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Abstract 
Numerical predictions of the two-dimensional, in

viscid, supersonic, reactive flow of a calorically per
fect ideal gas over a straight wedge are compared with 
the predictions of a linear asymptotic model valid 
in the hypersonic limit. Solution features predicted 
by the asymptotic model include a curved shock at
tached to the wedge tip, a reaction layer parallel to 
the shock, and a vorticity layer parallel to the wedge 
surface. For sufficiently high Mach number and heat 
release, the numerical model predicts similar behav
ior, and the differences in the predictions of the two 
methods are of the same order of magnitude as the 
inherent error of the asymptotic method. As heat re
lease is lowered and Mach number held constant, ap
parent numerical artifacts obscure features predicted 
by the asymptotic method. The results suggest that 
the asymptotic solution has utility as a benchmark 
to verify the predictions of many high-speed, multi
dimensional, reacting flow codes. 

Introduction 
Prediction of the the high-speed non-equilibrium 

flow of a gas over a sharp-edged wedge has been the 
subject of numerous studies over the past decades. It 
has become apparent that for the special case of these 
flows which can be modelled as two-dimensional and 
inviscid, the basic flow features, as sketched in Fig. 
1, can be described as follows. An incoming super
sonic equilibrium flow, with. a sufficiently high Mach 
number to prevent shock detachment, encounters a 
straight wedge inclined at an angle B. The flow passes 
through a curved, attached shock. The shock com
pression initiates non-equilibrium processes which re
lax to equilibrium in a finite length zone roughly par
allel to the lead shock . Near the wedge tip the shock 
displacement is nearly that of an inert shock; far from 
the wedge tip the reaction process displaces the shock 
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from its inert position. This variation in shock dis
placement angle with distance from the wedge tip 
provides for shock curvature. Consequently, vortic
ity, proportional to the magnitude of the curvature, 
is generated at the shock front and is convected in 
a layer near the wedge surface. The non-equilibrium 
and vorticity layers both relax to an equilibrium, irro
tational uniform state""far from the shock and wedge 
surface. For processes which can be thought of as en
dothermic, such as vibrational relaxation, the shock 
is displaced towards the wedge; for exothermic pro
cesses such as combustion, the shock is pushed away 
from the wedge. 

The studies of Vincenti 1 , which presents closed
form solutions to linearized equations for non
equilibrium flow over a thin wedge, Capiaux and 
Washington 2 , which gives a numerical solution based 
on the method of characteristics for non-equilibrium 
flow over a thick wedge, and Lee3 , which presents a 
closed-form solution for non-equilibrium flow over a 
thick wedge, are representative of many early studies. 
With the renewed interest in several hypervelocit.y 
devices such as the oblique detonation wave engine4 

(ODWE), the ram accelerator5 , and the advanced hy
pervelocity aerophysics facility6 (AHAF), many re
cent studies have appeared . Among these are those of 
Bogdanoff and Brackett7

, Fujiwara, et al.8
, \Vang, et 

al. 9 , Cambier, et al. 10•11 , Yungster12•13 , and Pandolfi, 
et aJ.l 4 With the exception of the work of Pandolfi, et 
a!., which utilizes the method of characteristics, these 
studies employ numerical techniques to directly solve 
the governing partial differential equations. ·In ad
dition a number of related fundamental and applied 
studies are cited in the recent book by Anderson 15 , 

which also gives a relevant general discussion. 
The topic of this paper is a particular case of non

equilibrium wedge flow known as an oblique deto
nation with structure. Here an oblique detonation is 
defined as the flowfield which results when an oblique 
shock wave induces an exothermic chemical reaction. 
The term "structure" is used to indicate the flow
field contains spatially thick reaction and vorticity 



layers. Prediction of the variation of physical quan
tities within the layers requires the solution of differ
ential equations. As such, results from a structure 
analysis are more rigorous than those obtained by an 
algebraic Rankine-Hugoniotjump analysis, which as
sumes heat release occurs in an infinitely thin layer. 
In particular, solution of the differential equations 
demonstrates there is a path in phase space to the 
equilibrium condition, which is presupposed in the 
Rankine-H ugoniot analysis. 

The recent paper of Powers and Stewart16 

gives new closed form oblique detonation solutions. 
The governing equations employed were the two
dimensional, reactive, Euler equations. The reaction 
was assumed to be one-step and irreversible with Ar
rhenius kinetics. Both reactants and products were 
modelled as calorically perfect ideal gases with iden
tical material properties.. This model was studied 
in the hypersonic limit, linearized about the inert 
oblique shocked state. In this limit the kinetic en
ergy of the flow is much greater than the heat release 
from chemical reaction. The leading order solution 
is the inert shock, and the linear asymptotic theory 
corrects for the effects of small heat release. Also 
in this limit the induction zone length is effectively 
zero; the assumption of large activation energy, which 
gives rise to a thick induction zone and thin reac
tion zone, is not made here. Consequently, a simple 
leading order solution of the kinetic rate law is avail
able. At the following order, acoustic equations with 
chemical reaction forcing terms generated at leading 
order are solved to determine the pressure and veloc
ity fields. Two classes of solutions are obtained. The 
first is irrotational and characterized by a straight 
shock attached to a curved wedge. The second is ro
tational and characterized by a curved shock attached 
to a straight wedge. For the irrotational solutions, 
it was demonstrated that the differential equations 
predicted a path to the equilibrium point which was 
previously identified by a Rankine-Hugoniot analysis. 

The solution procedure of Ref. 16 is as follows. 
To simplify application of the boundary conditions, 
the Euler equations were first transformed to a non
orthogonal coordinate system fixed to the inert shock 
and wedge. The equations and shock conditions were 
then written as linear equations in the hypersonic 
limit. Assuming the oblique shock was weak and the 
trailing flow was supersonic allowed the equations to 
be written in characteristic form. These equations 
were then solved with the shock position function as 
a parameter. The shock position function was then 
specified such that a downstream boundary condition 
on the wedge surface was met. 

In this paper we compare rotational solutions of 
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the linear equations of Ref. 16 to original numerical 
solutions of their non-linear counterparts. New calcu-· 
lations were necessary as the published oblique deto
nation solutions (Refs. 7-14) variously employ mod
els of more complex mechanisms such as multistep 
reactions, non-ideal gases, and viscous transport, or 
use blunt-nosed wedge geometry. The numerical algo
rithm is found in the code RPLUS17

•18•
19

, a general 
purpose reactive flow code developed at the NASA 
Lewis Research Center. To our knowledge, these cal
culations represent the first direct comparisons of the 
predictions of a linear asymptotic model and a nu
merical model of the non-linear partial differential 
equations for an oblique detonation with structure 
over a straight wedge. 

Model Equations 
The model equations are taken to be those of Ref. 

16. Further justification for the assumptions of this 
model are given by Fickett and Davis.20 In dimen
sionless form the equations are as follows: 
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Variables in these equations are the density p, 
Cartesian velocities u and v, pressure P, product 
mass fraction >., and Cartesian position coordinates 
x and y. The parameter f is defined as the recipro
cal of the square of the incoming Mach number Mo 
(c = · 1/MJ). In Ref. 16, f is used as a perturba
tion parameter, while the numerical solutions of this 
paper make no requirements on the magnitude of f. 
Other dimensionless parameters are the ratio of spe
cific heats 1, the heat release q, and the activation 
energy e. · Equations ( 1-4) represent conservation of 
mass, momenta, and energy, respectively. The energy 
equation ( 4) incorporates the assumption of a calor
ically perfect ideal gas. Equation (5) models Arrhe
nius kinetics and represents a rate law for the prod
uct mass fraction. Supplemental but useful equations 
define the internal energy e, the temperature T, the 



sound speed c, and the z component of the vorticity 
vector Wz: 

1 p 
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c=H· 
Remaining dimensionless parameters are defined by 

(8) the following relations: 

ov ou 
Wz= ---. ax oy (9) 

Initial preshock conditions are specified as p = 1, 
u = fi, v = 0, P = f, and >. = 0. 

Solution of the asymptotic model requires the usual 
Rankine-Hugoniot relations for changes across the in
ert oblique shock discontinuity. Details are found in 
Ref. 16. These relations specify discontinuous jumps 
of pressure, density, and velocity across an oblique 
shock of specified angle. There is no chemical reaction 
in this infinitely thin zone; consequently, the product 
mass fraction remains constant across the shock. For 
the numerical solution, specification of jump condi
tions is not required as an appropriate shock captur
ing scheme is used to spread the discontinuity over a 
number of cells. To accurately reproduce the asymp
totic results, it is important to have sufficient reso
lution to distinguish a smeared shock and a reaction 
zone. 

The inviscid solution must satisfy the downstream 
boundary condition of a zero velocity component nor
mal to the wedge surface. In the asymptotic solution 
of Eqs. (1-9), this is achieved by requiring that the 
streamline originating at the wedge tip be coincident 
with the wedge surface. In a somewhat cumbersome 
process, the shock position function can be chosen 
such that Eqs. (1-9), along with the initial and shock 
conditions, describe the flow over a wedge with a · 
specified shape. The numerical method allows for 
a more straightforward solution. Here, the wedge ge
ometry is directly specified, and the algorithm auto
matically calculates a compatible shock position and 
flow field. 

Equations (1-9) have been scaled such that in the 
f ( f-+ 0) the postshock pressure, density, and veloc
ities are all 0(1) quantities. The lengths have been 
scaled by the reaction zone length. Consequently, 
both reaction and vorticity layers have 0(1) thick
ness. In terms of dimensional variables (indicated by 
the notation "- ") and dimensional preshock ambi
ent conditions (indicated by the subscript "0"), the 
dimensionless variables are defined by 

u 
u= ---=== 

MoJPo/Po' 
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e = poEo. 
Po 

(11) 

Here, qo is the dimensional heat release, Eo is the 
dimensional activation energy, and r 0 is the kinetic 
rate constant. 

Numerical Solution 
Numerical solutions for Eqs. (1-9) were obtained 

with a slightly modified version of the RPLUS re
active flow code. The RPLUS code has the capabil
ity to solve the three-dimensional, Reynolds-averaged 
Navier-Stokes equations and species continuity equa
tions. The code employs the unsteady form of the 
equations and uses artificially large time steps for ac
celerated relaxation to a steady-state solution. The 
code utilizes a finite volume method that is based 
on the lower-upper symmetric successive overrelax
ation (LU-SSOR) implicit factorization scheme. In 
the RPLUS version used for the present study, the 
spatial discretization is achieved with central differ
encing. To-avoid oscillations near the shock waves, a 
combined second-order and fourth-order artificial dis
sipation term is added. Additional details are given 
in Ref. 19. 

In order to model Eqs. (1-9), the RPLUS code was 
specified to model inviscid fluid motion with one ir
reversible reaction. No turbulence modeling was em
ployed. An additional minor modification of the ki
netic scheme of RPL US allowed for a more meaning
ful comparison. In the hypersonic limit, the exponen
tial factor in the Arrhenius kinetics is unity at lead
ing order. Consequently, the reaction rate is strictly 
proportional to the mass fraction of reactants. In 
the asymptotic model of Ref. 16, reaction is allowed 
only. after the material has been shocked. In order 
to model these kinetics in the numerical solution, the 
activation energy was arbitrarily set to zero, and an 
ignition temperature was introduced. The ignition 
temperature 7;9 , was defined such that for T < 7;9 , 

the reaction rate was zero, and for T > T; 9 , the 
reaction proceeded as dictated by Eq. (5). The ig
nition temperature was set to a value slightly less 
than the postshock temperature resulting from an in
ert oblique shock with the same ambient conditions 
and wedge geometry. Thus the ignition temperature 



serves only as a switch for chemical reaction, and its 
precise value is not critical. 

In addition to the boundary conditions described 
in the previous section, an additional boundary con
dition is necessary for the numerical solution at the 
outflow boundary. This is necessary because of the 
finite size of the computational domain. For this sim
ulation, the gradient of all flow variables was specified 
to be zero at the outflow boundary. 

All computations were done on an IBM RS/6000 
Model 530 with 48 Mbytes of RAM at the University 
of Notre Dame. A typical computation required ap
proximately 12 hours of CPU time to converge using 
the grid of 19701 (199 by 99) cell centers depicted in 
Fig. 2. This was the maximum number of cells that 
could be used when running the code on the RS/6000. 
Convergence was achieved in about 2000 pseudo-time 
steps. 

to a high pressure region immediately behind the high 
angle, straight portion of the the shock. Along the 
wedge surface, the pressure increases from the low 
pressure region near the wedge tip to a local maxi
mum pressure, and then slowly decreases in magni
tude. This local maximum pressure is less than the 
pressure immediately following the high angle portion 
of the shock. 

Figures 3b, 4b, and 5b show the numerical results 
for case 1. In terms of general trends, the results 
show good agreement. There are minor qualitative 
differences. First, the numerically predicted shock 
position is rotated closer to the wedge relative to the 
asymptotically predicted position. Close examina
tion reveals that the numerical method predicts max
imum curvature slightly above the wedge tip, while 
the asymptotic solution predicts maximum curvature 
precisely at the wedge tip. Reaction rate contours are 
qualitatively similar. However, if Fig. 3a is overlayed 

Results and Discussion on Fig. 3b such that the numerical shock position co-
The results of two cases are presented here. They incides with the asymptotic shock position, it can be 

are case 1, for which the heat release q = 10, and case seen that the asymptotic solution initially predicts a 
2, for which the heat release q = 1. For both cases, faster reaction rate than the numerical solution, and 
1 = 1.4, Mo = 20, and the wedge angle B = 20°. then farther downstream predicts a slower rate. 
The RPLUS code requires dimensional input condi- The vorticity contours differ dramatically near the 
tions, which were taken to be Po = 101325 Pa and shock and differ slightly downstream of the shock. 
p0 = l.1168kgfm3 . Thegaswasassumedtohavethe For the numerical solution, Fig. 4b shows a zone of 
molecular weight of air; consequently, the gas· con- apparent numerical artifacts around the shock. This 

_____ _,_tanL.w..as_taken_t_o_b_e.__R___;;;_28J_ J.j_kg.._K._Eo.r_su_ch__is_ljkel.¥-a.t_tr.ib_utahle...to _ _t he_ artj ficial _yjs_cosi_ty _sp.reach 
a high Mach number, many of the assumptions of ing the shock over many computational cells. The 
this model are not valid for common gases found in numerical solution indicates near zero vorticity at the 
fuel-air mixtures. Among other things, vibrational wall which increases rapidly with distance from the 
relaxation and dissociation become important mech- wedge to a ma:<imum vorticity region near the wedge 
anisms under these conditions. However, as the main surface, and then decreases slowly with distance from 
purpose of this paper is the verification of a numeri- the wedge surface to near zero. The maximum vor
cal algorithm, these parameters were chosen more for ticity for the numerical case is about half the max
convenience of comparison of results than for reflec- imum predicted by the asymptotic solution. At the 
tion of real material behavior. wedge tip and far above it, the numerical shock is 

Contours of mass fraction of product (>.), vorticity straight, which gives rise to the near zero vorticity 
(wz ), and pressure (P) predicted by the asymptotic at the wall and far above the wedge. It is bypath
method are shown in Figs. 3a, 4a, and 5a, respec- esized that these differences may be largely due to 
tively. The mass fraction varies monotonically from the effects of artificial viscosity. Near the wedge tip, 
zero at the shock to near one at an 0(1) distance the distance between the shock and the wedge is of 
downstream. The shock has a maximum curvature the same order of magnitude as the artificially gen
at the wedge tip; it eventually becomes straight and erated shock width. Consequently, it is unlikely that 
achieves a maximum angle (measured relative to the accurate results are predicted in this region. 
x-axis) at some 0(1) distance above the wedge. Due Finally, comparing the pressure fields shows that 
to this variation in shock curvature, the vorticity is the numerical solution differs from the asymptotic 
a maximum at the wedge surface, and relaxes mono- solution by initially predicting a steeper pressure gra
tonically to near zero at some 0(1) distance above client behind the straight portion of the shock. As a 
the wedge. The pressure field is slightly more com- result contour levels of the same magnitude are in no
plicated. Behind the low angle, curved portion of ticeably different positions. The numerical solution 
the shock near the wedge tip is a region of low pres- also predicts small closed contours of pressure near 
sure, which increases monotonically along the shock the wedge which have no analog in the asymptotic 
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solution and are apparently numerical artifacts. 
Figure 6a,b,c provide a more detailed quantitative 

comparison between the asymptotic and numerical 
pressure solutions. In Fig. 6a predictions of pressure 
on the wedge surface are given for both methods. It is 
seen that after the numerical method adjusts for the 
shock over a finite length zone, it tracks the asymp
totic solution very accurately. Minor differences ap
parent in this plot are magnified in Fig. 6b . Here it 
is seen that the pressure predicted by the numerical 
method is slightly greater than that predicted by the 
asymptotic method in the vicinity of the shock. Away 
from the shock the numerical method consistently 
predicts slightly lower pressures than the asymptotic 
method. It is seen that the local, downstream pres
sure maximum is predicted about 3.5 distance units 
from the wedge tip by the asymptotic method . This 
pressure maximum is not predicted by the numerical 
method. Near the outflow boundary the numerical 
method predicts small amplitude pressure oscillations 
on the wedge surface which decrease in magnitude 
with increasing distance towards the wedge tip. The 
origin of these disturbances is unclear, though it may 
involve the behavior of the artificial viscosity model 
near the wedge surface or the modelling of the outflow 
boundary condition as a zero-gradient boundary. It is 
possible that these pressure oscillations have masked 
the local pressure maximum. 

Figure 6c is a semi-log plot of the absolute differ
ence between the asymptotic and numerical pressure 
predictions along the wedge surface and two other 
streamwise grid lines of the computational mesh. 
Their approximate location is indicated in the inset 
diagram on Fig. 6c. Preceding the shock are the con
stant ambient conditions, which appear in this figure 
as the initial regions of very small absolute difference 
preceding the maximum difference locations. The 
small differences in this region are due to numerical 
roundoff and the finite size of the computational cells 
in the numerical solution . For a given stream wise grid 
line, the largest maximum differences occur at t'he 
shock. There are two likely reasons for this: 1) there 
is an inherent 0(!2) error in the shock position pre
dicted by the asymptotic method, and 2) the numeri
cal solution spreads the shock over multiple cells. Fol
lowing the shock zone is a region of relatively constant 
difference for all three curves, which has a magnitude 
of approximately 0.0008 . As the error in the asymp
totic solution for this case is 0( c2 ) "" 0(0 .0025) , a 
difference 'of this magnitude is tolerated. For a rough 
comparison of the order of magnitude error predicted 
by the asymptotic method to the actual error, a line 
of c2 = 0.0025 is also plotted in Fig. 6c. 

For the lower heat release of case 2, the numeri-
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cal predictions do not agree well with the asymptotic 
predictions. For this case, the asymptotic method 
predicts smoothly varying pressure contours as shown 
in Fig. 8a. These do not match well with the more 
erratic contours of Fig. 8b, which are predicted by 
the numerical method. Close examination of con
tinuously shaded color plots of the data reported in 
Fig. 8b suggests that acoustic waves are pr-opagat
ing within this domain . These apparent numerical 
artifacts are of the same order of magnitude as the 
changes in pressure due to the heat release, and thus 
distort the expected solution. It is likely that these 
waves originate at the shock or outflow boundary. 

Final Remarks 
The results of this paper give several insights into 

the behavior of oblique detonations. First, the nu
merical calculations suggest, but do not prove, that 
for the particular cases studied , oblique detonations 
may be hydrodynamically stable, as the solution re
la.xes in time to an apparently steady state. The use 
of artificially large time steps and the use of artificial 
viscosity, which in addition to dampening numerical 
instabilities, could potentially dampen physical insta
bilities, prevents a stronger conclusion. In addition, 
the effects of finite activation energy, an important 
ingredient in the well-known detonation instability 
mechanism 20 , are negligible in the hypersonic limit. 
It is suggested that this contributes to the apparent 
stability of our results. A more rigorous determina
tion of oblique detonation stability would consider 
the growth and decay rates of small amplitude dis
turbances to the steady field. Studies of this type 
have recently been reported by Jackson, et al. 21 and 
Lasseigne, et al. 22 for the case of large activation en
ergy. Steady oblique detonations characterized by a 
straight shock followed by an irrotati.onal flow field 
containing a thick induction zone and thin chemi
cal reaction zone are considered. They report that 
a weak upstream vorticity disturbance generates two 
classes of disturbances: a post shock vorticity distur
bance which is amplified by the exothermic reaction, 
and acoustic disturbances whose amplitude decays for 
trailing subsonic flow and remains constant for trail
ing supersonic flow. Buckmaster23 has also recently 
considered the stability of oblique detonations in the 
large activation energy limit. He reaches the conclu
sion, with minor qualifications explained in the pa
per, that oblique detonations are always structurally 
unstable. The different stability conclusions of our 
study and Refs. 21-23 remain to be resolved but are 
likely due to the different magnitudes of activation 
energies considered. 

Second, an interesting result is suggested by Figs. 



6a,b. Here it is seen that the chemical reaction gives 
rise to an unfavorable pressure gradient on the wedge 
surface in a region stretching from the wedge tip to 
the local pressure maximum. It is thus in principle 
possible that when boundary layer effects are mod
elled, this unfavorable pressure gradient could give 
rise to boundary layer separation from the wedge sur
face. Should this result extend to multicomponent 
mixtures, this boundary layer separation could give 
rise to an enhanced mixing rate. 

Third, the asymptotic solution could be useful in 
boundary condition specification for numerical mod
els. Though the reason for the pressure oscillations 
noted in Fig. 6b is not established, one explanation 
is that the imposed zero gradient boundary condi
tion, which is not precisely correct, generates waves 
which propagate into the computational domain. As 
the asymptotic solution establishes that the gradients 
at these points are non-zero, the numerical solution 
could be improved by using the asymptotic solution 
to estimate conditions at the outflow boundary. 

We lastly comment on the comparison of numeri
cal and asymptotic results and the value of asymp
totic results. Because of the conflicting criteria under 
which asymptotic and numerical models are valid rep
resentations of the full non-linear partial differential 
equations, one must exercise care to obtain meaning
ful comparisons. For example, the asymptotic results 
are strictly valid only in the limit as the incoming 
Mach number approaches infinity while the heat re
lease is held fixed. There is a range in parameter 
space under which one can obtain apparently reason
able asymptotic results by holding the Mach number 
fixed and increasing heat release. For heat release 
above a critical value, however, the assumptions of 
the asymptotics are violated and the solution breaks 
down. In contrast, the numerical method is not lim
ited to small heat release. The results of this paper 
indicate that for small heat release numerical arti
facts can distort and overwhelm physical flow features 
while the accuracy tends to improve with increasing 
heat release. Consequently, there is a limited region 
in parameter space in which both methods predict 
qualitatively similar solutions. 

The design of future aerospace vehicles will re
quire the use of multidimensional models of non
equilibrium processes which take place on many 
length scales. The ability of asymptotic methods to 
generate engineering results in these cases is quite 
limited. "The real value of the asymptotic solution 

-- discussed here lies in its ability to serve as an effec
tive benchmark for the numerical codes which will 
be required for these complex problems. The results 
shown in this paper provide one example of the funda-
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mental soundness and minor shortcomings expected 
from any numerical code designed to predict high
speed, non-equilibrium flow. In order to better assess 
the many current numerical algorithms, it is ret:om
mended that the asymptotic results be adopted as a 
new standard. 
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Fig. 1 Generic, inviscid, non-equilibrium, two-dimensional, supersonic flow 
over a wedge. 
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Fig. 2 Computational mesh of cell centers used in numerical calculations (199 by 99). 8 
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Fig. 3a Product mass fraction (A.) for asymptotic solution of case 1, q = 10. 
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Fig. 3b Product mass fraction (A.) for numerical solution of case 1, q = 10. 9 
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Fig. 4a Vorticity (roz) contours for asymptotic solution of case 1, q = 10. 
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Fig. 4b Vorticity (roz) contours for numerical solution of case 1, q = 10. 10 
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Fig. Sa Pressure (P) contours for asymptotic solution of case 1, q ::.: 10. 
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Fig. Sb Pressure (P) contours for numerical solution of case 1, q = 10. 11 
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Fig. 6a Asymptotic and numerical wedge surface pressure predictions for case 1, q = 10. 
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Fig. 6b Asymptotic and numerical wedge surface pressure predictions, expanded view, 
for case 1, q = 10. 12 
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Fig. 6c Absolute value of the difference between asymptotic and numerical pressure 
compared with truncation error for case 1, q = 10. 

13 



0 2 3 4 
X 

Fig. 7a ~ressure (P) contours of asymptotic solution for case 2, q = 1. 

0 2 3 4 
X 

Fig. 7b Pressure (P) contours of numerical solution for case 2, q = 1. 14 




