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Motivation

• Using a one-step kinetics model, we (JFM, 2012) showed that when the viscous

length scale is similar to that of the finest reaction scale, viscous effects play a

critical role in determining the long time behavior of the detonation.
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• Mazaheri et al. (Comb. and Flame, 2012) also found diffusion plays a critical

role in regions of high resolution using one-step kinetics in their two-dimensional

studies.

• Here, we will consider detonation dynamics with inviscid, shock-fitting and

shock-capturing, and Navier-Stokes models for H2-air detonations.

• New harmonic analysis presented here reveals the multi-modal nature of

oscillatory detonations in H2-air.



Unsteady, Compressible, Reactive Navier-Stokes
Equations
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Computational Methods

• Inviscid

– Shock-fitting : Fifth order algorithm adapted from Henrick et al. (J. Comp.

Phys., 2006)

– Shock-capturing : Second order min-mod algorithm

• Viscous

– Wavelet method (WAMR), developed by Vasilyev and Paolucci (J. Comp.

Phys., 1996 & 1997)

– User-defined threshold parameter controls error

• All methods used a fifth order Runge-Kutta scheme for time integration



Case Examined

• Overdriven detonations with ambient conditions of 0.421 atm and 293.15K

• Initial stoichiometric mixture of 2H2 +O2 + 3.76N2

• DCJ ∼ 1972m/s

• Overdrive is defined as f = D2
o/D

2

CJ

• Overdrives of 1.018 < f < 1.150 were examined



Typical ZND Profile
f = 1.15
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Stable Detonation
f = 1.15
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For high enough overdrives, the detonation relaxes to a steady propagating wave in

the inviscid case as well as in the diffusive case.



High Frequency Mode - Inviscid
f = 1.10
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A single fundamental frequency oscillation occurs at a frequency of 0.97MHz.

This frequency agrees with the experimental observations of Lehr (Astro. Acta, 1972).



Lehr’s High Frequency Instability

(Astro. Acta, 1972)

• Shock-induced combustion experi-

ment (Astro. Acta, 1972)

• Stoichiometric mixture of 2H2 +

O2 + 3.76N2 at 0.421 atm

• Observed 1.04 MHz frequency

for projectile velocity corresponding

to f ≈ 1.10

• For f = 1.10, the predicted fre-

quency of 0.97MHz agrees with

observed frequency and the predic-

tion by Yungster and Radhakrishan

of 1.06MHz



High Frequency Mode - Viscous vs. Inviscid
f = 1.10
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The addition of viscosity has a stabilizing effect, decreasing the amplitude of the

oscillations. The pulsation frequency relaxes to 0.97MHz.



Low Frequency Mode Appearance - Inviscid
f = 1.035
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As the overdrive is lowered, multiple frequencies appear, and the amplitude of the

oscillations continues to grow. These multiple frequencies persist at long time.



Low Frequency Mode Appearance - Viscous vs.
Inviscid
f = 1.035
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Viscosity still decreases the amplitude of oscillation, though the effect is reduced

compared to higher overdrives. Longer times need further investigation.



Harmonic Analysis - PSD

• Harmonic analysis can be used to extract the multiple frequencies of a signal

• The discrete one-sided mean-squared amplitude Power Spectral Density (PSD)

for the pressure was used
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One Step Kinetics - Inviscid
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As the activation energy is increased, the one-step kinetics’ fundamental frequency

shifts to a lower frequency, and its amplitude grows. Period-doubling and higher order

harmonics are clearly visible. Non-linear effects alter the predicted fundamental

frequency from linear theory by 3.4%, 6.2%, and 6.8%.



One Step Kinetics - Viscous Modulation
Ea = 27.7
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Viscous effects significantly reduce the amplitude of oscillations and alter the

predicted behavior from a period-4 to period-1 detonation. Additionally, the predicted

fundamental frequency is also altered; it is shifted from 0.0839 to 0.0787.



Hydrogen-Air: Overview
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Unlike one-step kinetics, hydrogen-air detonations do not go through a

period-doubling phenomena at these conditions. However, there is an appearance of

a lower frequency as the overdrive is lowered.



Hydrogen-Air: Near Neutral Stability
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Significant growth of the amplitude of oscillations occurs as one passes through the

neutral stability point.



Hydrogen-Air: High Frequency Shift
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The amplitude of the oscillations continues grow as the overdrive is lowered. There

appears to be a near power-law decay in the amount of energy carried by the higher

harmonics.



Hydrogen-Air: High-to-Low Frequency Transition
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A transition of the dominant mode from the high-frequency mode, (0.7MHz) to

the low-frequency mode, (0.1MHz), occurs at f = 1.029. Furthermore, in this

transition region the second harmonic of the low-frequency contains less energy than

a higher frequency near 0.6MHz, until the overdrive reaches f = 1.018.



Capturing vs. Fitting - High Frequency Mode
f = 1.10
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Using the same grid size as shock-fitting (∆x = 4 µm), shock-capturing misses

the essential dynamics.



Capturing vs. Fitting - High Frequency Mode
f = 1.10
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Using a four times finer grid with shock-capturing than shock-fitting allows the

pulsations to be captured. However, both much higher and lower frequency spurious

oscillations are predicted as well.



Capturing vs. Fitting - Low Frequency Mode
f = 1.023
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Using the same grid size (∆x = 4 µm) as shock-fitting, shock-capturing

dramatically over-predicts the pulsation amplitude. In shock-capturing, a resolution of

∆x = 1 µm is needed to begin capturing the essential dynamics at long time.



Capturing vs. Fitting - Low Frequency Mode
f = 1.023
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Only when ∆x = 1/2 µm is used does the PSD of shock-capturing become

nearly indistinguishable with that of shock-fitting.



Effect of Physical Viscosity
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Near the neutral stability boundary, viscosity damps the small amplitude oscillations.



Effect of Physical Viscosity
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Viscosity effects reduce the magnitude of the peaks at the first and higher harmonics.



Effect of Physical Viscosity
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As the overdrive is lowered, the viscous PSD looks increasingly like that of the

shock-fitted inviscid case.



Effect of Physical Viscosity
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The fundamental frequency’s peak is barely reduced; however, the lower frequency’s

peak in the inviscid case is nearly removed in the viscous analog.



Conclusions

• Long time behavior of a hydrogen-air detonation becomes more complex as the

overdrive is decreased; three phemonona are predicted:

– a stable detonation,

– a single dominant high frequency mode oscillatory detonation,

– a dual mode oscillatory detonation, dominated by the low frequency mode.

• Harmonic analysis has revealed the first harmonic frequency moderately lowers

as the overdrive is lowered in the high frequency mode.

• At the second bifurcation there is a drastic shift in the fundamental frequency

from 0.71MHz to 0.11MHz.

• Shock-capturing requires a four times finer grid to predict the essential

dynamics of an inviscid detonation than the minimal artificial viscosity

shock-fitting scheme.

• Physical diffusion causes a amplitude reduction in all cases examined; further

investigation is needed at longer times near the bifurcation limits.


