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The dynamics of one-dimensional, overdriven, hydrogen-air detonations predicted in the

inviscid limit as well as with the inclusion of mass, momentum, and energy diffusion were

investigated. The effect of resolution was studied for both shock-capturing and shock-

fitting in the inviscid limit, and it was found that shock-capturing required four times

the amount of resolution of shock-fitting to predict the essential dynamics. Harmonic

analysis was used to examine how the long time dynamics changed as the overdrive was

varied in both the inviscid limit and the viscous analog. As the overdrive is lowered, the

pulsation’s fundamental frequency shifts smoothly from 1.03 MHz at an overdrive of f = 1.12
to 0.71 MHz at an overdrive of f = 1.035 before making a sudden jump to 0.11 MHz at an

overdrive of f = 1.029, where overdrive is f = D2
o/D2

CJ , Do the initial detonation velocity, and

DCJ the Chapman-Jouguet velocity. It was found that viscous effects reduce the magnitude

of the pulsations. As the strength of the inherent instability grows, due to interaction of

the hydrodynamics and chemical reactions, the effect of viscosity is reduced.

I. Introduction

Detonations are an inherently multi-scaled reactive flow phenomenon, where the exothermic energy release
due to chemical reactions contributes to driving a shock. These reactions can evolve on disparate scales;
for a steadily traveling Chapman-Jouguet (CJ) hydrogen-air detonation propagating into an ambient state
at atmospheric conditions, this range is from 10−5 cm to 100 cm at equilibrium and can be even larger
away from equilibrium.1 The scales are due to the averaged representation of molecular collision model in
which the underlying length scale is the mean-free path.2 This wide range of scales needs to be resolved
to accurately predict detonation dynamics. Therefore, much of the work in detonation modelling has been
done with simplified kinetics in the inviscid limit.3

However, there have been some studies conducted using detailed kinetics, most of which have been
restricted to one-dimension or low pressure due to the computational cost. One of the first performed was
done by Sussman,4 who examined the dynamics of one-dimensional hydrogen-air detonations in the inviscid
limit at ambient pressure of 0.421 atm. In the inviscid limit, Eckett5 found while studying overdriven,
hydrogen-oxygen detonations propagating into an ambient atmospheric pressure in one dimension that it
was necessary to have a minimum of 150 points in the induction zone. Singh et al.6 simulated the development
of a viscous detonation in a hydrogen-oxygen-argon mixture while using an operator-spliting technique and
an intrinsic low-dimensional manifold. Yungster and Radhakrishan7 found, that while using shock-capturing
in the inviscid limit, it was necessary to use a resolution on the order of a micron to capture the dynamics
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of a one-dimensional, hydrogen-air detonation. Examining various one-dimensional, inviscid, overdriven
hydrogen-air detonations, Daimon and Matsuo8 predicted long time behavior of the detonation that becomes
more complex as the overdrive is lowered, similar to that observed by Sussman, Eckett, and Yungster and
Radhakrishan for other hydrogen-based mixtures. Several two-dimensional studies have been performed at
low pressure for highly-dilute mixtures of hydrogen-oxygen-argon using detailed kinetics in the inviscid limit
examining the development of detonation cell-size.9–11 Ziegler et al.12 examined a viscous, double Mach
reflection detonation in a hydrogen-air mixture and found that even with a finest resolution near a micron
that their results showed the resolution was insufficient. In the inviscid limit, Taylor et al.13 compared
the intrinsic cell sizes of hydrogen-air detonation using detailed kinetics with one-step kinetics at ambient
atmospheric conditions.

The majority of the work performed in modeling detonations has been done in the inviscid limit, as it is
often suggested that viscous effects are negligible. However, there are indications that viscosity has a role.
Furthermore, in detonations propagating into atmospheric ambient mixtures there are reaction dynamics
and steep gradients near a micron scale suggesting that physical diffusion could play an important role. In
fact, while using resolutions near a micron in a three-dimensional inviscid simulation to predict the behavior
of spinning detonations, Tsuboi et al.14 report that while some structures appear to converge, “The present
results cannot resolve such cross-hatchings in the ribbon because of a lack of grid resolution.” Deiterding15

also reported that the interactions between chemistry and hydrodynamic flow in inviscid detonations “in
general exhibit a strong dependency on the mesh spacing.” In a two-dimensional study of detonation
patterns, Powers16 found that patterns were strongly grid-dependent for the reactive Euler equations, but for
the reactive Navier-Stokes equations relaxed to a grid-independent dissipative structure. This suggests that
numerical diffusion is playing a significant role. While studying detonation propagation in micro-channels
using a simplified kinetics model, Kivotides17 concluded that viscous effects can alter the transverse wave
behavior. Using the one-step model, it was shown that when the viscous length scale is similar to that
of the finest reaction scale, viscous effects play a critical role in determining the long time behavior of
the detonation.18 In particular, viscous effects delay the transition to instability, and can play a dramatic
role for detonations in the highly nonlinear regime characterized by oscillations at multiple frequencies.
Mazaheri et al.19 demonstrated that diffusion can play an important role in regions of high-resolutions.
Furthermore recent calculations done by Al-Khateeb et al.,20 indicate that the fine reaction length scales
present in hydrogen-air mixtures can have time scales associated with them at which both chemistry and
diffusion become important. Therefore, the introduction of grid-independent physical diffusion should be
considered.

The goal of this paper is to demonstrate how numerical diffusion from shock-capturing and the addition of
physical mass, momentum, and energy diffusion affect the predicted behavior of one-dimensional hydrogen-
air detonations using a detailed kinetics mechanism. The plan of this paper is as follows. The mathematical
model is presented followed by a description of the computational methods. This model is used to predict
the dynamics of several overdriven hydrogen-air detonations. It will be shown that as the initial overdrive
is decreased, the long time behavior becomes more complex, in agreement with similar previous studies
performed in the inviscid limit. Additionally, the long time behavior will be examined using harmonic analysis
to give further insight into how the behavior evolves with respect to the initial overdrive. Furthermore, this
type analysis is used to reveal how the energy is distributed in the frequency domain, and reveals the
differences between inviscid, shock-fitted calculations and the shock-capturing and viscous analogs. As seen
in the one-step model, the addition of viscous effects will be shown to have a stabilizing effect in the weakly
unstable regime. However, as the overdrive is lowered, stabilization due to the addition of viscosity is
weakened due to the strengthening intrinsic instability.

II. Model

A. Mathematical model

The governing equations are the reactive, compressible Navier-Stokes equations and are expressed as

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂

∂t
(ρu) + ∇ · (ρuu + pI− τ ) = 0, (2)
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∂

∂t
(ρYi) + ∇ · (ρuYi + ji) = Miω̇i, (4)

where Eqs. (1)-(4) represent the conservation of mass, linear momenta, energy and the evolution of species.
The independent variables are t, the temporal coordinate, and x the spatial coordinates. The dependent
variables are the mixture mass density, ρ, the mixture velocity components, u, the mixture pressure, p, the
viscous stress tensor, τ , the specific internal energy of the mixture, e, the total heat flux vector, q, the
mass fraction, Yi, the diffusive mass flux, ji, the molecular mass, Mi, and the molar production rate per
unit volume, ω̇i, for the ith specie. The ∇ symbol is the gradient operator, and I is the identity matrix.
Equations (1) and (3) are scalar equations, and Eqs. (2) and (4) vector equations of lengths d and N − 1,
respectively, where d is the dimension of the problem, and N is the number of species. To close the system,
constitutive relations must be specified; the following constitutive relations have been chosen for a mixture
of N species composed of L elements interacting in J reactions:
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where M is the mixture molecular mass, Dik the multi-component diffusion coefficient between the ith and
kth species, yi the mole fraction of the ith specie, DT

i the thermal diffusion coefficient of the ith specie,
T the temperature, µ the dynamic viscosity of the mixture, k the thermal conductivity of the mixture,
R the mixture gas constant, cP,i the specific heat at constant pressure, hi the specific enthalpy, and href

i

the specific enthalpy evaluated at the reference pressure of the ith specie, R the universal gas constant
which is 8.314 × 107 erg/(mole K), pref the reference pressure which is 1.01325× 106 dyne/cm2, T ref the
reference temperature which is 298.15 K, νij the net stoichiometric coefficient, ν

′

ij the forward stoichiometric

coefficient, and ν
′′

ij the reverse stoichiometric coefficient of the ith specie in the jth reaction, rj the reaction
rate, kj the Arrhenius model for the reactions’ temperature sensitivity, aj the collision frequency factor, βj

the temperature exponent, Ej the activation energy, and Kc
j the equilibrium constant for the jth reaction, go

i

the ith species’ chemical potential at the reference pressure, and φli the number of atoms of element l in the
ith species. Equations (5)-(7) give constitutive relations for mass, momentum, and energy diffusion, which
are an extended Fick’s law, a Newtonian stress-strain rate relation, and an extended Fourier’s law. The form
of both Fourier’s and Fick’s law is appropriate for a mixture of ideal gases, as detailed in a derivation by
Merk21 and summarized by Kee et al.22 and accounts for multicomponent mass diffusion as well as Soret
and DuFour effects. Equation (6) has used Stokes’ assumption. The reaction and mixture properties are
evaluated using the CHEMKIN

23 and TRANSPORT
22 packages, respectively. Note for inviscid calculations, all

diffusion coefficients, viscosity, and thermal conductivity are taken to be zero.
The use of continuum models like the Euler or Navier-Stokes equations is sometimes called into question

at the fine scales needed in detonation modeling. The mean-free path is the cut-off minimum length scale as-
sociated with continuum theories. Using the simple definition given by Vincenti and Kruger,24 the mean-free
path in a typical overdriven detonation is λ = M/

(√
2πNAρd2

)

≈ 3× 10−6 cm, where M ≈ 20.911 g/mole,
NA = 6.022×1023 molecules/mole is Avogadro’s constant, ρ ≈ 2.00×10−3 g/cm3, and d ≈ 3.621×10−8 cm
is the molecular collision diameter. Using an approximate kinematic viscosity in the burned gases of
ν = 7 × 10−1 cm2/s and a frozen sound speed in the reacted zone of c ≈ 9 × 104 cm/s, an approximate
viscous length scale is ν/c = 7.8 × 10−6 cm ≈ O(10−5 cm). The finest reaction length scale was calculated
by the spatial eigenvalue analysis method of Powers and Paolucci and was found to be near 10−4 cm. The
finest reaction length scales are near those of the viscous scales, and the viscous terms in the Navier-Stokes
equations may become important. The Knudsen number, Kn = λ/L, where L is a representative length
scale of the problem, is an indicator of how well continuum model captures the physics. Application of
continuum models requires Kn . O(1). The respective Knudsen numbers for the reactive and viscous length
scales yield Kn = 3 × 10−2 and Kn = 4 × 10−1, which are both smaller than O(1). Therefore, the inherent
physics in the inviscid and viscous models are within the continuum regime.

B. Computational method

Both inviscid and viscous calculations were performed. For the inviscid calculations two methods were
explored. The first was a shock-fitting strategy, adapted from Henrick et al.25 to allow for an arbitrary
number of chemical species as well as equations of state for ideal mixtures of calorically imperfect gases,
which enforces the shocked-state at the boundary. The underlying numerical scheme is a nominally fifth-
order spatial scheme which utilizes a central spatial scheme with special one-sided differences near the shock,
as the Euler equations were transformed into the shock-attached frame. The more common practice of shock-
capturing was used as a second method of investigation in the inviscid limit and made use of a nominally
second-order min-mod spatial scheme. Both strategies were applied using a uniform grid, using a local Lax-
Friedrichs scheme. The viscous calculations were performed using the Wavelet Adaptive Multiresolution
Representation (WAMR) method, first developed by Vasilyev and Paolucci.26, 27 This is an adaptive mesh
refinement technique, based on wavelet functions. These functions have compact support in both space and
scale, which allows for a large compression of data. Thus, many less points are needed to accurately represent
a flow-field relative to a wide variety of other approaches. It utilizes a user-specified control parameter that
correlates to the error tolerated in the solution allowing unnecessary points to be discarded. The WAMR
method has been applied successfully to a number of fluids problems.6, 28–33 For a detailed description of
the method in its current form, see Paolucci et al..33–35 In both the inviscid and viscous cases, temporal
integration was accomplished using a nominally fifth-order Runge-Kutta scheme.
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Table 1. Hydrogen-air reaction mechanism
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1 H2 + O2 ⇋ 2OH 1.70 × 1013 0.00 47780

2 OH + H2 ⇋ H2O + H 1.17 × 109 1.30 3626

3 H + O2 ⇋ OH + O 5.13 × 1016 −0.816 16507

4 O + H2 ⇋ OH + H 1.80 × 1010 1.00 8826

5 H + O2 + M ⇋ HO2 + Ma 2.10 × 1018 −1.00 0

6 H + O2 + O2 ⇋ HO2 + O2 6.70 × 1019 −1.42 0

7 H + O2 + N2 ⇋ HO2 + N2 6.70 × 1019 −1.42 0

8 OH + HO2 ⇋ H2O + O2 5.00 × 1013 0.00 1000

9 H + HO2 ⇋ 2OH 2.50 × 1014 0.00 1900

10 O + HO2 ⇋ O2 + OH 4.80 × 1013 0.00 100

11 2OH ⇋ O + H2O 6.00 × 108 1.30 0

12 H2 + M ⇋ H + H + Mb 2.23 × 1012 0.50 92600

13 O2 + M ⇋ O + O + M 1.85 × 1011 0.50 95560

14 H + OH + M ⇋ H2O + Mc 7.50 × 1023 −2.60 0

15 H + HO2 ⇋ H2 + O2 2.50 × 1013 0.00 700

16 HO2 + HO2 ⇋ H2O2 + O2 2.00 × 1012 0.00 0

17 H2O2 + M ⇋ OH + OH + M 1.30 × 1017 0.00 45500

18 H2O2 + H ⇋ HO2 + H2 1.60 × 1012 0.00 3800

19 H2O2 + OH ⇋ H2O + HO2 1.00 × 1013 0.00 1800

Enhanced third-body efficiencies with M :

Ma: αH2O = 21.0, αH2
= 3.30, αN2

= 0.00, αO2
= 0.00

Mb: αH2O = 6.00, αH = 2.00, αH2
= 3.00

Mc: αH2O = 20.0
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Figure 1: Structure of a steady inviscid, overdriven, hydrogen-air detonation, f = 1.15 for (a) pressure and
(b) mass fraction. The detonation front is traveling to the right.

C. Physical Problem

We consider a series of one-dimensional, overdriven, detonations of an initially stoichiometric mixture of
hydrogen-air (2H2 + O2 + 3.76N2) at ambient conditions of 293.15 K and 0.421 atm. This choice of ambient
conditions was made to enable comparison with previous calculations7, 8 as well as the shock-induced com-
bustion experiments of Lehr.36 The detailed kinetic mechanism employed in this study, shown in Table 1,
was used by Powers and Paolucci1 and drawn originally from Miller et al..37 It is composed of 19 reversible
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reactions, contains 9 species and 3 elements, where nitrogen is treated as a non-reacting species. At this
ambient condition, this mechanism yields a CJ detonation velocity of DCJ ∼ 1972 m/s which is similar to
that found by Sussman, DCJ ∼ 1958 m/s.

Overdrives ranging from 1.018 ≤ f ≤ 1.15 were examined, where the overdrive is f = D2
o/D2

CJ and Do the
initial detonation velocity. For the viscous calculations presented the inviscid steady-state profile was used
with a superimposed smooth transition from the shocked-state to the ambient condition over 5 × 10−4 cm.
Using the WAMR method, all viscous detonations were performed using the user-specified error control
parameter of ǫ = 5 × 10−4. This selection lead to a time-step on the order of 2 × 10−12 s and the finest
spatial resolution utilized of 6×10−6 cm, though finer scales were still allowed. All inviscid simulations were
initialized using a resolved steady-state solution. As these calculations were performed on a uniform grid,
the effect of resolution was examined. Typical simulation times for the inviscid calculations were ∼ 2 µs/per
24 CPU −hrs. for ∆x = 4 µm and for viscous calculations ∼ 1 µs/per 24 CPU −hrs. on an AMD 2.4 GHz
processor with a 512 kB cache.

III. Results

The typical steady-state structure of an overdriven hydrogen-air detonation is shown in Fig. 1. This
structure is calculated by integrating only spatial ordinary differential equations using a fifth-order Runge-
Kutta scheme with a spatial discretization of 10−8 cm. The pressure profile behind the front of a f = 1.15,
overdriven hydrogen-air detonation, shown in Fig. 1(a), begins to decrease near x = 10−2 cm, indicating
the end of the induction zone. The evolution of species behind the front, shown in Fig. 1(b), clearly depicts
the disparity in reaction length scales. The final relaxation time occurs near x = 100 cm, whereas the first
minor species, OH, begins to depart from power law growth near x = 5 × 10−4 cm. Thus in the inviscid
limit, to accurately capture the dynamics of the detonation the spatial discretization needed is on the order
of microns, and the macroscale must be on the order of centimeters or longer.
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Figure 2: Time-dependent behavior for an overdriven, f = 1.15, hydrogen-air detonation with an ambient
state of 0.421 atm and 293.15 K for both the inviscid (shock-fitting, ∆x = 4µm) and viscous cases.

A. Strongly overdriven detonations

For sufficiently large overdrives, the detonation is stable at long times. There are large early perturbations
present in the viscous case due to using an approximate viscous solution for initialization, as shown in Fig. 2.
However, by about 40 µs, the initial perturbations have decayed significantly, yielding a steadily propagating
wave similar to that in the inviscid case for an overdrive of f = 1.15.

B. High-frequency oscillating detonations

Below a critical overdrive, the detonation becomes unstable and begins to oscillate. A typical development
of a high-frequency oscillating detonation in the inviscid limit, predicted using the shock-fitting and a spatial
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Figure 3: Time-dependent behavior for an overdriven, f = 1.10, hydrogen-air detonation with an ambient
state of 0.421 atm and 293.15 K in the inviscid limit using shock-fitting and a resolution of ∆x = 4µm.
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Figure 4: Time-dependent behavior for an overdriven, f = 1.10, hydrogen-air detonation with an ambient
state of 0.421 atm and 293.15 K in the inviscid limit using (a) shock-capturing and (b) its comparison over
a shorter time period to shock-fitting predictions.
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Figure 5: Time-dependent behavior for an overdriven, f = 1.10, hydrogen-air detonation with an ambient
state of 0.421 atm and 293.15 K, for both the viscous and inviscid (shock-fitted, ∆x = 4 µm) cases.

resolution of ∆x = 4 µm, is shown in Fig. 3. At this overdrive, f = 1.10, the detonation takes around 60 µs
to saturate and becomes periodic with a frequency near 0.97 MHz. Using the more common technique of
shock-capturing in a moving reference frame and utilizing the same spatial resolution used in the shock-
fitting case (∆x = 4 µm), the predicted behavior is qualitatively different. The predicted behavior misses
the essential dynamics even though pulsations exist at long times, the amplitude and frequency are not in
agreement with grid refinement or shock-fitting predictions. In fact, as shown in Fig. 4(a), at ∆x = 2 µm
these spurious predicted oscillations are completely damped by artificial diffusion. Moreover, only after
refining the resolution to ∆x = 1 µm, do the essential dynamics of the high-frequency oscillations begin to
be captured properly. Even at this finer resolution, the use of shock-capturing in a moving reference frame
predicts both a spurious lower frequency modulation of the detonation pressure (shown in Fig. 4(a)) and as
well as a spurious higher frequency, as seen in Fig. 4(b). These spurious oscillations are most likely due to
the slight mis-match of the detonation speed and frame of reference speed, a phenomenon first suggested
by Quirk.38 Making use of shock-capturing in a non-moving reference frame removes both of these spurious
oscillations, yet at a grid resolution of ∆x = 1 µm, there remains a slight altering of the predicted frequency.
This altering effect will be discussed further in section 2. It should be noted the profiles shown in Fig. 4(b),
of the various methods and resolutions, were shifted minutely in time for ease of comparison between the
predictions. Examining the viscous analog of this particular overdrive, it is seen that it is also unstable.
However as seen in Fig. 5, there is a significant damping of the amplitude of oscillations, nearly 20% for this
particular overdrive. Nevertheless, the frequency of oscillations remains largely unaltered.

In his shock-induced combustion experiments around spherical projectiles in hydrogen-air mixtures,
Lehr36 observed longitudinal oscillations at frequency of 1.04 MHz for an inflow condition correspond-
ing to an overdrive of f ≈ 1.10, which is in agreement with the 0.97 MHz predicted frequency in the current
study. Yungster and Radhakrishan found a frequency of 1.06 MHz, for a similar overdrive of f = 1.09 with
an ambient temperature of 298 K. Thus, it seems that the instability observed by Lehr in multiple dimensions
is dominated by a one-dimensional instability mode and can be captured well by a one-dimensional model.

C. Appearance of a low-frequency mode

As the overdrive is lowered, the detonation becomes more unstable giving rise to amplitude growth of the
pulsations. Lowering the overdrive yet further, detonations with two main frequencies begin to appear.
These frequencies are about an order of magnitude different; with the higher being near 1 MHz and the
lower near 0.1 MHz. At a critical overdrive, near f ≈ 1.035, in the inviscid limit the lower frequency begins
to dominate at long times, and the pulsations grow in amplitude, as shown in Fig. 6 using shock-fitting with
a resolution of ∆x = 4 µm. Near this critical point, the competition between the high frequency and low
frequency mode persists at long time. During the transition from the high frequency to low frequency, the
pulsation amplitude grows as the inherent instability grows in strength and the detonation becomes more
unstable. The viscous analog’s behavior is compared with the prediction of shock-fitting in Fig. 7 where the
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inviscid case has been shifted in time by 270 µs. In this transition region, the viscous effects cause a decay of
the lower frequency at longer times whereas in the inviscid case the pulsations continue to grow in time. The
amount of energy that each of the frequencies carries will be discussed further in section 2. Longer times
need to be further investigated to definitively say that the addition of physical diffusion removes the low
frequency mode. A similar question that can be asked in the inviscid limit is whether or not the detonation
continues to evolve towards a detonation exhibiting only the low frequency mode. This likewise can be
answered by studying even longer times.
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Figure 6: Time-dependent behavior for an overdriven, f = 1.035, hydrogen-air detonation with an ambient
state of 0.421 atm and 293.15 K in the inviscid limit using shock-fitting and a resolution of ∆x = 4µm.
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Figure 7: Time-dependent behavior for an overdriven, f = 1.035, hydrogen-air detonation with an ambient
state of 0.421 atm and 293.15 K, for both the viscous and inviscid (shock-fitted, ∆x = 4 µm) cases. The
inviscid case has been shifted by 270 µs.

At a slightly lower overdrive of f = 1.023, the frequency competition is shorter lived in time, and the low
frequency mode dominates earlier. The prediction of the behavior at this overdrive for both shock-fitting
and shock-capturing for various resolutions are shown in Fig. 8(a). At long times, the low frequency-large
pulsations dominate as seen in the saturation of the maximum pressure; yet, the higher frequency persists
even at long times. This is seen in both the shock-fitting case shown and at the finer grids used in shock-
capturing. As in the strictly high-frequency mode, a finer resolution is needed when using a shock-capturing
scheme in a moving reference frame when compared with the predictions of shock-fitting. Using of the
same resolution (∆x = 4 µm) for shock-capturing as shock-fitting, there is a dramatic over-prediction of
the pulsation amplitude that persists through the duration of the simulation. Refining the resolution, to
∆x = 2 µm, begins to capture the competition of between the low and high-frequencies at early times;
however, at later times an over-prediction of the detonation pressure is seen. In fact as was the case for the
strictly high frequency mode, a more quantitative agreement with the shock-fitted results is not seen until
the resolution is refined to ∆x = 1 µm. At the finer resolutions, the behavior predicted by shock-capturing
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begins to converge with that predicted by shock-fitting as seen in the zoomed profile of detonation pressure
versus time curve in Fig. 8(b). The over-prediction of the detonation behavior is counter-intuitive as one
would expect the larger numerical viscosity at coarser grids to add stability. However, since the grid is coarser
the strength of the instability needed to facilitate the global instability is less as well. As the overdrive is
lowered the strength of the intrinsic instability grows stronger, due to the interaction of the hydrodynamics
and chemical reactions, and thus at the coarser resolution an easier opportunity for over-prediction of the
pulsation amplitudes exists.

D. Harmonic Analysis

It can be difficult to understand how the energy of the pulsation cycle is distributed from pressure versus
time plots, particularly when comparing several methods. Furthermore, it can be difficult to discern if
artificial viscosity or physical viscosity affects the frequency from these type of plots, especially in the cases
where more than a single frequency is present. To elucidate some of these ideas, harmonic analysis was used
to examine the detonation pressure-time series away from initialization. This type of analysis can reveal
important information about and individual signal, such as at what frequency is the majority of the energy
being transmitted. It is also powerful tool to analyze the differences and similarities between two signals.

To further clarify the issue of which frequencies are carrying energy of the detonation as well as as how
this changes with overdrive, the power spectral density (PSD) was used. The PSD of a signal describes how
the variance (or power) is distributed in frequency and it is real-valued for any real signal. It can be used to
reveal possible periodicities in a complex signal, similar to what has been seen in the two mode case predicted
at low overdrives. The variation between two signals can also be studied using PSD by making a comparison
between the two spectra. The PSD is simply defined as the Fourier Transform of the autocorrelation of a
signal.39, 40 The autocorrelation function, φ(t), of the signal, p(t), is defined as

φ(t) =

∫

∞

−∞

p(τ + t)p(τ)dτ. (22)

Therefore the PSD, Φ(f̄), is defined as

Φ(f̄) =

∫

∞

−∞

φ(τ) exp(−2πıf̄τ)dτ, (23)

where f̄ is the frequency. Using the Wiener-Khinchin theorem, the Fourier Transform of the autocorrelation,
Eqn. 23, can be written as the magnitude squared of the Fourier Transform of the signal. Thus the PSD is

Φ(f̄) =

∣

∣

∣

∣

∫

∞

−∞

p(t) exp(−2πıf̄t)dt

∣

∣

∣

∣

2

=
∣

∣P (f̄)
∣

∣

2
, (24)

where P (f̄) is the Fourier Transform of p(t).
The discrete, one-sided mean squared amplitude PSD was used in this study. In order to do this calcu-

lation, suppose we have N equally spaced sample values of the detonation pressure-time signal, p(t), such
that

pn = p(tn), tn = n∆t, n = 0, 1, 2, . . . , N − 1, (25)

then the standard discrete Fourier transform of p at mode k, Pk, can be calculated by:

Pk =
N−1
∑

n=0

pn exp

(

−2πınk

N

)

, k = 0, 1, 2, . . . , N/2, (26)

where mode k is associated with frequency, f̄k, which is defined only for the zero and positive frequencies as

f̄k =
k

N∆t
, k = 0, 1, 2, . . . , N/2. (27)

Then the discrete form of the one-sided, mean squared amplitude PSD, Φd,
41 can be calculated as:

Φd(0) =
1

N2
(PoPo) =

1

N2
|Po|2,
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Φd(f̄k) =
1

N2
(PkPk + PN−kPN−k) =

1

N2

(

|Pk|2 + |PN−k|2
)

≈ 2

N2
|Pk|2, k = 1, 2, . . . , (N/2 − 1), (28)

Φd(N/2) =
1

N2

(

PN/2PN/2

)

=
1

N2
|PN/2|2.

The choice of the single-sided PSD was made in order to avoid the aliasing effect at high frequencies, otherwise
Eqns. 28 are the discrete analog of Eqn. 24. The particular normalization chosen here, was done so that
the sum of the N/2 + 1 values of Φd is equal to the mean squared amplitude of the discrete pressure signal,

1

N

N−1
∑

n=0

|pn|2, by using Parseval’s theorem.
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Figure 9: The long time behavior PSD for several activation energies using the one-step model. (a) Shows
the non-dimensional PSD and (b) using decibels.

1. One-step dynamics

To ground the harmonic analysis in the context of a problem with well-known results from linear stability, let
us examine a few results from one-step kinetics. From Lee and Stewart42 and Sharpe,43 as well as others, it
is known that the first unstable mode for a CJ detonation in one-step kinetics, using ratio of specific heats of
γ = 1.2 and non-dimensional heat release of Q = 50, occurs at an activation energy of Ea ≈ 25.265. At any
activation energy above this critical point the steady-state detonation profile is unstable in nature at long
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times. For this combination of heat release and a ratio of specific heats, only a single linearly unstable mode
exists at activation energies below chaotic or nearly chaotic behavior. For example, at an activation energy
of Ea = 26.00, linear stability predicts a unstable mode at non-dimensional frequency of f̄f ≈ 0.0879.25

Henrick et al.25 were able to match well at early times the linear stability frequency and growth rates.
Furthermore at this activation energy in the inviscid limit, a period-1 detonation has been predicted at long
times.25, 44 Looking at the long time behavior at this activation energy through the frequency domain, it is
clear from Fig. 9(a) that nearly all of the energy is contained at single dominant frequency at the defined
spike in the PSD. The PSD presented is the non-dimensional power-frequency spectrum, where the steady
ZND detonation pressure has been used to non-dimensional pressure. All results presented for the one-
step kinetics were calculated using shock-fitting with 40 points in the half-reaction length. The predicted
fundamental frequency at long times for this activation energy is f̄f = 0.0849 which is a relative difference of
3.41% versus the linear stability frequency. The fundamental frequency is also known as the first harmonic of
the system. This difference is attributed to the saturation of nonlinear effects at long times. From Fig. 9(b)
it can be more easily ascertained that the harmonics of the fundamental mode also contain energy of the
detonation, though showing a power law decrease in decibels. Here instead of the traditional definition of
decibels [10 × log10(PSD/ max(PSD))] , all spectra shown in Fig. 9(b) have been scaled by the maximum
of the Ea = 27.7 spectrum so the magnitude of the different spectra would not be lost. Both Ng et al.44

and Henrick et al.25 report a sub-harmonic bifurcation process, where a lower frequency develops as the
activation energy is increased. As an example, for an activation energy Ea = 27.5, a pulsating detonation
with two distinct peaks in the detonation pressure-time signal is predicted. The PSD demonstrates the
appearance of this sub-harmonic frequency with some energy now being carried at the lower frequency. The
predicted fundamental frequency of f̄f = 0.0842, is 6.23% larger relative to that predicted by linear stability
of 0.0793. Similar results were reported by Henrick et al.25 for the period-1 and period-2 detonations, while
using 80 points in the half-reaction length. The nonlinear effect on the frequency has increased slightly
from the period-1 detonation at this higher activation energy, and is manifested in the multi-mode nature
of the detonation. Using an eigenvalue decomposition of perturbations to a multi-dimensional detonation
wave in the one-step model, Massa et al.45 found that the least stable perturbations occurred near this first
sub-harmonic suggesting that even in multiple dimensions the dominant mechanism is similar to that seen in
galloping case of one dimension. Examining a just slightly higher activation energy of Ea = 27.7, a period-4
detonation is formed indicated by the f̄f/4 frequency present in Fig. 9(b). Examining the viscous analog
of this particular activation energy, using the results from Romick et al.,18 it can be seen that viscosity
dramatically changes the predicted PSD, from a period-4 detonation to a period-1 behavior to accompany a
shift in the fundamental frequency from 0.0839 in the inviscid case to 0.0787, which is only 0.12% from the
prediction of linear stability of 0.0786. Moreover, there has also been a significant reduction in the amplitude
of the peak in the spectrum.

2. Hydrogen-air dynamics

Similar to the behavior of the one-step kinetics model, as activation energy is increased, hydrogen-air det-
onations first form a high frequency instability, and then as the overdrive is lowered this is followed by the
appearance of a lower frequency mode. However, unlike the one-step model the hydrogen-air detonations at
these ambient conditions do not go through a period-doubling process so the lower frequency is not explicitly
a sub-harmonic of the higher frequency. The PSDs presented are for the detonation pressure-time signal,
where the pressure has been made non-dimensional using the steady state ZND pressure.

As stated in section B, below a critical overdrive the detonation becomes unstable, and a high frequency
pulsating detonation develops. For an overdrive (f = 1.12) just below this critical point, an oscillating
detonation with a small amplitude of oscillation is predicted. The PSD in Fig. 10(a) is not able to capture
this behavior, as the amplitude of oscillations at this overdrive is significantly smaller than the amplitudes
for overdrives further below the neutral stability overdrive. However, looking at the the PSD in decibels, as
in Fig. 10(b), a definitive spike can be seen at 1.03 MHz. Again it should be noted, that in order to not
lose information about the magnitude of the spectrum the maximum of the f = 1.075 spectrum was used
for scaling. Even for a stable detonation (f = 1.15) there is a small peak; however, the magnitude of this
peak is minute and would likely disappear completely examining even longer times. Examining overdrives
further below the neutral stability point, the amplitude of oscillations are significantly larger than those
near the stability point and continue to grow as the overdrive is lowered. Furthermore, as the overdrive
is lowered the harmonics of the fundamental frequency also grow in amplitude as demonstrated in Fig. 10,
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Figure 10: The long time behavior PSD for several overdriven hydrogen-air detonations with an ambient
state of 0.421 atm and 293.15 K near the neutral stability point in the inviscid limit using shock-fitting with
∆x = 4 µm. (a) Shows the non-dimensional PSD and (b) shows the PSD in decibels.
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though the same power law decrease observed in the one-step model is also predicted in detailed kinetics.
The concentration of the energy at a single frequency gives rise to the predicted regular oscillations seen
at the fundamental frequency in this high frequency mode. As the overdrive is lowered, the location of the
fundamental frequency shifts to lower frequencies. At an overdrive of f = 1.12 the fundamental frequency
predicted is f̄f = 1.03 MHz, whereas at f = 1.075 the first harmonic has shifted to f̄f = 0.901 MHz.

The predicted higher harmonics, which for the high frequency mode are in the range of 1 MHz to 5 MHz,
are well below the cut-off frequency. In the inviscid case, the largest time-step used was on the order of
8 × 10−10 s. This time-step size yields a sampling frequency on the order of 1 GHz, and a cutoff frequency
is near 500 MHz. At these much higher values of frequency, it maybe pertinent to examine the continuum

limit. According with Vincenti and Kruger,24 the collision time τc = λ/
√

C̄2, where C̄2 is the mean-square
molecular speed, given by C̄2 = 3p/ρ and λ the mean-free path. It was shown in section II, that behind the
typical detonation front studied here, that the mean-free path λ ≈ 3 × 10−6cm. In the typical detonation
studied, the front pressure is O(13 atm), and front density O(2×10−3 g/cm3). Therefore, the collision times
at the detonation front are O(10−11 s); however, for the continuum model to hold, several of these collision
times must pass. Thus in the continuum limit, any predicted frequency above approximately 10 GHz must
be discarded as non-physical; this limit is well above the predicted fundamental frequency and its harmonics.
Furthermore, a more stringent time-scale to consider is the vibrational relaxation times at the detonation
front as these can be far larger than the collision times. A correlation, found by Dove and Teitelbaum,46

gives the vibrational relaxation times of the H2 − H2 interaction on the order of 10−7 s, for the typical
detonation front. Therefore, any predicted frequency above 10 MHz would likely be amiss in neglecting the
vibrational relaxation explicitly. As seen in Fig. 10(b), there is a power law decrease in the amount of energy
the higher harmonics carry. The frequencies near the relaxation time limit are around the tenth harmonic
and are predicted to carry a small amount of energy.

One can calculate a rough estimate of the length scales for these oscillations in a manner similar to that
given by Al-Khateeb et al.,20 who estimate the length scale as ℓ =

√
Dikτ. For example, the fine diffusion

scale diffusion mode is estimated by using the smallest diffusion coefficient, Dik ≈ O(101 cm2/s), and
higher harmonics’ time scale and thus yields ℓ ≈ O(10−4 cm). Likewise using largest diffusion coefficient,
Dik ≈ O(102 cm2/s), and the first harmonic’s time scale, a coarsest diffusion length scale can be calculated,
and gives a coarsest length scale estimate is ℓ ≈ O(10−2 cm). This diffusion length scale is similar to that
predicted when using advection speeds in the detonation products, u = O(1×105 cm/s), and the time scales
from the harmonic analysis. The higher harmonics near 5 MHz yield a wavelength of ℓ = uτ ≈ O(10−2 cm).
The harmonics above this frequency, as stated earlier, have small amplitude peaks and thus carry only a
small amount of the overall energy.

As the second critical overdrive is approached, the pulsations begin to exhibit multiple frequencies. Below
this critical point, the long time behavior becomes dominated by the low frequency (∼ 0.1 MHz) mode and
the majority of the energy is carried in lower frequencies, as seen in Fig. 11(a). Examining the long times
(t > 150 µs) of several lower overdrives in the frequency domain, it becomes clear that the amplitude
growth of the oscillations is accompanied by a significant shift in the fundamental frequency. At the neutral
stability point, the fundamental frequency is near 1 MHz and it continuously shifts to lower frequencies as
the overdrive is lowered. Eventually reaching a frequency of 0.713 MHz at f = 1.035. Below this point,
there is a drastic change in the fundamental frequency to 0.110 MHz at f = 1.029, as shown by Fig. 11(b).
However, the second largest peak in the PSD does not occur at the second harmonic of the fundamental
frequency during this transition region, but rather it stays near 0.591 MHz. This indicates that there is a
clear competition between the two modes. The second harmonic becomes the second largest energy content
holder at an overdrive of f = 1.018 which has a fundamental frequency of f̄f = 0.105 MHz. Even at this
low overdrive, the detonation exhibits the high frequency mode at early times as indicated by the temporal
evolution shown in Fig. 12(a). However at this overdrive the transition from the high to low frequency
happens quickly, as indicated by the PSD shown in Fig. 12(b). At early time, the PSDs show a large
spike near 0.7 MHz; however, as seen in the temporal evolution, the strength of the high frequency mode
weakens. In the second PSD, for the time range of 50 < t < 150 µs, the low frequency is already dominant.
Furthermore at long time, the PSD shows very strong peaks at 0.105 MHz and at the second harmonic
indicating most of the energy is being carried at these two frequencies.

Effect of shock-capturing The results of the more common technique of shock-capturing technique
were compared with those from the negligible artificial viscosity shock-fitting technique. For an overdrive
of f = 1.10, the long time PSDs were computed for shock-capturing using ∆x = 1 µm and ∆x = 1/2 µm
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Figure 11: The long time behavior PSD for several overdriven hydrogen-air detonations with an ambient
state of 0.421 atm and 293.15 K near the second bifurcation point in the inviscid limit using shock-fitting
with ∆x = 4 µm. (a) Shows the non-dimensional PSD and (b) shows the PSD in decibels.
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0.421 atm and 293.15 K in the inviscid limit using shock-fitting and ∆x = 4 µm in the (a) time-domain and
(b) frequency domain for several ranges in time.

in a moving reference frame, ∆x = 1 µm in a non-moving frame of reference as well as using ∆x = 4 µm
and ∆x = 2 µm with shock-fitting, and Fig. 13(a) shows zoomed profile near the predicted fundamental
frequency. As seen earlier, at the coarser grids the shock-capturing technique smears the detonation front
enough to cause the predicted behavior to be stable at long times and thus those PSDs are not shown
here. By zooming in on the first harmonic, more detailed information can be gathered about the different
predictions. As indicated in section B, there is modification of the predicted fundamental frequency using the
shock-capturing in a non-moving frame, but only by 1%. However, the amplitude matches well with both the
shock-fitting results and the finest resolution used in shock-capturing in a moving reference frame. Shock-
capturing utilizing a micron grid size in a moving reference frame under predicts the amplitude of oscillation
slightly, but predicts the fundamental frequency well. Since shock-fitting enforces the jump conditions, it can
properly capture the dynamics of the detonation at coarser grids. It gives a prediction of f̄f = 0.928 MHz
at the four micron resolution and f̄f = 0.925 MHz at the two micron resolution in agreement with shock-
capturing at a half micron resolution in a moving reference frame, which predicts f̄f = 0.925 MHz.

When the dynamics are more complex at lower overdrives, the comparison between shock-fitting and
shock-capturing becomes more difficult in the time domain as demonstrated by Fig. 8. The long time PSD
for several cases of shock-capturing are compared to shock-fitting at an overdrive of f = 1.023, shown in
Fig. 13(b). At this overdrive, the coarsest grids used in the shock-capturing scheme dramatically over-predict
the amplitude of pulsations, as well as mis-predicting the pulsation frequency. At a micron grid resolution, as
in the higher overdrive case, the shock-capturing results begin to correspond to those predicted using shock-
fitting with a grid four times as coarse. The PSD is rather coarse for all cases considered here indicating a
longer time sample should be taken in the future to further validate these findings.

Effect of physical diffusion Several overdrives were examined to illustrate the long time effects of
adding physical viscosity to the model of a detonation with detailed kinetics. The PSDs were calculated in
decibels (using the respective inviscid maximum to calculate the diffusive spectrum) for overdrives ranging
from 1.035 ≤ f ≤ 1.12 are shown in Fig. 14. The frequency predicted by the inviscid calculations largely
remains unchanged by adding physical diffusion when the viscous analog shows the same mode, even at the
most unstable condition examined (f = 1.035) where multiple frequencies persist at longer times, shown in
Fig. 14(d). The largest modulation in the fundamental frequency predicted was 1.3% at f = 1.055, which
is shown in Fig. 14(c). However near the stability boundary (f = 1.12), the predicted behavior frequency
is significantly altered by the addition of viscosity. In fact the small pulsations are damped completely at
long time, thus the diffusive PSD shows no resemblance to that of inviscid case in Fig. 14(a). In all cases
examined the magnitude of the fundamental frequency in the PSD is decreased by the addition of physical
viscosity in all cases tested. Furthermore, not only does diffusion reduce the first harmonic’s magnitude,
but it also reduces the magnitude of the second harmonic. In fact, the second harmonic’s magnitude is
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Figure 13: The PSD for an overdriven, hydrogen-air detonation with an ambient state of 0.421 atm and
293.15 K in the inviscid limit using both shock-capturing and shock-fitting showing the fundamental fre-
quency for (a) f = 1.10 and (b) f = 1.023.

reduced more than the that of the first harmonic, indicating diffusion is making the detonations more
regular. This reduction effect on the magnitude of the peaks decreases as the overdrive is lowered. The
lowest overdrive examined shows the strongest correlation between the viscous and inviscid predictions, as
shown in Fig. 14(d). This indicates that as the intrinsic instability of the detonation, which caused by the
interaction of the hydrodynamics and chemical reactions, grows in strength the addition of physical viscosity
has smaller effect, though longer times need to be further examined as indicated in section C.

IV. Conclusions

An investigation of one-dimensional, unsteady, overdriven, hydrogen-air detonations has shown that as
the initial overdrive is decreased, the long time behavior of the detonation becomes more complex, which
is consistent with previous studies.4, 7, 8 Three distinct phases in the long time behavior were found for an
initially stoichiometric hydrogen-air mixture at 0.421 atm and 293.15 K. At high overdrives, the detonation
is stable. Below a critical overdrive, a pulsating detonation is achieved with a single frequency predicted. As
the overdrive is lowered the frequency at which the detonation pulsates shifts to lower frequencies and the
amplitude of the pulsations grow. Lowering the overdrive yet further, a second critical overdrive is found
below which the pulsating detonation begins to show multiple frequencies and much larger pulsations. In
addition, the predicted 0.97 MHz frequency for a f = 1.10 overdriven detonation agrees with the frequency of
1.04 MHz observed by Lehr in his experiments of shock-induced combustion flow around spherical projectiles
in a hydrogen-air mixture at a inflow corresponding to a similar overdrive.

Harmonic analysis was used to examine the frequency domain and energy content of the detonation
cycles. Furthermore, the PSD for the long-time behavior was calculated at various overdrives to examine
how the long-time energy variance changes with the initial overdrive of the detonation. As the overdrive is
lowered, the magnitude of the main peak (first harmonic) grows in strength indicating that the strength of the
instability is growing as overdrive is lowered. Additionally, the location of the first harmonic shifts to lower
frequencies signifying the period of the repeating detonation is expanding as the overdrive is lowered. At the
second bifurcation in behavior, there is drastic change in the fundamental frequency and a second frequency
below that predicted for higher overdrives appears. This change occurs at an overdrive of f = 1.029, with
the frequency changing from 0.71 MHz to 0.11 MHz. This is similar to what is seen in the one-step model
as the activation energy is increased. However, unlike the one-step kinetics model the hydrogen-air does
not undergo a period doubling process at these ambient conditions. Moreover, this lower frequency is not
an explicit sub-harmonic of the fundamental frequency. It was also found that a transition region exists in
which the two main frequencies persist at long times.

The common use of shock-capturing was examined and compared with shock-fitting, and it was found
that in the unstable regime a finer resolution was necessary to capture the dynamics of the detonation.
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Figure 14: The PSD for both the inviscid and viscous predictions at long times for hydrogen-air detonation
at overdrives of (a) f = 1.12, (b) f = 1.09, (c) f = 1.055, and (d) f = 1.035.

In both cases presented here, a four times finer grid was necessary to predict the essential dynamics with
shock-capturing than shock-fitting. It was also demonstrated that using shock-capturing in moving reference
frame gives rise to spurious oscillations at coarser grids and care needs to be taken to not give a physical
interpretation of these non-physical oscillations.

The inclusion of physical mass, momentum and energy has been seen to have a stabilizing effect on
the long time behavior in all unstable cases examined. The PSD comparison of the inviscid and viscous
predictions shows an overall reduction in the peak magnitude at all cases examined, including at overdrives
leading mixed mode detonations. Furthermore, the amount of energy contained at the higher harmonics is
reduced in a similar way to that of the first harmonic frequency. The magnitude reduction effect is weakened
as the overdrive is lowered closer to the CJ detonation velocity for the cases examined here. This is caused
by the increase in the strength of the intrinsic instability, due to the interaction of the hydrodynamics and
the chemical reactions. Away from the bifurcation limits, it appears that the addition of physical viscosity
has a minimal effect on the predicted fundamental frequency. Yet, further investigation is needed near the
bifurcation limits, to illustrate how these points are altered by the addition of physical viscosity due to non-
linear effects. Additionally, further cases will be examined for the longer time behavior and lower overdrives
to gain further insight into the effect of physical diffusion and its importance near the second bifurcation in
behavior.
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