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Abstract 

This paper considers the rigorous formulation of a two-phase reactive flow model to 
describe steady deflagrations in reactive granular propellants. It is thought that granular 
propellants have the capability to provide significant gas generation and thus increased thrust 
in a rocket engine. It has been hypothesized that the normal operation of such an engine 
would consist of a constant velocity deflagration wave propagating through a mixture of 
propellant grains and gas. To predict the features of such a wave, steady deflagrations in 
granulated solid propellants have been studied using an improved two-phase reactive flow 
model. The improved model uses a time-dependent pore collapse equation to guarantee the 
unsteady one-dimensional equations are hyperbolic, conserves mass, momentum, and energy 
for the mixture, conserves the total number of particles, can accommodate density changes in 
the particles, and is capable of predicting steady detonations. At the point of complete 
reaction, an equivalent two-phase Rayleigh line and Hugoniot, independent of the wave 
structure, can be identified. As for one-phase systems, a maximum deflagration wave speed 
analogous to the one-phase Chapman-Jouguet (CJ) deflagration wave speed is found. By 
assuming the end state gas pressure is known and the reaction is complete, it is possible to 
fix the deflagration wave speed and gas phase end state. In the steady state, the model 
equations reduce to four ordinary differential equations. With this model, which does not 
consider gas phase heat conduction or radiative heat transport, no acceptable steady 
deflagration wave structure has been found. Based on this result, we speculate that 
deflagrations in a granulated propellant are likely accelerate to a detonation if a sufficient 
length of material is available and if sufficient confinement is maintained. It might be useful 
to test this theoretical result experimentally. 
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Introduction 

It is believed that steady deflagration of granulated solid propellants can increase the 

combustion wave speed and thrust when compared to the steady deflagration of cast 

propellants. A sketch of a hypothesized steady deflagration structure in a granulated propellant 

enclosed in a rocket engine casing is shown in Figure 1. It is hypothesized the solid propellant 

completely combusts to form a gas at a high pressure (10-100 MPa), subsonic state. The high 

pressure gas can then be expanded through a converging-diverging nozzle to atmospheric 

conditions, producing a thrust force. 

It is generally thought that two-phase models have the ability to predict steady deflagrations 

in granulated propellants. Kuo, Summerfield and co-workers used two-phase theory to study 

steady deflagrations and unsteady flame front propagation in a series of papers in the mid 

1970's [1,2,3,4]. The study of Ref. 3, which predicted steady deflagration in a mixture of 

mobile reactive particles and inert gas, is most relevant to the current study. In Ref. 3, a two

phase model is presented, Rankine-Hugoniot jump conditions are derived to describe the two

phase deflagration gas phase end state, and ordinary differential equations are integrated 

numerically to define the steady reaction zone structure. More recently Drew [5] has predicted 

steady deflagrations with a similar two-phase model, which unlike that of Ref. 3 considers gas 

phase heat conduction. In his study, several limits are taken so that it is possible to find an 

exact solution for the deflagration structure. The deflagration wave speed determined in Ref. 3 

is dependent on the details of the gas phase conductive layer of the reaction zone structure. 

In this paper, we study steady deflagrations in granulated propellants with a new two-phase 

model and describe the formulation of the two-phase deflagration problem. The model, similar 

to those of Refs. 3 and 5, is described in detail in Ref. 6 and has been used to predict two-phase 

detonation reaction zone structure in Ref. 7. The same two-phase detonation model can in 

principle be used to describe steady deflagrations. The model treats solid and gas phases as 

distinct entities. In addition to usual thermodynamic variables, the volume fraction is introduced 
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as a property of each phase. Separate mass, momentum, energy, and state equations are written 

for each phase. The phases are coupled through terms known as phase interaction terms. 

These terms represent mass, momentum, and energy transfer from one phase to another. The 

model is constructed such that the mass, momentum, or energy lost by one phase is transferred 

entirely to the other phase so that mixture mass, momentum, and energy are conserved. 

The model of this study contains features which distinguish it from earlier two-phase 

deflagration studies. The model incorporates a dynamic pore collapse equation, first used by 

Baer and Nunziato in their studies of two-phase detonations [8]. The dynamic pore collapse 

equation is an evolutionary equation for volume fraction which holds that the volume fraction 

changes in response to differences in gas and solid stress states and chemical reaction. It is 

used in place of the algebraic equation relating gas and solid pressures used in Refs. 3 and 5. 

The algebraic equation holds that the gas and solid stresses equilibrate instantaneously. The 

dynamic pore collapse equation is controversial as there is no good experimental confirmation of 

its validity. Additional theoretical considerations suggest the equation's usefulness. Use of this 

equation guarantees the two-phase equations are hyperbolic, and thus well-posed for initial 

value problems. Also, as described in Refs. 6 and 7, the significance of the gas and solid 

sound speed and shock jumps is simplified when the dynamic compaction equation is used. 

Another distinguishing feature of this model is that it allows for a fully compressible solid. 

Although it is unlikely that solid compressibility effects are important in two-phase 

deflagrations, no significant complications are introduced by allowing the more general 

compressible solid. The gas phase equation of this study does not include heat conduction or 

radiation. 

In order to conserve energy of the mixture, the solid energy equation of Drew and this 

study differs significantly from that of Kuo and Summerfield. In this study and Ref. 5, a solid 

energy equation is written which mirrors the form of the gas energy equation. The energy 

equations are written such that the principle of mixture energy conservation is satisfied. In the 

model formulation it is assumed that many particles exist within an averaging volume so that it 
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is possible to define an average particle temperature. This approach avoids the complications of 

a detailed consideration of individual particle-gas interactions. Thus with this approach it is 

impossible to determine the variation of particle temperature with radius. It is important to 

know the particle surface temperature when determining ignition and heat transfer. Because of 

this Kuo and Summerfield write a solid energy equation which allows the temperature profile of 

individual particles to be determined. They allow for heat conduction within the solid spherical 

particles. Their equation does not, however, insure that mixture energy is conserved. At this 

point we see no clear way to simultaneously achieve the goals of conserving mixture energy and 

determining detailed particle temperature profiles. Thus in this study, we have sacrificed 

knowledge of the temperature profiles in favor of a more fundamental principle, conservation of 

mixture energy. 

The plan of this paper is as follows. A brief presentation is given of the steady two-phase 

model equations. Initial conditions for these equations are then discussed. Next the Rankine

Hugoniot deflagration jump conditions and Chapman-Jouguet (CJ) two-phase deflagration state 

is discussed. This discussion is similar to Powers, Stewart, and Krier's discussion of two

phase detonation end states [9] and Kuo and Summerfield's discussion of two-phase 

deflagration end states [3]. Unlike Ref. 3 the determination of deflagration gas phase end states 

and the initial conditions does not depend on the structure of the reaction zone. Finally, 

deflagration structure is considered. In this study no acceptable deflagration structure was 

found. In all cases considered, a singular point was reached in the structure. In the case 

presented here, the gas temperature approached absolute zero and gas density approached 

positive infinity at a point of incomplete reaction within the structure; thus, the structure is non

physical. 

In searching for a steady two-phase deflagration, a wide variety of parameter space was 

sampled. That is to say, parameters such as the heat transfer and drag coefficients, equation of 

state parameters, compaction viscosity, etc. were varied. Because of the large number of 

parameters in the problem, the parametric study performed was incomplete. Part of the 
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parameter space tested is appropriate for describing common propellants, while other parts do 

not describe known propellants. While in no case was a structure found, some cases proved 

easier to resolve numerically. In order to clearly demonstrate a fully resolved deflagration 

structure whose gas phase properties became singular at a point of incomplete reaction, it was 

necessary to arbitrarily choose numerical values for some parameters. In this study, the solid 

state parameter cr, the compaction viscosity ~ were chosen primarily so that a resolved structure 

could be presented. As a main purpose of this paper is to demonstrate the proper technique for 

this class of two-phase models, we believe there is value in using some numerical parameters 

which may be unrealistic if this allows the method to be more clearly illustrated. 

MODEL EQUATIONS AND INITIAL CONDIDONS 

The model equations are taken from Ref. 6. The solid mass, momentum, and energy 

equations are: 

(1) 

(2) 

de2 dv2 <1>1 [T -T ] 
p v -+P - = -h- 2 1. 

2 2 d~ 2 d~ r 1/3 
(3) 

In these equations, the subscripts "l" and "2" denote the gas and solid phase, respectively. The 

equations are written in the steady wave frame where ~ = x - Dt is a distance in the wave frame 

and Dis the steady wave speed. The velocity vis measured in the wave frame. Velocities in 

the lab frame,u, are given by u = v + D. The variable p represents the material density, that is 
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the mass of an individual phase divided by the volume occupied by that phase. The variable <l> 

represents the volume fraction of each phase, that is the volume of an individual phase divided 

by the total volume. Pressure is denoted by P, internal energy bye, temperature by T, and 

particle radius by r. The constants a. and m are empirical combustion model constants; ~ is an 

interphase drag constant, and h is an interphase heat transfer constant. The right sides of 

Equations (1), (2), and (3) are forcing functions representing interphase mass transfer, 

interphase drag, and interphase heat transfer, respectively. A Heaviside step function, H(x), 

appears in the mass transfer function to prevent mass transfer from occurring until the solid 

reaches a specified ignition temperature, Tig· 

The dynamic pore collapse equation is given by 

(4) 

Here µc is the compaction viscosity, a constant. No good experimental estimate of µc exists, 

and its value is a modeling assumption. 

Conservation of mixture mass, momentum, and energy are given by 

P1<l>1v1 + P2<1>2v2 = -D Pa' (5) 

2 2 2 
P1<1>1v1 +P1<1>1 +P2<1>2v2+P2<1>2 = paD +Pa' (6) 

P1<1>1v 1[ el+v~/2+P /P1] + P2<1>2vJ e2+vf2+P zf P2] = -Pa1{ ea+D2/2+P /Pa]. (7) 

Here the subscript "a" denotes an apparent mixture property. The constants Pa• Pa, and ea 

represent the initial mixture density, pressure, and energy, respectively. They are defined by 

the following equations: 
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P1o<l>1oe10+ P2o<l>2oe20 
e =--------
a P10<l>10 + P20<l>20 
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(8) 

(9) 

(10) 

Here the subscript "O" denotes the initial condition. Number conservation implies the following 

expression for particle radius: 

(11) 

The gas phase is described by a virial state equation. Expressions for the thermal and caloric 

state equations are 

p = p RT ( 1 + bp ) 
1 1 1 1 ' 

(12) 

el = cvtTr (13) 

Here R is the gas constant, b the virial coefficient, and Cvt the specific heat at constant volume. 

The solid phase is described by a Tait equation of state. The thermal and caloric state equations 

are given by 

( 
. ) p cr 

- - 1 20 P2- y2 C2PT2---, 
v 2 Y. 

2 

(14) 
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(15) 

Here Y2 and cr are parameters in the Tait equation which can be fixed by matching experimental 

shock and compaction data. The constants cv2 and q are the solid specific heat at constant 

volume and chemical energy respectively. The mixture is constrained to be saturated so that 

<I> + <I> = 1. 
1 2 

(16) 

Equations (1-7) and (11-16) constitute a complete set of thirteen differential-algebraic 

equations for the thirteen unknowns, Pi. P2• <l>i. <1>2. vi. v2, Pi. P2, ei, e2, Ti. T2, and r. In 

Ref. 7 it is shown how these equations can be written as four ordinary differential equations in 

four unknowns, p2, <1>2, v2, and P2. This is accomplished by using the algebraic relations (5-

7), (11-16) to write all remaining variables as functions of P2• <1>2. v2, and P2. 

We take as a modeling principle that in the undisturbed state, initial conditions for all 

variables are known, are consistent with the algebraic constraints, and are specified such that the 

undisturbed state is in equilibrium. At the initial state, one is allowed to specify eight initial 

conditions: the volume fraction of one phase, two thermodynamic variables for each phase 

(e.g. density and temperature), the velocity of each phase, and the initial particle radius. This is 

because in its original form the steady state is described by eight ordinary differential equations: 

two mass equations, two momentum equations, two energy equations, the dynamic pore 

collapse equation, and the number conservation equation. With a specified volume fraction, the 

saturation condition (16) fixes the remaining volume fraction. With a specified temperature and 

density for each phase, the state equations (12-15) _fix the internal energy and pressure of each 

phase. To insure the initial state is an equilibrium state, it is specified that the initial solid 

temperature is below the ignition temperature to prevent mass transfer, the initial solid and gas 
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velocities are equal to prevent drag, and the initial solid and gas temperatures are equal to 

prevent heat transfer. The compaction equation has been constructed such that for T < Tig• the 

initial state is an equilibrium state. Eight initial conditions for the original eight ordinary 

differential equations are given in Equations (17-18): 

(17) 

(18) 

The remaining initial conditions are specified such they are consistent with the state equations 

and saturation condition: 

(19) 

The initial conditions specified in Equations (17-19) are used in determining the integration 

constants in the integrated mixture and number conservation equations. Of the remaining four 

differential equations, which can be solved explicitly for the derivatives of P2• <1>2. v2, and P2 in 

terms of P2· <!>i, v2, and P2, the above initial conditions contain the appropriate initial values. 

The frozen gas and solid sound speeds, a, which are thermodynamically consistent with the 

state equations are specified by the following equations: 

(20) 
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(21) 

Numerical values for parameters for the parameters of these equations are listed in Table I. 

The origin of some the values is discussed in detail in Ref. 7. Some are based on independent 

experimental observation, though some parameters, such as gas phase state constants have been 

chosen to force the detonation predictions of the theory match experimental detonation 

observations. Other parameters, such as the heat transfer coefficient, drag coefficient, are not 

known under detonation conditions and were estimated in Ref. 7 such that one could predict a 

detonation structure. In this study the compaction viscosity µc and solid state parameter cr were 

estimated so that a deflagration structure could be exhibited. 

COMPLETE REACTION DEFLAGRATION GAS END STA TES 

It is assumed that the gas pressure at the end of the reaction zone can be controlled [3,5]. 

Here, it is shown how the deflagration wave speed and other end state properties are dependent 

on the gas pressure at the end of the reaction zone. 

If it is hypothesized that the complete reaction state ( <l>z = r = 0) is an equilibrium end state 

of the differential equations (1-4), then it is possible to use the mixture equations (5-7) to write 

two-phase equivalents to the Rayleigh line (22) and Hugoniot (23). 

(P + p I) (1/p - 1/p ) cvlp 1 
a 2 1 a + ------ e = 0. 

Rp (bp + 1) a 
1 1 

(22) 

(23) 

These equations are found by setting <l>z = 0 in the mixture equations. The mixture mass 

equation is used to eliminate v1 in the mixture momentum equation to form the two-phase 
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Rayleigh line equation (22). This equation is a line in P1, 1/p1 space with a negative slope 

proportional to the square of the wave speed. The two-phase Hugoniot (23) is found by using 

the gas state equations (12) and (13) to eliminate e1 in favor of P1 and p1 in the mixture energy 

equation. Then v 1 can be eliminated with the mixture mass equation, and D can be eliminated 

·with the Rayleigh line equation. What remains is an equation in terms of P1 and l/p 1 and 

independent of velocity or wave speed. 

The gas phase complete reaction end state is specified once a wave speed is chosen. The 

analysis is analogous to a one-phase end state analysis. For a given wave speed D, Equation 

(22) can be used to eliminate pressure in Equation (23) to form a cubic equation for final gas 

density. Once final density is determined, Equation (22) can be used to determine final 

pressure. Thus, the wave speed is known as a function of the final pressure. The mixture mass 

equation then can be used to fix the final gas velocity, and the state equations fix the final 

temperature and energy. One of the roots of the cubic density equation is nonphysical and is 

associated with the singularity in the Hugoniot at 1/p1 = -b. For the ideal gas b = 0, the density 

equation is quadratic, and the spurious root does not exist. Depending on the wave speed, the 

two remaining roots are real or imaginary. 

At two specific wave speeds, the two physical roots are degenerate. This condition is 

known as the two-phase CJ condition. The lower of the CJ wave speeds is the CJ deflagration 

speed, DcJDEF• and the higher is the CJ detonation speed, DcJDET· For D < DcJDEF• two 

physical end states exist, one whose velocity is supersonic relative to the wave head, known as 

a strong deflagration, and another whose velocity is subsonic relative to the wave head, known 

as a weak deflagration. For D = DcJDEF• the two roots are degenerate; a single physical end 

state exists whose velocity is sonic with respect to the wave head. For DcJDEF < D < DcJDET• 

two imaginary roots exist and no physical end state exists. For D = DcJDET• the two real roots 

are degenerate, and again a single physical end state exists whose velocity is sonic relative to the 

wave head. For D > DCJDET• two real roots exist. A supersonic final velocity is associated 
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with one root, known as the weak detonation solution. A subsonic final velocity is associated 

with the other, known as the strong detonation solution. 

At the two-phase CJ deflagration or detonation state, the two-phase Rayleigh line is tangent 

to the two-phase Hugoniot. One way to determine this state is to enforce the tangency 

condition: 

dP11 = dP11 
dp 

1 
Equation 22 dp 

1 
Equation 23 · 

(24) 

For the ideal gas, b = 0, it is possible to determine an analytic expression for the CJ deflagration 

and detonation velocity by solving Equations (22-24) simultaneously. The solution is 

{ 
2 2 2 ) 

(2c +R e R (2c 
1
+R) - (2e +P /p )c 1P Rip 

vl a v a a a v a a 
2 

cvl 
(25) 

Here the minus branch of this equation corresponds to the CJ deflagration state and the plus 

branch corresponds to the CJ detonation state. When the dimensionless group P JCpaeJ << l, 

the CJ deflagration state simplifies considerably. In this limit, which is relevant for many 

physical systems, the CJ deflagration state is approximated by the following equations: 

y2e ( P ) 
DCJ:: 

1 a _a_ 
(26) 

2(y2 - 1) paea ' 
1 

PCJ:: 
1 p 

y 
1 

+ 1 a' 
(27) 



T 
- 2 ea 

CJ= -, 
Y1 (yl + 1) cvl 

2 

( 

2 (Y1 - 1) e) 
y + 1 a 

1 

Here Y1=1 + R/cvi and is equivalent to the ratio of specific heats for an ideal gas. 
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(28) 

(29) 

(30) 

(31) 

A sketch of the two-phase Rayleigh line and Hugoniot is shown in Figure 2. Potential end 

states exist at the where the Rayleigh line intersects the Hugoniot. For D < DcJDEF• the figure 

shows the strong and weak solutions, and for D = DcJDEF• the CJ solution is shown. Also 

shown for both cases are the nonphysical solutions (1/p1 < 0). 

It should be noted that the two-phase Rayleigh line and Hugoniot equations (and thus the 

sketch of Figure 2) are only valid at the complete reaction state. For incomplete reaction at a 

given <1>2 -:F- 0, the mixture equations define a surface in P1, l/pi. P2, l/p2 hyperspace. This is 

in contrast to one-phase theory where the Rayleigh line and Hugoniot can be represented in P, 

1/p space throughout the reaction zone. 

The CJ deflagration state has been determined exactly for b * 0 by a numerical trial and 

error approach using the approximate formulae (26-31) as a first guess. For the parameters of 

Table I, the CJ deflagration wave speed is plotted versus initial bulk density Pa in Figure 3. It is 

seen that the CJ deflagration wave speed rises as the initial bulk density decreases. For the 

conditions of Table I, and <1>20 = 0.70, Figures 4 and 5 show deflagration wave speed and lab 

frame final velocity as a function of final gas pressure. It is seen that for a given wave speed, 



13 

two final pressures are predicted, the lower pressure associated with the strong supersonic 

solution and the higher pressure associated with the weak subsonic solution. 

1WO-PHASE DEFLAGRATION STRUCTURE 

An analysis of the complete reaction state (<1>2 = r = 0) is insufficient to describe two-phase 

deflagration structure. The analysis does limit deflagration wave speeds to speeds less than or 

equal to the CJ deflagration speed and given an end state gas pressure can predict a deflagration 

wave speed and remaining gas phase end state variables. The end state analysis does not prove, 

however, that the complete reaction state is an equilibrium point of the differential equations (1-

4). Other equilibrium states at points of incomplete reaction may exist within the reaction zone 

structure. Furthermore, a steady structure analysis is necessary to determine if all variables 

within the reaction zone are physical. 

It is arbitrarily assumed for this discussion that neither shock waves nor sonic points exist 

in the deflagration structure, though neither can be ruled out a priori. The analysis becomes 

significantly more complicated if such conditions exist. Two-phase shock jumps are usually 

associated with two-phase detonations and are considered in more detail in Ref. 7. In the 

analysis of this study and Ref. 7, which does not consider diffusive processes, shock jumps are 

discontinuous jumps in pressure, velocity, etc., and are specified by algebraic equations. The 

shock discontinuity equations specify the shocked state as a function of wave speed and the 

unshocked state. In principle a shock in either phase could exist at any point within the 

deflagration structure. At sonic points or points where either the gas velocity equals the local 

gas sound speed or the solid velocity equals the local solid sound speed, the two-phase 

differential equations are singular, [7] which significantly complicates the analysis. 

With the assumption of no shocks or sonic points in the structure, if the deflagration wave 

speed is less than the ambient gas sound speed, the entire deflagration structure is subsonic. If 

a complete reaction point is reached, it is at the weak solution point. If the deflagration wave 
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speed is greater than the ambient gas sound speed, then the entire deflagration structure is 

supersonic. If a complete reaction point is reached, it is at the strong solution point. For the 

parameters of Table I, the ambient gas sound speed is 589 m/s. Except in the dilute limit ( <!>20 -

0), this speed is greater than the CJ deflagration speed. Thus for a wide range of initial solid 

volume fractions, the solution is subsonic and drawn to the weak point. Consequently Figure 4 

indicates that the final pressure must be on the order of of thousands of atmospheres. 

The structure analysis proceeds as follows. Initial conditions for v20 (=wave speed, -D), 

P20• <1>20. and P20 are fixed at ~ ~ 0. In this analysis it is assumed that the ignition temperature 

is arbitrarily close to the ignition temperature, so that combustion begins at ~ = 0. The ordinary 

differential equations are then integrated with respect to ~ in the direction of negative ~· The 

integration is continued until either an equilibrium end state is reached or a nonphysical point in 

the reaction zone structure is found. The integration was performed using the IMSL subroutine 

DIVPRK, a fifth and sixth order Runge-Kutta-Verner routine, on the UIUC Convex digital 

computer. Run times were less than one minute. 

For the conditions of Table I, with <!>20 = 0.70 and D = 100 m/s (< DcJDEF = 135 m/s), a 

deflagration structure has been calculated up to the point where the structure became 

nonphysical. Figures 6-11 show gas and solid density, solid volume fraction, gas and solid lab 

frame velocity, gas and solid pressure, gas and solid temperature, and gas and solid Mach 

number squared (M2 = v2/a2), respectively, versus distance. From these figures, it is seen that 

at a point about 10 mm within the reaction zone structure, the gas density approaches positive 

infinity, the gas temperature approaches absolute zero, the gas Mach number approaches zero, 

and the reaction is incomplete (<)>2 = 0.686). The gas phase Mach number approaches zero, 

because the wave frame gas velocity v1 approaches zero faster than the gas sound speed which 

also approaches zero. On the scales shown in Figures 6-11, the change in solid variables is not 

apparent; however, there is a small variation in solid variables within the structure. There is a 

small scale variation in gas phase variables near ~ = 0 which is not fully resolved in Figures 6-

11. This variation, which can be fully resolved is not important for the present discussion. 
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In Ref. 7 it is shown how in the limit of infinite compaction viscosity and zero heat 

transfer, the two-phase reaction zone structure can be reduced to solving two differential 

equations in two unknowns. This two equation model proved useful in analyzing two-phase 

detonations as it allows two-dimensional phase portraits to be generated. The two-equation 

model was also used to study deflagrations. As for the full model equations, no deflagration 

structure was found which reached complete reaction. 

DISCUSSION 

This study suggests, but does not prove, that for the class of two-phase models studied 

steady two-phase deflagrations do not exist. Since the same model is able to predict a steady 

two-phase detonation, this suggests that a transient study of the two-phase model could show 

that combustion phenomena in granular propellants tend to accelerate to detonations. An 

alternate conclusion is that steady deflagrations may exist, but that this particular model is 

incapable of describing one. The results indicate that the mechanisms of interphase heat 

transfer, interphase drag, compaction, and chemical reaction which are sufficient to support a 
de:tOV\~tiOl'I 

steady two-phase deflagttitioR are not sufficient to support a two-phase deflagration. It may be 

necessary to include diffusive mechanisms of energy and momentum transport in order describe 

a steady deflagration. 

The failure to predict a steady deflagration does not necessarily mean that granular 

propellants have no utility in rocket propulsion. It is possible that the combustion of granular 

propellants is an inherently unsteady process. An unsteady analysis of the two-phase equations 

could identify if the unsteady wave speed in a granular propellant is indeed faster than the steady 

wave speed in an equivalent cast propellant. Such an analysis would also indicate whether the 

unsteady combustion wave accelerates to a detonation wave and the length scale required to 

reach a detonation. Thus one could determine whether or not granular propellants were feasible 

for rocket propulsion. 
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Table I 

DIMENSIONAL INPUT PARAMETERS 

a [m/ (s Pa)] 2.90 x 10-9 

Pio [kg /m3] 1.00 x 100 

m 1.00 x 100 

p [kg I (s m2)] 1.00 x 104 

P20 [kg /m3] 1.90 x 103 

h [JI (s K m8!3)] 1.00 x 107 

Cvl [JI (kg K)] 2.40 x 103 

Cv2 [JI (kg K)] 1.50 x 103 

R [JI (kg K)] 8.50 x 102 

a [(m I s)2] 7.20 x 106 

q [JI kg] 5.84 x 106 

To [m] 1.00 x 10-4 

b [m3 I kg] 1.10 x 10-3 

'¥2 5.00 x 100 

µc [kg I (ms)] 1.25 x 102 

To [K] 3.00 x 102 

Tig [K] 3.00 x 102+ 
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Figure 2 Two-Phase Complete Reaction Deflagration Rayleigh Line and Hugoniot 
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Figure 3 CJ (Maximum) Deflagration Wave Speed versus Initial Bulk Density 
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Figure 5 Final Lab Frame Gas Velocity versus Final Gas Pressure, <1>20 = 0. 70 
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Figure 6 Gas and Solid Density Structure, <1>20 = 0.70, D = 100 m/s 
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Figure 7 Solid Volume Fraction Structure, <1>20 = 0.70, D = 100 rn/s 
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Figure 8 Gas and Solid Lab Velocity Structure, <1>20 = 0.70, D = 100 rn/s 
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Figure 9 Gas and Solid Pressure Structure, <1>20 = 0.70, D = 100 rn/s 
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Figure 10 Gas and Solid Temperature Structure, <1>20 = 0.70, D = 100 rn/s 
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