraction is found such that the pressure given by equation (24) 
matches the intragranular stress predicted by f. In the initial 
state, equation (24) predicts a pressure of 11', the dimensionless 
initial pressure. But assumption/ also yields a value of 11' in the 
initial state so that the undisturbed material is stationary. In 
Fig. 1, dimensional pressure in HMX is plotted as a function 
of volume fraction from equation (24) for a series of wave 
speeds and an initial volume fraction of 0.73. Parameters used 
to model HMX are listed in Table l. (We use cV ' /Le. and Po of 
Baer and Nunziato and estimate the parameters l' and s from 
shock and compaction data.) All curves pass through the point 
of initial pressure and volume fraction. 

Table 1 HMX Material Properties and Initial Conditions 

Parameter Description 
'Y Tait Solid Parameter 

Cu Constant Volume Specific Heat 
s Nonideal Solid Parameter 

To Initial Temperature 
Po Initial Density 
/Le Compaction Viscosity 

8.0xl09 

6.0xl09 

4.0xlO 9 

'2 
2.0xlO 9 

0.0 

2.0xl09 

4.0xlO9 

- 6.0xlO9 

8.0xlO9 

0.3 0.4 

Value 
5 

1500 J/(kg K) 
8.976 x 106 m2 /s2 

300 K 
1900 kg/m3 

1000 kg/(ms) 

0= 500 m/s 

0.5 

The curve on Fig. 1 for the ambient sonic wave speed 
(D = 3000 ml s) has a special property whose importance will 
be apparent in the following paragraph. For this curve a 
volume fraction minimum exists at the initial volume value. It 
can be proven for a sonic wave speed. that the discriminant in 
equation (24) is identically zero for 1/>=1/>0 and D='Y(-y-l) 
cuTo (the ambient solid sonic wave speed). 

The positive pressure branch of equation (24) is a double-
valued function of volume fraction for wave velocities that ex-
ceed the ambient solid sound speed and single-valued for wave 
velocities less than or equal to the ambient solid sound speed. 
For subsonic wave speeds, small increases from the initial 
volume fraction cause small positive perturbations in pressure. 
For supersonic wave speeds a positive increase of the initial 
volume fraction is only acceptable if the pressure jumps 
discontinuously to a shocked value of the upper portion of the 
double-valued p. - I/> curve. Because the governing equations 
are hyperbolic, these shocks jump are admissible. From equa-
tion (19) the shock jump condition for volume fraction is 

= 0 (26) 

where "0" denotes the initial state and "s" the shock state. 
Thus the shock volume fraction is always equal to the initial 
volume fraction. 

From equations (24) and (25) the shock pressure and parti-
cle velocity can be determined. The shocked values are in-
dependent of the initial solid volume fraction. 

p. 
2-(1/"+11) (1'-1) (27) -11 

1'+1 

v = 
(-y-l)+2,),(1I'+11) 

(28) s ,),+1 
The combination of parameters 11' + a is independent of the 
nonideal solid parameter s. So from equations (27) and (28) it 
is deduced that nonideal effects lower the shock pressure by a 
constant, 11, and do not affect the shock particle velocity. 

Based on the implications of equation (24). the structure 
analysis is thus conveniently split in two classes, subsonic and 
supersonic. As wave speed increases from subsonic values, the 
initial pressure at the wave front is the ambient pressure until 

0.6 0.7 

,,"S lsO"ic) 
-----; 

--

0.8 

P '" _---j 

D",2ooo nVs 

O.g 1.0 

Volume Fraction 
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Fig. 1 Pressure versus volume fraction from conservation and state 
equations for subsonic. sonic, and supersonic wave speeds 
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the compaction wave speed is sonic. For wave speed greater 
than the ambient solid sound speed the initial pressure jumps 
are dictated by equation (27). A plot of the leading pressure 
versus compaction wave speed is shown in Fig. 2. 

As an aside. we note that a criterion for a solid equation of 
state is that the candidate equation along with the Rankine-
Hugoniot jump conditions be able to match experimental 

'2 
b 

10 9 ... .. = rIl 
rIl 

10 8 

." = ... 
== 10 7 ... .. = 

10 6 
a 1000 2000 3000 4000 5000 

D (m/s) 
Fig. 2 Wave head pressure versus wave speed 

5500 
Model Predictions 

5000 

4500 

i 4000 Data from Marsh iii 

3500 

3000 
a 200 400 600 800 1000 1200 

Piston Velocity (mls) 

FIg.3 Predictions and observations of shock wave speed 

piston impact data. For voidless HMX (r/J = 1) observations of 
shock wave speed as a function of piston velocity are reported 
by Marsh (1980). By rewriting equation (28) in dimensional 
form, we solve for D as a function of piston velocity. 

(29) 

From equation (12), the term 'Y(-y-l)cv To is the square of the 
ambient sound speed for the nonideal solid. In a result 
familiar from gas dynamics, it can be deduced from equation 
(29) that the minimum steady shock wave speed admitted in 
response to a piston boundary condition is the ambient sonic 
speed. For values of 'Y. cv• and To listed in Table I, we plot 
shock wave speed D as a function of piston velocity up and 
data from Marsh in Fig 3. We fixed 'Y such that there is agree-
ment between the data and the model predictions. In the range 
of piston velocities shown, equation (29) approximates a linear 
D versus up relation used by other modelers to match this 
data. 

Subsonic Compaction Waves 
Subsonic End States. To study subsonic compaction 

waves admitted by equation (19), we choose a form for f.: 

3e+8 

2e+8 

le+8 ... 

0e+0 
0.6 

Elban and Chiarito's 
Curve Fit for HMX-II 

64.6%TMD 

0.7 0.8 

ell 

Equation (30) 

0.9 1.0 

Fig. 4 Comparison of Elban's static pore collapse data with equation 
(30) 

4.0xl08 

-
Q.I 

'" = 

3.0xl0 B 

2.0xl08 

1.0xl08 

0.0 
0.70 

f 

D= 200 m/s 
D= 100 m/S 

0.75 0.80 0.85 0.90 0.95 

Volume Fraction 
FIg. 5 Pressure versus volume fraction from consenratlon and state 
equations for tubHnlc wave apeacls and static pore collapse function, f 

/ 

/ 

D=3OOm/S 

1.00 
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73'11.TMDHMX 

1 600 Model Predictions 
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400 
Sandusky'. Data 
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0 
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Fig, 6 Compaction wave speed versus piston velocity for subsonic 
compaction 
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73'70 TMDHMX • • 

o!! 1906 
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PIston Velocity (mis) 

Fig. 7 Final density versus piston velocity for subsonic compaction 

1.1 Model Predictions 

i 1.0 

0.9 

73'70 TMD HMX 

• 

1 0.8 
Sandusky's Data 

ti: 

0.7 
0 100 200 300 400 

Piston Velocity (mis) 

Fig. 8 Final vOlume fraction versus piston velocity for subsonic 
compaction 

In [_1 ] 
l-cp 

(30) 
In [_1_] 

1- CPo 
This function satisfes the requirements described earlier, 
namely, it is a monotonically increasing function of volume 
fraction and is constructed such that the system is in 
equilibrium in the initial state. It has the same form as the 
plastic phase static pore collapse relation given by Carroll and 
Holt, It is not the Carroll and Holt relation as the leading 
coefficent in the Carroll and Holt relation is the yield stress of 
the solid. In equation (30) the leading coefficient is a function 
of initial volume fraction. Predictions of equation (30) ap-
proximately match the experimental results of Elban and 
Chiarito. Figure 4 compares a curve fit of Elban and 
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5e+8 
73'70 TMD HMX 

4e+8 

3e+8 .. .... '---- Model Predictions .... 
:3 

2e+8 

't:l 

10+8 

0e+0 
0 100 200 300 400 

Piston Velocity (mls) 

Fig. 9 Pressure versus piston velocity for subsonic compaction 
50+8 

o 100 200 300 400 
Piston Velocity (mls) 

Fig. 10 Mixture pressure versus piston velocity for subsonic 
compaction 

Chiarito's data for HMX with the approximation given by 
equation (30). 

To locate an end state we use equations (24) and (30) to set 
P.(cp)=F.(cp) and solve for cp. For 73 percent theoretical 
maximum density (TMD) HMX (volume fraction=0.73) and 
a variety of subsonic wave speeds, curves of pressure versus 
volume fraction from equations (24) and (30) are plotted in 
Fig. 5. As wave speed increases, the final volume fraction in-
creases. For wave speeds above 600 mls nearly complete com-
paction is predicted. For wave speeds of about 200 mls or 
lower, no steady compaction wave is predicted. This is solely a 
consequence of the assumed form of f. The form of f chosen 
crosses through the initial point with a positive slope and fails 
to intersect the pressure-volume fraction curves for low wave 
speeds. 

For 73 percent TMD HMX Figs. 6 through 10 shows plots 
of compaction wave speed, final density, final volume frac-
tion, final pressure, and final mixture pressure (mixture 
pressure = pressure • volume fraction) versus piston velocity. 
Also shown are the observations of Sandusky and Liddiard 
and Sandusky and Bemecker of wave speed and final volume 
fraction and their predictions of pressure. The relatively small 
density changes verify that Baer's incompressibility assump-
tion is a good approximation. Figures II through 13 show 
predictions of compaction wave speed, final volume fraction, 
and final mixture pressure as a function of initial volume frac-
tion for a constant piston velocity of 100 mls along with San-
dusky's predictions as reported by Kooker (1987). 

Equation (19) has been numerically integrated to detennine 
the structure of the subsonic compaction zone. In the 
numerical integrations we use pressure, velocity, andfas given 
by equations (24), (25), and (30), respectively. The integra-
tions were performed on the University of Illinois at Urbana-
Champaign's Cyber 175 computer using the IMSL routine 
DVERK. A step size was chosen such that approximately fifty 
points described the compaction zone. Negligible changes 
results from using more points. The integration was per-
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Fig. 11 Compaction wave speed versus Initial volume fraction 
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formed starting at = 0 and integrating towards - - 00. 
To initiate the integration, a small positive perturbation of 
volume fraction was introduced which, in this case, causes a 
small positive perturbation in pressure. 

Figures 14, 15, and 16 show the particle velocity, volume 
fraction, and pressure in the compaction zone for a subsonic 
compaction wave. Here the piston velocity is 100 mls and the 
initial volume fraction is 0.73. The compaction wave speed is 
404.63 m/s. For an assumed compaction viscosity of lOoo 
kg/(ms) a compaction wave thickness of 80 mm is predicted. 
Because compaction viscosity defines the only length scale in 
this problem, compaction viscosity only serves to define the 
compaction wave thickness. For the same value of compaction 
viscosity Baer reports a compaction wave thickness of 31.9 
mm. The discrepancy could be due to many effects including 
our definition of compaction zone length. It is important to 
note that the length is of the same order of magnitude. Final 
pressure, wave speed, and final volume fraction are un-
changed by the value chosen for compaction viscosity. By 
measuring a compaction wave thickness, an estimate could be 
made for the compaction viscosity. 
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Supersonic Compaction Waves 
End States. At 0.73 initial porosity for piston velocities 

greater than 884 mis, supersonic compaction waves are also 
admitted. Figures 17 through 21 show plots of compaction 
wave speed, final density, final volume fraction, final 
pressure, and final mixture pressure as a function of piston 
velocity. These curves encompass both the subsonic and super-
sonic compaction wave end states. It is seen that the end states 
are a continuous function of piston velocity. Also plotted on 
Fig. 17 is the shock wave speed as a function of piston veloci-
ty. For large wave speeds the predicted shock velocity con-
verges with the compaction wave velocity. It is demonstrated 
next that this is a consequence of nonideal effects having little 
importance at supersonic wave speeds. Furthermore, it will be 
demonstrated that the existence of subsonic compaction waves 
can be attributed solely to nonideal effects. 

Supersonic Structure. Equations (24) and (25) can be 
simplified in the limit as 0--0. The limit of small 0- cor-
responds either to negligible nonideal effects or large wave 
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speed. In the limit as u-O equations (24), (25), and (19) can be 
written as 

v. =v. 
dtP 1- tP -=-- (PstPo-tPf.(tP». 

Vs 

(31) 

(32) 

(33) 

Equation (32) holds that in this limit the velocity is constant 
in the relaxation zone and is equal to the shocked particle 
velocity. For s.O (that is for an ideal state relation) equation 
(32) is equivalent to equation (29); thus, for an ideal state rela-
tion the minimum compaction wave speed is the ambient sonic 
speed. Any subsonic compaction wave admitted by the model 
(equations (19)-(23» is a direct consequence of nonideal 
state effects. 

In the strong shock limit D-oo, and both 11" and u-O. 
Equation (33) has a simple solution in this limit, assuming f. 
to be sufficiently bounded. (Note that because of the 
logarithmic singularity at tP = 1, (30) does not meet this 
criterion. We do not, however, restrict ourselves to functions 
of this form.) In this limit equation (33) becomes 

dtP = _ 2tPo (1- tP) (34) 
"),-1 

whose solution is 

tP = 1-(1- tPo) exp (35) 

In terms of dimensional parameters, the compaction zone 
thickness found by equating the exponent in equation (35) to 
one and substituting the expression for piston velocity for 
wave speed is estimated as 
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L =o( 2('Y- 1)"c ) 
comp (1'+ l)POtPOUp • 

(36) 

The length is proportional to compaction viscosity and in-
versely proportional to piston velocity and the product of den-
sity and volume fraction. 

An example of supersonic structure arising from the impact 
of a 1000 mls piston is now given. Figures 22, 23, and 24 show 
the particle velocity, volume fraction, and pressure in the com-
paction zone for a supersonic compaction wave. Here, the in-
itial volume fraction is 0.73. The compaction wave speed is 
3353.67 mls and the wave thickness is 2.9 mm. It is seen that 
pressure and particle velocity undergo shock jumps. Volume 
fraction does not undergo a shock jump; however, its 
derivative does jump at the initial point. 

Compaction Zone Thickness 
It is possible to study the parametric dependence of compac-
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tion zone thickness. Given a constant compaction viscosity, 
our model can predict compaction zone thickness as a func-
tion of initial volume fraction and piston velocity. Should ex-
periments be devised to measure the compaction zone 
thickness, the experiments could provide a means to verify the 
theory. 

The thickness is defined as the distance at which the ratio of 
the difference of instantaneous volume fraction, and initial 
volume fraction, to the difference of final volume fraction, and 
initial volume fraction, is equal to 0.99. The final volume frac-
tion is available from the algebraic end state calculation. 
Figure 25 shows the compaction zone length versus initial 
volume fraction for a piston velocity of 100 mls and compac-
tion viscosity of 1000 kg/(ms). We do not understand why the 
peak in this curve occurs. We do note that for high initial 
volume fraction, the zone length decreases as initial volume 
fraction increases in accordance with the predictions of equa-
tion (36) for supersonic compaction. We speculate that for low 
porosity a different mechanism dictates the subsonic compac-
tion zone length than supersonic length. Figure 26 shows com-
paction zone length versus piston velocity for 73 percent TMD 
HMX and compaction viscosity of 1000 kg/(ms). The com-
paction zone length decreases with increasing piston velocity 
in accordance with the predictions of equation (36) for 
supersponic compaction. Figure 27 shows a compaction zone 
length as a function of compaction viscosity for a 100 mls 
piston velocity and 0.73 initial volume fraction. As no 
estimates are available for compaction viscosity, compaction 
zone lengths for a wide range of compaction viscosity have 
been plotted. Though plotted on a log scale, the relationship is 
truly linear with the compaction zone length equal to a con-
stant mutiplied by the compaction viscosity. 

Discussion 
The piston impact problem for a compressible porous solid 

has been solved in the context of a steady two-phase model 
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neglecting gas phase effects. With this model, it is possible to 
obtain an exact solution for the compaction wave speed, final 
porosity, and final pressure. The degree of accuracy of our 
predictions can be attributed to the ad hoc estimates for the 
nonideal solid parameter and the assumed form of the static 
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pore collapse function, /. We do not claim that our model is 
truly representative of porous HMX, only that its functional 
form is essentially correct. Within the framework of this 
model it is possible to understand the general features of a 
compaction wave. 

As summarized by Kooker (1987), many compaction wave 
models do not consider dynamic pore collapse; rather, they 
enforce static pore collapse (P=/) throughout the flow field. 
In the context of the zero gas density limit, such as assumption 
results in a compaction wave without structure. The pressure 
discontinuously adjusts to a static equilibrium value. 
However, it it not established whether two-phase models with 
static pore collapse are hyberbolic, a necessary condition if 
jumps are to be admitted. For two-phase models assuming 
pressure equilibrium between phases but not incorporating 
quasi-static compaction data, Lyczkowski et al. (1978) have 
identified regimes in which unsteady two-phase equations are 
not hyperbolic. 

There are many ways to extend this work. By including the 
effects of the gas phase, it should be possible to determine how 
the gas phase's presence modifies the compaction wave struc-
ture. By including the effect of particle size in/, it should be 
possible to model the experiments of Elban, et al. (1987) which 
show that the static pore collapse stress level is a function of 
both volume fraction and particle size. By considering the 
solid to be composed of particles, it may be possible to model 
the effect of particle breakup on the results when/is assumed 
to be a function of particle size. 
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