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Model Features

-Representative of a larger class of two-phase models

-Each phase obeys a mass, momentum, and energy evolution equation
-Mixture mass, momentum, and energy conserved

-Volume fraction (¢ = phase volume / total volume) utilized

-PDE's are hyperbolic

-Characteristic wave speeds: uy, uy, u; f£cq,uytcy

-Dynamic compaction equation employed for closure
-Number of particles conserved

-Compressible spherical reactive particles

-Simplified drag and convective heat transfer relations

-Virial gas equation of state for inert gas

-Tait equation of state for reactive particles

-Viscosity or heat conduction in gas not considered
-Viscosity or heat conduction in solid not considered

-Radiation not considered



Two-Phase Model Equations

-ordinary differential equations in steady wave frame
- = distance in steady wave frame & = - Dt
-D = steady wave speed

-with additional algebraic equations, the model can be represented by four
differential equations in four unknowns
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Conservation Relations

-obtained by integrating conservative differential equations

-initial conditions specify integration constants

1) Mixture mass, momentum, and energy:

p1<]>lv1 + p2¢2v2 =-D P, mixture mass

2 2 2 5
plq)lv1 + qu)l + p2(1>2v2 + P2¢2 = paD + Pa, mixture momentum

2 2 5
p1¢1"l[°1+"1/2+P1/p1] £ p2¢2v2[ e2+v2/2+P2/p2] = -paD[ea+D /2+Pa/pa],

mixture energy

- "a" denotes apparent or bulk initial property

P, = p10¢1 ot p20¢20, apparent initial density
Pa = P1 0¢1 o7 P20¢20, apparent initial pressure

o = P1o®10°10* Pao®a0®20

a apparent initial energy
P10%10 * P2o®20

2) Particle number equation:




Gas and Particle State Equations
1) Gas:

_ 1 b)
P ‘leTl( TPy ).

By = cvlTl‘

2) Particle:
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Saturation condition:
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Initial Conditions

-Eight independent initial conditions specified for original eight differential
equations

-Temperature and density for each phase
-Velocity for each phase
-Initial particle radius

-Initial volume fraction
Py = Pyy 9 =0, vV, =-D, T, =T,

Py = Py v. =-D, T, =T T =T

-Specified so that initial state is an equilibrium state

-Remaining initial conditions fixed by state equations and saturation

condition:
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Pro p10RT0( Pro) e = c,1 Ty

P2o®
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Dimensional Input Parameters

2.90 x 10
1.00 x 100
1.00 x 100
1.00 x 10#
1.90 x 103
1.00 x 107
2.40 x 103
1.50 x 103
8.50 x 102
7.20 x 106
5.84 x 106
1.00 x 104
1.10 x 103
5.00 x 100
1.25 x 102
3.00 x 102
3.00 x 102+



Two-Phase Deflagration End States

-arbitrarily assume complete reaction

-mixture equations define two-phase Rayleigh line and Hugoniot equations

P, =P + pZDz( l/p, -1/ Pl), Rayleigh line
® +P)(1p, - 1p) c P
2= 1 2+ L -e. = 0. Hugoniot
2 Rp, (bp +1) *

-In general, two physical deflagration solutions for a given wave speed D

1) Low pressure, supersonic, strong solution
2) High pressure, weak, subsonic solution

-Maximum deflagration wave speed at CJ condition, sonic solution
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Complete Reaction End State

-assume exhaust pressure can be controlled

-deflagration wave speed and all gas phase properties then known as
functions of exhaust pressure
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CJ Deflagration State

-CJ state can be determined numerically
-Simple analytic expression in two limits

1)ideal gasb=0
2) P/(paca) =0

Par = 24y - 1)( paca)

T

in

Yl (‘Yl + 1) Vl

2
‘O =y, D

in

2(y,- 1)
=z = €
Vo =Y = y+1 2|



Two-Phase Deflagration Structure

-Ordinary differential equations integrated for D = 100 m/s
-Arbitrarily assumed that no shocks exist in structure or no sonic points
-With this assumption the end state is weak subsonic end state

-exhaust pressure ~ 400 MPa

-Extreme deflagration exhaust conditions because some parameters
arbitrarily chosen so that a numerically resolved structure could be presented

-No two-phase steady deflagration structure going to complete
reaction was found
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Figure 7 Solid Volume Fraction Structure, ¢59 = 0.70, D = 100 m/s
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Figure 8 Gas and Solid Lab Velocity Structure, ¢, = 0.70, D = 100 m/s
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Figure 9 Gas and Solid Pressure Structure, ¢ = 0.70, D = 100 m/s
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Figure 10 Gas and Solid Temperature Structure, ¢y = 0.70, D = 100 m/s
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Conclusions

-Possible to predict gas phase deflagration end state and wave speed as
function of exhaust pressure and initial conditions

-For the region of parameter space studied, no steady two-phase deflagration
structure exists

-Processes that support detonation are not sufficient to support a two-phase
deflagration

-It may be necessary to include heat conduction and radiation to model two-
phase deflagrations

-Combustion of granulated propellants could possible accelerate into steady,
self-propagating two-phase detonation



