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Model Features 

-Representative of a larger class of two-phase models 

-Each phase obeys a mass, momentum, and energy evolution equation 

-Mixture mass, momentum, and energy conserved 

-Volume fraction ( <j> = phase volume I total volume) utilized 

-PDE's are hyperbolic 

-Characteristic wave speeds: u1, u2, u1 + c1, u2 + c2 

-Dynamic compaction equation employed for closure 

-Number of particles conserved 

-Compressible spherical reactive particles 

-Simplified drag and convective heat transfer relations 

-Virial gas equation of state for inert gas 

-Tait equation of state for reactive particles 

-Viscosity or heat conduction in gas not considered 

-Viscosity or heat conduction in solid not considered 

-Radiation not considered 



Two-Phase Model Equations 

-ordinary differential equations in steady wave frame 

-~ = distance in steady wave frame ~ = ~ -Dt 

-D = steady wave speed 

-with additional algebraic equations, the model can be represented by four 
differential equations in four unknowns 

particle mass 

de2 dv2 <1>1 [T -T J p v -+P - = -h- 2 1, 
2 2 dl; 2 dl; r 1/3 

particle energy 

dynamic pore collapse 



Conservation Relations 

-obtained by integrating conservative differential equations 

-initial conditions specify integration constants 

1) Mixture mass, momentum, and energy: 

p1<j>1v 1[ e1+v~/2+P /P1] + p2q,2vJ e2+v}2+P /P2] = -Pa1::{ ea+D
2
/2+P /Pal 

mixture energy 

- "a" denotes apparent or bulk initial property 

Pa = P10<l>10 + P20<l>20' 

pa = P10<l>10 + P20<l>20· 

2) Particle number equation: 

apparent initial density 

apparent initial pressure 

apparent initial energy 



Gas and Particle State Equations 
1) Gas: 

p = p RT ( 1 + bp ) 
1 1 1 1 ' 

gas thermal 

el = cvlTl" gas caloric 

2) Particle: 

particle thermal 

particle caloric 

Saturation condition: 

cj> + cj> = 1. 
I 2 



Initial Conditions 

-Eight independent initial conditions specified for original eight differential 
equations 

-Temperature and density for each phase 

-Velocity for each phase 

-Initial particle radius 

-Initial volume fraction 

-Specified so that initial state is an equilibrium state 

-Remaining initial conditions fixed by state equations and saturation 

condition: 



Dimensional Input Parameters 

a [m/ (s Pa)] 2.90 x 10-9 

Pio [kg /m3] 1.00 x 100 

m 1.00 x 100 

~ [kg I (s m2)] 1.00 x 104 

P20 [kg/m3] 1.90 x 103 

h [JI (s K m8f3)] 1.00 x 107 

Cvl [JI (kg K)] 2.40 x 103 

Cv2 [JI (kg K)] 1.50 x 103 
R [JI (kg K)] 8.50 x 102 

O' [(m I s)2] 7.20 x 106 

q [JI kg] 5.84 x 106 

To [m] 1.00 x 10-4 

b [m3 I kg] 1.10 x lQ-3 

Y2 5.00 x 10° 

µc [kg I (ms)] 1.25 x 102 

To [K] 3.00 x 102 

Tig [K] 3.00 x 102+ 



Two-Phase Deflagration End States 

-arbitrarily assume complete reaction 

-mixture equations define two-phase Rayleigh line and Hugoniot equations 

Rayleigh line 

Hugoniot 

-In general, two physical deflagration solutions for a given wave speed D 

1) Low pressure, supersonic, strong solution 
2) High pressure, weak, subsonic solution 

-Maximum deflagration wave speed at CJ condition, sonic solution 
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Complete Reaction End State 

-assume exhaust pressure can be controlled 

-deflagration wave speed and all gas phase properties then known as 
functions of exhaust pressure 
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CJ Deflagration State 

-CJ state can be determined numerically 

-Simple analytic expression in two limits 

1) ideal gas b = 0 
2) PJ(Pa ea)~ 0 

2 e 
T - a 

CJ= -, 
'Y1 ("(1 + 1) cvl 

2 
e = e 

CJ - 'Y 1("(1 + 1) a' 

( 

2 ('Y1 - 1) e ) 

r + 1 a 
1 



Two-Phase Deflagration Structure 

-Ordinary differential equations integrated for D = 100 m/s 

-Arbitrarily assumed that no shocks exist in structure or no sonic points 

-With this assumption the end state is weak subsonic end state 

-exhaust pressure ,.., 400 MPa 

-Extreme deflagration exhaust conditions because some parameters 
arbitrarily chosen so that a numerically resolved structure could be presented 

-No two-phase steady detlagration structure going to complete 
reaction was found 
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Figure 7 Solid Volume Fraction Structure, <1>20 = 0.70, D = 100 m/s 
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Figure 8 Gas and Solid Lab Velocity Structure, <1>20 = 0.70, D = 100 m/s 
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Figure 9 Gas and Solid Pressure Structure, 4>20 = 0.70, D = 100 m/s 
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Figure 10 Gas and Solid Temperature Structure, 4>20 = 0.70, D = 100 m/s 
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Figure 11 Gas and Solid Mach Number Squared, <1>20 = 0.70, D = 100 m/s 
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Conclusions 

-Possible to predict gas phase deflagration end state and wave speed as 
function of exhaust pressure and initial conditions 

-For the region of parameter space studied, no steady two-phase deflagration 
structure exists 

-Processes that support detonation are not sufficient to support a two-phase 
deflagration 

-It may be necessary to include heat conduction and radiation to model two­
phase deflagrations 

-Combustion of granulated propellants could possible accelerate into steady, 
self-propagating two-phase detonation 


