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Motivation

e Computational tools are critical in modeling of high

speed reactive flow.

e Steady wave calculations reveal sub-micron scale struc-
tures in detonations with detailed kinetics (Powers and
Paolucci, AIAA J., 2005).

® Small structures are continuum manifestation of molec-

ular collisions.

e \We explore the transient behavior of detonations with

fully resolved detailed kinetics.




Verification and Validation
e verification: solving the equations right (math).
e validation: solving the right equations (physics).

e Main focus here on verification

e Some limited validation possible, but detailed valida-

tion awaits more robust measurement techniques.

e Verification and validation always necessary but never

sufficient: finite uncertainty must be tolerated.




Some Length Scales inherent in PBXs

Micrograph of PBX 9501 (from C. Skidmore)




Some Length Scales Due to Diffusion

Shock Rise in Aluminum (from V. Whitley)

—_~
»
0
1S
X
SN
>
=
3]
e
o
>
@
3]
©
‘E
=]
)
o
o
—
L

10 ps rise time at 10 km /s yields scale of 10~ m.




Modeling Issues for PBXs:

e Inherently 3D, multi-component mixture,
e Massive disparity in scales,

e Many parameters are needed and many are unknown™:
— elastic constants
— equation of states
— thermal conductivities, viscosities for constituents
— heat capacities
— reaction rates

— species diffusion

*see Menikoff and Sewell, CTM 2002




Before climbing Everest, we need to step back a bit...

Let’s examine detonation dynamics of gases...
1. Inviscid, one-step Arrhenius chemistry

2. Inviscid, detailed chemistry

3. Diffusive, one-step Arrhenius chemistry

4. Diffusive, detailed chemistry




Model: Reactive Euler Equations

e one-dimensional,
® unsteady,

® |nviscid,

e detailed mass action kinetics with Arrhenius tempera-

ture dependency,

e ideal mixture of calorically imperfect ideal gases




General Review of Pulsating Detonations

e Erpenbeck, Phys. Fluids, 1962,

e Fickett and Wood, Phys. Fluids, 1966,

e |ee and Stewart, JFM, 1990,

e Bourlioux, et al., SIAM J. Appl. Math., 1991,
e He and Lee, Phys. Fluids, 1995,

e Short, SIAM J. Appl. Math., 1997,

e Sharpe, Proc. R. Soc., 1997.




Review of Recent Work of Special Relevance

e Kasimov and Stewart, Phys. Fluids, 2004: published
detailed discussion of limit cycle behavior with shock-

fitting; error ~ O(Ax).

e Ng, Higgins, Kiyanda, Radulescu, Lee, Bates, and
Nikiforakis, CTM, in press, 2005: in addition, consid-

ered transition to chaos; error ~ O(Ax).

e Present study similar to above, but error ~ O(A:z:5).




Model: Reactive Euler Equations

e one-dimensional,
e unsteady,

® |nviscid,

e one step kinetics with finite activation energy,

e calorically perfect ideal gases with identical molecular

masses and specific heats.




Model: Reactive Euler Equations




Unsteady Shock Jump Equations

IOO(D(t) o uO)?




Model Refinement

e Transform to shock attached frame via

r—¢— /OtD(T)dT,

e Use jump conditions to develop shock-change equa-

tion for shock acceleration:

D (D) (2 a2y 4.




Numerical Method

e point-wise method of lines,
e uniform spatial grid,

e fifth order spatial discretization (WENO5M) takes PDEs

iInto ODESs In time only,

e fifth order explicit Runge-Kutta temporal discretization

to solve ODEs.

e detalils in Henrick, Aslam, Powers, JCP, 2006.




Numerical Simulations
® pO — 11p0 — 11[/1/2 — ]-,q: 50,"}/ — 12,

e Activation energy, £/, a variable bifurcation parameter,
20 < B < 284,

o CJ velocity: Doy = V11 4+ 4/ % ~ 6.80947463,

e from 10 to 200 points in L /s,
e initial steady C'.J state perturbed by truncation error,

e integrated in time until limit cycle behavior realized.




Stable Case, £/ = 25: Kasimov's Shock-Fitting
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® minimum error in D:

~ 940 x 1073,

e Error in D converges

at O(AxtO).




Stable Case, £ = 25: Improved Shock-Fitting
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® N1/2 . 20, 40,

e minimum error in D:
~ 6.00 x 1078, for
N1/2 — 40

e Error in D converges

at O(Ax>").




Linearly Unstable, Non-linearly Stable Case: E = 26

e One linearly unstable

mode, stabilized by

non-linear effects,

e Growth rate and fre-

guency match linear

theory to five decimal

places.




D, d—lt) Phase Plane: £ = 26

e Unstable spiral at early

L cycle

| Stationary

limit
'S

time, stable period-1

limit cycle at late time,

e Bifurcation point of
= 25.265 4 0.005

agrees with linear

stability theory.




Period Doubling: £ = 27.35

® N1/2 — 20,

e Bifurcation to period-

2 oscillation at £ =

27.1875 = 0.0025.




D, % Phase Plane: £/ = 27.35

stationary
limit cycle

e Long time period-2
limit cycle,
e Similar to independent

results of Sharpe and

Ng.




Transition to Chaos and Feigenbaum’s Number

E

— En

lim §,, = —

n—oo Eny1— By

—1 _ 1.669201. .

o o

b,

Eni1 — E;

On,

25.265 = 0.005
27.1875 = 0.0025
27.6850 &= 0.001
27.8017 £ 0.0002
27.82675 = 0.00005

1.9225 4+ 0.0075
0.4975 £+ 0.0325
0.1167 = 0.0012
0.02505 £ 0.00025

3.86 £ 0.05
4.26 £ 0.08
4.66 £ 0.09

4.669201 . ..




Bifurcation Diagram

riod 2"

; <+ Stable Period 5

27.1875 < E < 27.6850
# Stable Pe

Period 21

25.265 < E < 27.1875,

Period 2° (single period mode)
-

Stable

Period 6
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| Period 3

E < 25.265, linearly stable ?
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D versus t for Increasing £

3900




Model: Reactive Euler PDEs with Detailed Kinetics




Computational Methods

e Steady wave structure
— LSODE solver with IMSL DNEQNF for root finding
— Ten second run time on single processor machine.

— see Powers and Paolucci, AIAA J., 2005.

e Unsteady wave structure

— Shock fitting coupled with a high order method for

continuous regions

— see Henrick, Aslam, Powers, J. Comp. Phys., 2006,

for full details on shock fitting




Ozone Reaction Kinetics

: f f f
Reaction a;, a; ﬁj o kB, EY

O3+ MS 0Oy +0+M | 6.76 x10° | 2.50 | 1.01 x 10*2
1.18 x 10% | 3.50 0.00
O + O3 = 20, 458 x 10° | 2.50 | 2.51 x 10!
1.18 x 10 | 2.50 | 4.15 x 10*?
Oy +M<=20+ M 5.71 x 10° | 2.50 | 4.91 x 102
2.47 x 102 | 3.50 0.00

see Margolis, J. Comp. Phys., 1978, or Hirschfelder, et al.,
J. Chem. Phys., 1953.




Validation: Comparison with Observation

e Streng, et al., J. Chem. Phys., 1958.

e p, = 1.01325 x 10° dyne/cm?*, T, = 298.15 K,
Yo, = 1, Yo, = 0, Yo = 0.

Value Streng, et al. this study

1.863 x 10° ¢m/s 1.936555 x 10° ¢m/s
3340 K 3571.4 K
3.1188 x 107 dyne/cm? | 3.4111 x 107 dyne/cm?

Slight overdrive to preclude interior sonic points.




Stable Strongly Overdriven Case: Length Scales

D =25 x10°cm/s.
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Mean-Free-Path Estimate

e The mixture mean-free-path scale is the cutoff mini-

mum length scale associated with continuum theories.

e A simple estimate for this scale is given by Vincenti

and Kruger, '65:

M 1077
V2N Td?p

Cnfp = cm.




Stable Strongly Overdriven Case: Mass Fractions

D =25x10°cm/s.




Stable Strongly Overdriven Case: Temperature

D =25 x10°cm/s.




Stable Strongly Overdriven Case: Pressure

D =25 x10°cm/s.

8
1.2x10




Stable Strongly Overdriven Case: Transient

Behavior for various resolutions

Initialize with steady structure of D = 2.5 x 10° cm/s.

2.505x 10°

2.500 x 10° k.

2.495x 10° 5 Ax=2.5x10"% cm
b — — “Ax=5x10%cm
Ax=1x10"7" cm

2490x10° -

2.485x10° -

2480x10° . . — .
4x10 6x10 8x10 1x10

t(s)




Unstable Moderately Overdriven Case: Transient

Behavior

Initialize with steady structure of D = 2 x 10° cm/s.

4x10°

Ax=2x10"7 cm




Effect of Resolution on Unstable Moderately

Overdriven Case

Ax Numerical Result

1 x10~7" em Unstable Pulsation

2% 10~ 7 em Unstable Pulsation

4 x 10~ em Unstable Pulsation

8 x 107" em | Oy mass fraction > 1

1.6 x 1079 em | O5 mass fraction > 1

e Algorithm Failure for Insufficient Resolution

e At low resolution, one misses critical dynamics




Long Time Relative Maxima in /D, versus Inverse

Overdrive

Linearly . ®

Linearly |Unstable o
Stable| 5 .
< .

Period 2
Bifurcation




Diffusive Modeling in Gaseous Detonation




Diffusive Modeling in Gaseous Detonation




To compare with previous one-step work...

® Need to choose scale ratios between diffusion and

reaction
e Choose half-reaction length scale to be 1um.

e Choose diffusive length scale to be 100nm

D =10"*m?/s,
k=10""W/m/K,
iw=10"* Ns/m?,

For p, = 1 kg/m?, Le = Sc = Pr = 1.




Numerical Methods

e 5th Order WENO Schemes for Hyperbolic Compo-

nents

® 4th Order Central Difference Scheme for Parabolic

Components

e 3rd Order Explicit Runge-Kutta Time Integration

e Expect Fully 4th Order Convergence Rates Under

Resolution




Density for a stable detonation £ = 25
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Density for a stable detonation £ = 25 - zoom

t=50x10°s

1.5 1.52 154 156 1.58




Pressure for a stable detonation £ = 25 -zoom
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Pressure vs. time for a unstable detonation E = 28
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Pressure vs. time for a unstable detonation

E =295

Period Doubling




Pressure vs. time for a unstable detonation E = 32
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Chaotic Dynamics




Diffusive Bifurcation Diagram

With a relatively small amount of diffusion, a substantial

stabilization occurs.
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Conclusions

Unsteady detonation dynamics can be accurately simulated when
sub-micron scale structures admitted by detailed kinetics are

captured with ultra-fine grids.

Shock fitting coupled with high order spatial discretization assures

numerical corruption is minimal.

For resolved diffusive effects, relatively simple numerical methods

work fine.

Predicted detonation dynamics consistent with results from invis-

cid models...

At these sub-micron length scales, diffusion plays a substantial

role.




