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Introduction

• Standard result from non-linear dynamics: small scale

phenomena can influence large scale phenomena and vice

versa.

• What are the risks of using reactive Euler instead of reactive

Navier-Stokes?

• Might there be risks in using numerical viscosity, LES, operator

splitting, or turbulence modeling, all of which filter small scale

physical dynamics?

• Do we really need WENO methods if the problem demands

resolved diffusive length scales?



Introduction-Continued

• It is often argued that viscous forces and diffusion are small

effects which do not affect detonation dynamics and thus can be

neglected.

• Tsuboi et al., (Comb. & Flame, 2005) report, even when using

micron grid sizes, that some structures cannot be resolved.

• Powers, (JPP, 2006) showed that two-dimensional detonation

patterns are grid-dependent for the reactive Euler equations, but

relax to a grid-independent structure for comparable

Navier-Stokes calculations.

• This suggests grid-dependent numerical viscosity may be

problematic.



Introduction-Continued

• Powers & Paolucci (AIAA J, 2005) studied the reaction length

scales of inviscid H2-O2 detonations and found the finest

length scales on the order of sub-microns to microns and the

largest on the order of centimeters for atmospheric ambient

pressure.

• This range of scales must be resolved to capture the dynamics.

• In a one-step kinetic model only a single chemical length scale

is induced compared to the multiple scales of detailed kinetics.

• By choosing a one-step model, the effect of the interplay

between chemistry and transport phenomena can more easily

be studied.



Review

• In the one-dimensional inviscid limit, one step models have

been studied extensively.

• Erpenbeck (Phys. Fluids, 1962) began the investigation into the

linear stability almost fifty years ago.

• Lee & Stewart (JFM, 1990) developed a normal mode

approach, using a shooting method to find unstable modes.

• Bourlioux et al. (SIAM JAM, 1991) studied the nonlinear

development of instabilities.



Review-Continued

• Kasimov & Stewart (Phys. Fluids, 2004) used a first order

shock-fitting technique to perform a numerical analysis.

• Ng et al. (Comb. Theory and Mod., 2005) developed a coarse

bifurcation diagram showing how the oscillatory behavior

became progressively more complex as activation energy

increased.

• Henrick et al. (J. Comp. Phys., 2006) developed a more detailed

bifurcation diagram using a fifth order mapped WENO method

accompanied with shock-fitting.



One-Dimensional Unsteady Compressible Reactive
Navier-Stokes Equations
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Equations are transformed to a steady moving reference frame.



Constitutive Relations
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s , k = 10−1 W
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m2
, so for ρo = 1 kg

m3
,

Le = Sc = Pr = 1.



Case Examined
Let us examine this one-step kinetic model with:

• a fixed reaction length, L1/2 = 10−6 m, which is similar to the

finest length scale of H2-O2 detonation.

• an ambient pressure, Po = 101325 Pa, ambient density,

ρo = 1 kg/m3, heat release q = 5066250 m2/s2, and

γ = 6/5.

• a fixed the diffusion length, Lµ = 10−7 m; mass, momentum,

and energy diffusing at the same rate.

• a range of activation energies (25 ≤ E ≤ 32) and thus a

range for the collision frequency factor

(1.145 × 1010 1/s ≤ a ≤ 3.54 × 1010 1/s).



Numerical Method

• Finite difference, uniform grid
(

∆x = 2.50 × 10−8m,N = 8001, L = 0.2 mm
)

.

• Computation time = 192 hours for 10 µs on an AMD 2.4 GHz

with 512 kB cache.

• A point-wise method of lines aproach was used.

• Advective terms were calculated using a combination of fifth

order WENO and Lax-Friedrichs.

• Sixth order central differences were used for the diffusive terms.

• Temporal integration was accomplished using a third order

Runge-Kutta scheme.



Method
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• Initialized with inviscid

ZND solution.

• Moving frame travels at

the CJ velocity.

• Integrated in time for

long time behavior.



Effect of Diffusion on Limit Cycle Behavior

6

6
E=26.64

E=27.64

• For the inviscid case, the sta-

bility limit was found at E0 =

25.26 (Lee & Stewart, Hen-

rick et al.)

• In the viscous case E =

26.64 is still stable; however,

above E0 ≈ 27.14 a period-

1 limit cycle can be realized.



Period-Doubling Phenomena: Viscous Case
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E =29.60 • As in the inviscid limit, the

viscous case goes through a

period-doubling phase.

• For the inviscid case the

period-doubling began at

E1 ≈ 27.2.

• In the viscous case the begin-

ning of this period doubling is

delayed to E1 ≈ 29.32.



Effect of Diffusion on Transition to Chaos

• In the inviscid limit, the point where bifurcation points

accumulate is found to be E∞ ≈ 27.8324.

• For the viscous case, Lµ/L1/2 = 1/10, the accumulation

point is delayed until E∞ ≈ 30.0327.

• For E > 30.0327, a region exists with many relative maxima

in the detonation pressure; it is likely the system is in the chaotic

regime.



Approximations to Feigenbaum’s Constant

δ∞ = lim
n→∞

δn = lim
n→∞

En − En−1

En+1 − En

Feigenbaum predicted δ∞ ≈ 4.669201.

Inviscid Inviscid Viscous Viscous

n En δn En δn

0 25.2650 - 27.14 -

1 27.1875 3.86 29.32 3.89

2 27.6850 4.26 29.88 4.67

3 27.8017 4.66 30.00 -

4 27.82675 - - -



Chaos and Order: Viscous Case

• The period-doubling behavior and transition to chaos predicted in the

inviscid limit is also observed in the diffusive case.

• Within this chaotic region, there exist pockets of order with periods of 5,

6, and 3 present.
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Bifurcation Diagram
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WENO5M Shock-Capturing: Inviscid Case

• For an inviscid model, at lower activation energies shock-capturing

compares well with shock-fitting with similar resolutions.

• At E = 26.64, shock-fitting predicts a period-1 oscillating detonation

(Pmax = 5.48 MPa).

• Shock-capturing using N1/2 = 20, yields a relative difference of

2.1%; using N1/2 = 40 this relative difference is reduced to 0.34%
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WENO5M Shock-Capturing: Inviscid Case

20 40 80 160
4.5

5

5.5

6

6.5

7

7.5

P
m

a
x
(M

P
a

)

N
1/2

• At a higher activation energy,

(E = 27.82), shock-fitting predicts

a period-8 detonation, whereas

shock-capturing using N1/2 = 40

predicts a period-4 detonation. To

reconcile this difference, the resolu-

tion of the shock-capturing technique

must be increased to N1/2 ≈ 160.

• Numerical diffusion is playing an im-

portant role in determining the behav-

ior of the system. Let’s add physical

diffusion and see how that affects the

behavior of the system.



WENO5M vs. Central Differencing: Viscous Case
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• Increase to E = 30.02, where a

period-8 viscous detonation is real-

ized.

• Study viscous WENO5M vs. generic

6th order central differencing.

• Results are essentially identical.

• The values of the detonation pres-

sures match minus a time-shift which

orginates at the initialization.



WENO5M vs. Central Differencing: Viscous Case
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Effect of Diminshing Viscosity (E = 27.64)

a) High Viscosity

0 0.5 1 1.5 2
3.5

4

4.5

5

5.5

6

6.5

t (µs)

P
 (

M
P

a
)

0 0.5 1 1.5 2
3.5

4

4.5

5

5.5

6

6.5

t (µs)

P
 (

M
P

a
)

0 0.5 1 1.5 2
3.5

4

4.5

5

5.5

6

6.5

t (µs)

P
 (

M
P

a
)

b) Intermediate Viscosity

c) Low Viscosity

• The system undergoes

transition from a stable

detonation to a period-1

limit cycle, to a period-2

limit cycle.

• The amplitude of pulsa-

tions increases.

• The frequency de-

creases.



Conclusions

• When physical diffusion is captured with an appropriately fine

grid, a central difference of advective terms works as well as a

WENO method in capturing the detonation dynamics.

• Dynamics of one-dimensional detonations are influenced

significantly by mass, momentum, energy diffusion in the region

of instability.

• In general, the effect of diffusion is stabilizing.

• Bifurcation and transition to chaos show similarities to the

logistic map.



Conclusions-Continued

• For physically motivated reaction and diffusion length scales not

unlike those for H2-air detonations, the addition of diffusion

delays the onset of instability.

• As physical diffusion is reduced, the behavior of the system

tends towards the inviscid limit.

• If the dynamics of marginally stable or unstable detonations are

to be captured, physical diffusion needs to be included and

dominate numerical diffusion or an LES filter.

• Results will likely extend to detailed kinetic systems.

• Detonation cell pattern formation will also likely be influenced by

the magnitude of the physical diffusion.


