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This study presents a two-dimensional simulation of hypersonic flow around a cylindrical
geometry along with the development and verification of a line-by-line emission and absorp-
tion spectral database for nonequilibrium flows characterized by two temperatures. The spec-
tral databases have currently been constructed for atomic and molecular species in five-species
air-chemical models with translational and vibrational temperatures spanning 300 – 4800 K,
number density regimes from 1 × 1010 – 1 × 1020 cm−3, and for spectral ranges in the vacuum
ultraviolet and infrared. In order to gather the radiative properties of relevant hypersonic
thermodynamic states, we employ a bicubic polynomial interpolation between temperatures
and spline interpolation between number densities. The spectral database is accessed with a
finite volume Photon Monte Carlo method and the model is verified through reconstruction
of absorbtion coefficients and comparisons with exact solutions for radiative transfer in one-
dimensional gas mixtures. Then sample radiation calculations are performed on a snapshot in
time of the two-dimensional flow where there is substantial energy in both the post-shock zone
and wake region.

I. Nomenclature

𝐼 = radiative intensity (W m−2)
𝜅 = absorption coefficient (m−1)
𝜅𝑡𝑟 = translational-rotational thermal conductivity (W m−1 K−1)
𝜅𝑣𝑒 = vibrational-electronic thermal conductivity (W m−1 K−1)
𝜖 = emission coefficient (m−1)
𝜆 = wavelength (m) or dilation viscosity (Pa s)
𝑠 = line of sight
𝑞rad,𝑖 = radiative heat flux vector (W m−3)
𝑞𝑡𝑟 ,𝑖 = translational-rotational heat flux vector (W m−3)
𝑞𝑣𝑒,𝑖 = vibrational-electronic heat flux vector (W m−3)
Ω = solid angle
𝑛 = number of particles
𝑢 = upper non-degenerate state
𝑙 = lower non-degenerate state
𝑔 = degeneracy
𝐵𝑙𝑢 = Einstein coefficient for stimulated emission (J−1 m3 s−2)
𝐵𝑢𝑙 = Einstein coefficient for absorption (J−1 m3 s−2)
𝐴𝑢𝑙 = Einstein coefficient for spontaneous emission (s−1)
ℎ = Planck’s constant (J s)
𝑐 = speed of light (m s−1)
R𝜆 = random number relation for wavelength
R = universal gas constant (J mol−1 K−1)
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𝑠 = distance traveled (m)
𝜌 = density (kg m−3)
𝜌𝑠 = density of specie 𝑠 (kg m−3)
𝑢𝑖 = velocity vector (m s−1)
𝑢 = 𝑥-direction velocity (m s−1)
𝑣 = 𝑦-direction velocity (m s−1)
𝑤 = 𝑧-direction velocity (m s−1)
𝑒 = mass specific internal energy (m2 s−2)
𝑒𝑡𝑟 = mass specific translational-rotational internal energy (m2 s−2)
𝐸 = internal energy (J m−3)
𝐸𝑣𝑒 = vibrational-electronic internal energy (J m−3)
𝐸𝑡 = translational internal energy (J m−3)
𝑃 = pressure (N m−2)
𝑃𝑒 = pressure due to free electrons (N m−2)
𝑃𝑠 = partial pressure due to specie 𝑠 (N m−2)
𝜇 = dynamic viscosity (Pa s)
𝛿𝑖 𝑗 = Kronecker delta (-)
𝑇 = temperature (K)
𝑇𝑡𝑟 = translational-rotational temperature (K)
𝑇𝑣𝑒 = vibrational-electronic temperature (K)
𝑇𝑣𝑒,𝑠 = vibrational-electronic temperature of specie 𝑠 (K)
𝑘𝐵 = Boltzmann constant (J mol−1 K−1)
Δ𝑠,𝑟 = binary collision integral (m s)

II. Introduction

COMPLEX aerodynamic and thermal environments in hypersonic flows emerge from various physical processes that
occur at different time and length scales. As a vehicle travels at hypersonic speeds, it is met with resistance from

the surrounding air which leads to the formation of a shock wave. This shock wave causes the flow to decelerate
and compress where collisional-radiative (CR) processes arise and kinetic energy is converted into thermal energy
[1–3]. The high temperature gas in the post-shock zone prompts emission and absorption of radiative energy through
photon transfer which can modify the chemical and energy makeup of the environment [4–10]. Such conditions are
typically highly nongray, and the photon energy transfer depends on the spectral distribution of absorption and emission
coefficients of the various participating species in the gas mixture.

Exact solutions for such problems are typically only available in one-dimensional domains. This has prompted
the development of a suite of approximate solvers to realize radiative transfer in complex environments. In recent
years, it has become possible to perform efficient Monte Carlo-based line-by-line (LBL) accurate radiative transfer
calculations in multidimensional reacting flows where the all of the internal energy modes can be characterized by
a single temperature [11–14]. In these calculations, the absorption coefficients and so-called wavenumber-random
number relations are stored for different species at various thermodynamic states. These relations allow representative
photon bundles, or rays, to carry statistically significant wavenumbers which can be found efficiently with a simple
uniform random number generator. Originally developed by Wang and Modest [15], a variation of the wavenumber
selection scheme has also been applied for hypersonic flows in nonequilibrium [16–19]. Sohn et al. constructed a such
a spectral module for emission random number databases based on line-strength factors for emission and absorption
coefficients where the electronic state populations for both atoms and molecules were computed on the fly with the
quasi-steady state (QSS) assumption. This module was implemented for atomic N and O, and diatomic N+

2 , N2, O2,
and NO and full flow field calculations were realized with a Monte Carlo method.

This current work presents new simulations of hypersonic flow around a blunt body and develops a spectral database
method for nonequilibrium flows characterized by two temperatures and couples it with a Monte Carlo radiation solver.
We build a database of absorption and emission coefficients where a multitemperature Boltzmann model is implemented
for the electronic state populations. The paper is organized as follows. Section III introduces the computational fluid
mechanical model. Section IV introduces the nonequilibrium radiation model, and Section V presents applications of
the Monte Carlo radiation solver.
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III. Computational fluid mechanical model

A. Governing equations
The unsteady, compressible, non-equilibrium Navier-Stokes equations were discretized and solved with appropriate

boundary conditions and geometry, described later. The governing equations were identical to those described in
Casseau et al. [20, 21] and are summarized in this section. The various balance equations are shown below in a
generalized vector form as

𝜕U
𝜕𝑡

+ 𝜕

𝜕𝑥𝑖

(
F𝑖,inv − F𝑖,vis

)
= ¤W , (1)

which assumes a mixture of 𝑁𝑠 species and 𝑁𝑚 molecules. Here, the first equation is mass conservation, followed by
the species balance equations, then 𝑥-, 𝑦-, and 𝑧-direction momentum balances, then the vibrational energy balance,
and lastly, a total energy balance. The vector U contains the conserved quantities and is defined as

U ≡

©«

𝜌

𝜌𝑠

𝜌𝑢

𝜌𝑣

𝜌𝑤

𝐸𝑣𝑒,𝑚

𝐸

ª®®®®®®®®®®®®¬
, (2)

where 𝜌 is density, 𝜌𝑠 is the density of species 𝑠, 𝑢 is the 𝑥-direction velocity, 𝑣 is the 𝑦-direction velocity, 𝑤 is the
𝑧-direction velocity, 𝐸𝑣𝑒,𝑚 is the vibrational-electronic internal energy energy of molecular specie 𝑚, and 𝐸 is the
mixture total internal energy. Additional information on the components of the total internal energy 𝐸 is given later.
The vector F𝑖,inv contains the inviscid flux terms and is defined as

F𝑖,inv ≡

©«

𝜌𝑢𝑖

𝜌𝑠𝑢𝑖

𝜌𝑢𝑖𝑢 + 𝛿𝑖1𝑃
𝜌𝑢𝑖𝑣 + 𝛿𝑖2𝑃
𝜌𝑢𝑖𝑤 + 𝛿𝑖3𝑃
𝐸𝑣𝑒,𝑚𝑢𝑖

(𝐸 + 𝑃)𝑢𝑖

ª®®®®®®®®®®®®¬
, (3)

where 𝑢𝑖 is the 𝑖th component of the velocity vector, 𝑃 is the pressure, and 𝛿𝑖 𝑗 is the Kronecker delta. The vector F𝑖,vis
contains the diffusive flux terms and is defined as

F𝑖,vis ≡

©«

0
−J𝑠,𝑖

𝜏𝑖1

𝜏𝑖2

𝜏𝑖3

−𝑞𝑣𝑒,𝑖,𝑚 − 𝑒𝑣𝑒,𝑚J𝑚,𝑖

𝜏𝑖 𝑗𝑢 𝑗 − 𝑞𝑡𝑟 ,𝑖 − 𝑞𝑣𝑒,𝑖 −
∑

𝑟≠𝑒 ℎ𝑟J𝑟

ª®®®®®®®®®®®®¬
, (4)

where J𝑠,𝑖 is the 𝑖th component of the diffusive flux vector for species 𝑠, 𝜏𝑖 𝑗 is the viscous shear stress tensor, 𝑞𝑣𝑒,𝑖,𝑚 is
the 𝑖th component vibrational-electronic heat flux vector for molecular speciesi 𝑚, 𝑒𝑣𝑒,𝑚 is the vibrational-electronic
mass specific internal energy for molecular species 𝑚, 𝑞𝑡𝑟 ,𝑖 is the 𝑖th component of the translational-rotational heat
flux vector, 𝑞𝑣𝑒,𝑖 is the 𝑖th component of the vibrational-electronic heat flux vector, ℎ𝑟 is the enthalpy of formation for
species 𝑟 , and J𝑟 is the diffusive heat flux for species 𝑟.

Each specie is assumed to follow the ideal gas law and Dalton’s law of partial pressures as
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𝑃 =
∑
𝑠≠𝑒

𝑃𝑠 + 𝑃𝑒 =
∑
𝑠≠𝑒

𝜌𝑠𝑅𝑠𝑇𝑡𝑟 + 𝜌𝑒𝑅𝑒𝑇𝑣𝑒,ref , (5)

where 𝑃𝑠 is the partial pressure due to specie 𝑠, 𝑃𝑒 is due to free electrons, 𝑅𝑠 is the specific gas constant for specie
𝑠, 𝑇𝑡𝑟 is the translational-rotational temperature, 𝜌𝑒 is the mass specific density of free electrons, 𝑅𝑒 is the specific
gas constant for free electrons, 𝑇𝑣𝑒,ref is the reference vibrational-electronic temperature. A caloric equation of state is
discussed in this section after details of the multiple-temperature model used in this work are given.

A Newtonian fluid assumption satisfying Stokes’ assumption is used, so the viscous shear stress is

𝜏𝑖 𝑗 = 𝜇

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢 𝑗

𝜕𝑥𝑖

)
− 2

3
𝜇
𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖 𝑗 , (6)

where 𝜇 is the dynamic viscosity.
The translational-rotational heat flux vector is defined as

𝑞𝑡𝑟 ,𝑖 ≡
∑
𝑠

𝑞𝑡𝑟 ,𝑖,𝑠 = −
∑
𝑠

𝜅𝑡𝑟 ,𝑠
𝜕𝑇𝑡𝑟
𝜕𝑥𝑖

∀𝑠 ∈ 𝑁𝑠 \ {𝑒} , (7)

where 𝜅𝑡𝑟 ,𝑠 is the translational-rotational thermal conductivity of species 𝑠. The vibrational-electronic heat flux vector
is defined as

𝑞𝑣𝑒,𝑖 ≡
∑
𝑠

𝑞𝑣𝑒,𝑖,𝑠 = −
∑
𝑠

𝜅𝑣𝑒,𝑠
𝜕𝑇𝑣𝑒,𝑠
𝜕𝑥𝑖

∀𝑠 ∈ 𝑁𝑠 , (8)

where 𝜅𝑣𝑒,𝑠 is the vibrational-electronic thermal conductivity of species 𝑠. The diffusive flux vector is defined as

J𝑠,𝑖 =

{
I𝑠,𝑖 − 𝑌𝑠

∑
𝑟≠𝑒 𝐼𝑟 ,𝑖 ∀(𝑠, 𝑟) ∈ 𝑁𝑠 \ {𝑒},

M𝑒
∑

𝑟≠𝑒
C𝑟×J𝑟,𝑖

M𝑟
otherwise,

(9)

where 𝐼𝑠,𝑖 is defined as

I𝑠,𝑖 ≡ −𝜌D𝑠
𝜕𝑌𝑠
𝜕𝑥𝑖

. (10)

Here, 𝑌𝑠 is the mass fraction of specie 𝑠 and D𝑠 is the diffusion coefficient defined as

D𝑠 ≡ (1 − 𝑋𝑠)
(∑
𝑟≠𝑠

𝑋𝑟
D𝑠,𝑟

)−1

∀(𝑠, 𝑟) ∈ 𝑁𝑠 \ {𝑒} , (11)

where 𝑋𝑠 is the molar fraction of specie 𝑠. Additionally, C𝑟 is the charge of specie 𝑟 , and M𝑠 is the molecular mass
of specie 𝑠. The symbol D𝑠,𝑟 is the binary diffusion coefficient for species 𝑠 and 𝑟 . The binary diffusion coefficient is
calculated as

D𝑠,𝑟 =
𝑘𝐵𝑇𝑡𝑟
𝑃Δ𝑠,𝑟

, (12)

where 𝑘𝐵 is the Boltzmann constant and Δ𝑠,𝑟 is the binary collision integral.
The source vector ¤W is defined as

¤W ≡

©«

0
¤𝜔𝑠

0
0
0

¤𝜔𝑣,𝑚

0

ª®®®®®®®®®®®®¬
, (13)
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where ¤𝜔𝑠 is the specie 𝑠 source term due to chemical reactions and ¤𝜔𝑣,𝑚 is the vibrational-electronic energy change
due to chemical reactions involving molecular specie 𝑚. The ¤𝜔𝑠 is written as

¤𝜔𝑠 = M𝑠

𝑁𝑠∑
𝑟=1

(𝜈′′𝑠,𝑟 − 𝜈′𝑠,𝑟 )
[
𝑘 𝑓 ,𝑟

𝑁𝑟∏
𝑘=1

(
𝜌𝑘
M𝑘

)𝜈′𝑘,𝑟
− 𝑘𝑏,𝑟

𝑁𝑟∏
𝑘=1

(
𝜌𝑘
M𝑘

)𝜈′′𝑘,𝑟 ]
, (14)

where 𝜈′𝑠,𝑟 and 𝜈′′𝑠,𝑟 are the forward and backward stoichiometric coefficients. The forward reaction rate coefficient 𝑘 𝑓

is defined as

𝑘 𝑓 ≡ 𝐴𝑇
𝛽
𝑐, 𝑓 exp

(
−𝑇𝑎
𝑇𝑐, 𝑓

)
, (15)

where 𝐴 is a pre-exponential factor, 𝛽 is the controlling-temperature exponent, 𝑇𝑐, 𝑓 is the forward-controlling tem-
perature for the reaction, and 𝑇𝑎 is the activation temperature. The backward reaction rates are calculated using the
equilibrium constant 𝐾𝑒𝑞 as

𝑘𝑏 =
𝑘 𝑓

𝐾𝑒𝑞
, (16)

where 𝑘𝑏 is the backward reaction rate. For additional information on the reaction rates and controlling temperatures,
see Park [22, 23].

The vibrational energy exchange term ¤𝜔𝑣,𝑚 is defined as

¤𝜔𝑣,𝑚 ≡
{
Q𝑚,𝑉−𝑇 + Q𝑚,𝑉−𝑉 + Q𝑚,𝐶−𝑉 + Q𝑚,𝑒−𝑉 , if the reference molecule for 𝑒 is not 𝑚,
Q𝑚,𝑉−𝑇 + Q𝑚,𝑉−𝑉 + Q𝑚,𝐶−𝑉 + Q𝑚,𝑒−𝑉 + Qℎ−𝑒 + Q𝑒−𝑖 + 𝑢𝑖 𝜕𝑃𝑒

𝜕𝑥𝑖
, otherwise,

(17)

whereQ𝑚,𝑉−𝑇 is the trans-rotational and vibro-electronic, Q𝑚,𝑉−𝑉 is the vibrational-vibrational, Q𝑚,𝐶−𝑉 is the chemical-
vibrational, Q𝑚,𝑒−𝑉 is the free electron and vibrational, Q𝑚,ℎ−𝑒 is the heavy-particle and free electron, and Q𝑚,𝑒−𝑖
vibrational and electron impact ionization energy exchange rates. The term 𝑢𝑖 (𝜕𝑃𝑒/𝜕𝑥𝑖) is an approximation of the
work done to the electrons by the electric field set up by the electron pressure gradient [21]. The trans-rotational and
vibro-electronic energy exchange rate is given by the Landau-Teller equation

Q𝑚,𝑉−𝑇 ≡ 𝜌𝑚
𝑒𝑣𝑒,𝑚 (𝑇𝑡𝑟 ) − 𝑒𝑣𝑒,𝑚 (𝑇𝑣𝑒,𝑚)

𝜏𝑚,𝑉−𝑇
∀𝑚 ∈ 𝑁𝑚 , (18)

where 𝜏𝑚,𝑉−𝑇 is the molar-averaged V-T relaxation time and 𝑒𝑣𝑒,𝑚 is the vibro-electornic internal energy. This relax-
ation time contains a contribution from Millikan-White [24] and a Park correction term [22]. The Q𝑚,𝑉−𝑉 captures
the exchange of vibro-electronic energy during collisions and is defined as

Q𝑚,𝑉−𝑉 ≡
∑
𝑙≠𝑚
𝑙≠𝑒

𝑁𝐴𝜎𝑚,𝑙P𝑚,𝑙

√
8
𝜋

R
M𝑚,𝑙

𝑇𝑡𝑟
𝜌𝑙
M𝑙

𝜌𝑚

(
𝑒𝑣,𝑚 (𝑇𝑡𝑟 )

𝑒𝑣,𝑙 (𝑇𝑣𝑒,𝑙)
𝑒𝑣,𝑙 (𝑇𝑡𝑟 )

− 𝑒𝑣.𝑚 (𝑇𝑣𝑒,𝑚)
)
𝑚, 𝑙 ∈ 𝑁𝑚 , (19)

additional details can be found in Casseau et al. [20], Knab et al. [25, 26]. The Q𝑚,𝐶−𝑉 captures the vibro-electronic
energy exchange rate occurring during chemical reactions and is defined as

Q𝑚,𝐶−𝑉 ≡ ¤𝜔𝑚
(
𝐷′

𝑚 + 𝑒𝑒𝑙,𝑚
)
𝑚 ∈ 𝑁𝑚 , (20)

where

𝐷′
𝑚 =

{
𝑒𝑣𝑒,𝑚, if non-preferential model is used
𝛼𝑚𝐷𝑚, if preferential model is used,

(21)

for additional details see [27–29]. The remaining terms Q𝑚,𝑒−𝑉 , Q𝑚,ℎ−𝑒, Q𝑚,𝑒−𝑖 are all assumed to be zero as in
Casseau et al. [20, 21].

The total internal energy 𝐸 is defined as

𝐸 ≡ 1
2
𝜌
∑
𝑖

𝑢2
𝑖 +

∑
𝑠≠𝑒

𝐸𝑡 ,𝑠 +
∑
𝑠≠𝑒

𝐸𝑟 ,𝑠 +
∑
𝑠≠𝑒

𝐸𝑣,𝑠 +
∑
𝑠≠𝑒

𝐸𝑒𝑙,𝑠 + 𝐸𝑒 +
∑
𝑠≠𝑒

𝜌𝑠ℎ
𝑜
𝑠 , (22)
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where 𝑢𝑖 is the velocity vector, 𝐸𝑡 ,𝑠 is the translational energy of specie 𝑠, 𝐸𝑟 ,𝑠 is the rotational energy of species 𝑠, 𝐸𝑣,𝑠

is the vibrational energy of species 𝑠, 𝐸𝑒,𝑠 is the electronic energy of species 𝑠, 𝐸𝑒 is the free electron internal energy,
and ℎ𝑜𝑠 is the enthalpy of formation for specie 𝑠. This work follows Casseau et al. [20, 21] and uses the Park TTv model
[23] such that the translational and rotational energies are assumed to be in equilibrium and, therefore, utilize a single
temperature, i.e.,

𝐸𝑡𝑟 =
∑
𝑠

𝜌𝑠𝑒𝑡𝑟 ,𝑠 =
∑
𝑠

𝜌𝑠 (𝑒𝑡 ,𝑠 (𝑇𝑡𝑟 ) + 𝑒𝑟 ,𝑠 (𝑇𝑡𝑟 )) =
∑
𝑠

𝜌𝑠
5
2
𝑅𝑠𝑇𝑡𝑟 . (23)

Further, note that the single translational-rotational temperature 𝑇𝑡𝑟 is the same for the mixture regardless of the specie
𝑠. Similarly, the vibrational and electronic internal energies are also assumed to be in equilibrium so that they also
share a single temperature, i.e.,

𝐸𝑣𝑒 =
∑
𝑠

𝜌𝑠𝑒𝑣𝑒,𝑠 =
∑
𝑠

𝜌𝑠 (𝑒𝑣,𝑠 (𝑇𝑣𝑒,𝑠) + 𝑒𝑒𝑙,𝑠 (𝑇𝑣𝑒,𝑠)) , (24)

where 𝑒𝑣,𝑠 is the vibrational internal energy of specie 𝑠 and 𝑒𝑒𝑙,𝑠 is the electronic internal energy of specie 𝑠.
The caloric equation of state relating the specific heat at constant pressure 𝑐𝑃 to the enthalpy ℎ is given by Gupta

et al. [30]. Further, the caloric equation of state is used to determine the temperatures 𝑇𝑡𝑟 and 𝑇𝑣𝑒,𝑠 given information
about the enthalpy ℎ𝑠 as calculated by the vibrational energy and total energy balances. The form of the enthalpy for
specie 𝑠 is given as

ℎ𝑠 (𝑇) =
(
𝐴1,𝑠𝑇 + 𝐴2,𝑠

2
𝑇2 + 𝐴3,𝑠

3
𝑇3 + 𝐴4,𝑠

4
𝑇4 + 𝐴5,𝑠

5
𝑇5 + 𝐴6,𝑠

)
R , (25)

where 𝐴1,𝑠 , 𝐴2,𝑠 , 𝐴3,𝑠 , 𝐴4,𝑠 , 𝐴5,𝑠5, and 𝐴6,𝑠 are empirically determine coefficients specific to each specie 𝑠 and R is
the universal gas constant. The species vibrational enthalpy ℎ𝑣𝑒,𝑠 can be calculated as

ℎ𝑣𝑒,𝑠 (𝑇𝑣𝑒,𝑠) = ℎ𝑠 (𝑇𝑣𝑒,𝑠) − (𝑐𝑃,trans,𝑠 + 𝑐𝑃,rot,𝑠)(𝑇𝑣𝑒,𝑠 − 𝑇ref) − ℎ𝑜𝑠 , (26)

where ℎ𝑠 is the enthalpy for specie 𝑠 (i.e., translational, rotational, vibrational, and electronic), 𝑐𝑃,trans,𝑠 is the specific
heat at constant pressure due to translation, 𝑐𝑃,rot,𝑠 is the specific heat at constant pressure due to rotation, and ℎ𝑜𝑠
is the enthalpy of formation for specie 𝑠 [30]. The translational and rotational specific heats at constant pressure are
calculated as

𝑐𝑃,trans,𝑠 =
5
2
R , (27)

and

𝑐𝑃,rot,𝑠 =


3
2R for a non-linear molecules,
R for a linear molecules, and
0 for monatomic species.

(28)

Thus, the enthalpy for specie 𝑠 (i.e., the sum of translational, rotational, vibrational, and electronic) for the two-
temperature model may then be calculated as

ℎ𝑠 (𝑇𝑡𝑟 , 𝑇𝑣𝑒,𝑠) = ℎ𝑣𝑒,𝑠 (𝑇𝑣𝑒,𝑠) + (𝑐𝑃,trans,𝑠 + 𝑐𝑃,rot,𝑠) (𝑇𝑡𝑟 − 𝑇ref) + ℎ𝑜𝑠 . (29)

The respective internal energy values could be calculated by subtracting the contribution of 𝜌𝑠𝑅𝑠𝑇𝑡𝑟 from the respective
enthalpy components. Thus, this allows the vibrational non-equilibrium flows to be used with the existing empirical
fits for enthalpy for various species.

B. Discretization
The equations given above in this section govern the physics of hypersonic flow. The discretization of these equa-

tions is given in Greenshields et al. [31] and is summarized next. The flux terms of the governing equations are
discretized as
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∫
V

𝜕

𝜕𝑥𝑖
(𝑢𝑖Ψ) 𝑑V =

∫
𝑆
Ψ𝑢𝑖𝑛𝑖 𝑑𝑆 ≈

∑
𝑓

𝑆 𝑓 𝑢 𝑓 𝑛 𝑓Ψ 𝑓 =
∑
𝑓

𝑆 𝑓 𝜙 𝑓Ψ 𝑓 , (30)

where V is the cell volume and Ψ is the quantity being advected with the fluid, 𝑛𝑖 is the area unit normal direction, and
𝑆 𝑓 is the surface area of face 𝑓 , and 𝜙 𝑓 is the volumetric flux 𝜙 𝑓 = 𝑢 𝑓 𝑛 𝑓 . The fluid property Ψ is linearly interpolated
from the owner cell and a neighboring cell based on the characteristics of compressible flow∑

𝑓

𝜙 𝑓Ψ 𝑓 =
∑
𝑓

(
𝛼𝜙 𝑓 +Ψ 𝑓 + + (1 − 𝛼)𝜙 𝑓 −Ψ 𝑓 − + 𝜔 𝑓

(
Ψ 𝑓 − − Ψ 𝑓 +

) )
, (31)

where transported quantities following the ‘+’ and the ‘−’ characteristics are indicated with a subscript and go into and
out of the cell face, 𝛼 is a weighting to be described later, and 𝜔 𝑓 is the diffusive volumetric flux. The term Ψ 𝑓 is
defined as

Ψ 𝑓 + = max
[
𝑐 𝑓 + |𝑆 𝑓 | + 𝜙 𝑓 , 𝑐 𝑓 − |𝑆 𝑓 | + 𝜙 𝑓 −

]
, (32)

where 𝑐 𝑓± is the speed of sound. The weighting factor 𝛼 is defined as

𝛼 ≡
{

1/2, if the Kurganov-Tadmor method,
Ψ 𝑓 +

Ψ 𝑓 ++Ψ 𝑓 −
, for the Kurganov-Noelle-Petrova method.

(33)

The diffusive volumetric flux is calculated as

𝜔 𝑓 ≡
{
𝛼max [Ψ+,Ψ−] , for the Kurganov-Tadmor method,
𝛼(𝛼 − 1)

(
Ψ 𝑓 + + Ψ 𝑓 −

)
, for the Kurganov-Noelle-Petrova method.

(34)

Limiters are implemented using 𝑟 for the 𝑓+ direction as

𝑟 ≡ 2
𝑑𝑖 · ( 𝜕

𝜕𝑥𝑖
Ψ𝑖)Owner

ΨNeighbor − ΨOwner
− 1, (35)

where 𝑑𝑖 is the distance vector between the owner and neighbor cell centers. The interpolation of the positive and
negative characteristics is based on limiting the first-order upwind and second-order linear interpolation. The limiters
were chosen as total variation diminishing and symmetric [31].

Ψ 𝑓 + = (1 − 𝑔 𝑓 +)ΨOwner + 𝑔 𝑓 +ΨNeighbor , (36)

where 𝑔 𝑓 + = 𝛽(1 − 𝜔 𝑓 ). Different values of 𝛽 produce different interpolations. For example, 𝛽 = 0 gives upwind
interpolation while 𝛽 = 1 gives linear interpolation, and 𝛽 = 2 gives downwind interpolation for 𝛽 = 𝑟+|𝑟 |

1+𝑟 or
𝛽 = max(0,min(1, 𝑟)). A discussion on the gradient and Laplacian term discretizations and other details is given
in Greenshields et al. [31].

IV. Nonequilibrium radiation model
Radiative energy transfer exhibits spatial, angular, and frequency dependence and is considered quasi-steady for the

problems under consideration because the time scales which govern hydrodynamic and chemical phenomena are com-
paratively much longer. Therefore propagation of radiative energy can be described by the radiative transfer equation
(RTE) which is expressed as

𝑠 · ∇𝐼𝜆 = 𝜖𝜆 − 𝜅𝜆𝐼𝜆, (37)

in a nonscattering medium. This form of the RTE is an ordinary differential equation for radiative intensity 𝐼𝜆 along
a line of sight 𝑠 and is valid for a given wavelength 𝜆. The right hand side describes how intensity is augmented by
emission (𝜖𝜆) and attenuated by absorption (𝜅𝜆𝐼𝜆). Energy conservation within participating media can be represented
by the divergence of the radiative heat flux

𝜕𝑞rad,𝑖

𝜕𝑥𝑖
=

∫ ∞

0

(
4𝜋𝜖𝜆 −

∫
4𝜋
𝜅𝜆𝐼𝜆 𝑑Ω

)
𝑑𝜆, (38)
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which describes the net energy loss from a control volume by integrating the intensity and emission and absorption
coefficients over all wavelengths and solid angles Ω. Therefore a comprehensive treatment of radiative transfer requires
the resolution of the spatial, angular, and frequency dependence and the determination of emission and absorption
coefficients.

Radiative transfer can be resolved via the finite volume Photon Monte Carlo (PMC) method. The PMC method
mimics radiative transfer via the emission and tracing of statistically meaningful photon bundles. These photon bundles
are initialized with an emission origin, direction, and wavelength through so-called random number relations. Photon
bundles are uniformly distributed within each finite volume cell and are released isotropically. Emission wavelengths
are selected by comparing a uniformly distributed random number, R𝜆, to the probability density function

R𝜆 =

∫ 𝜆𝛾

0 𝜖𝜆 𝑑𝜆∫ ∞
0 𝜖𝜆 𝑑𝜆

. (39)

where a bisection method resolves the equality. This procedure ensures that wavelengths at strong emitting locations
are most likely to be chosen. Moreover, each photon bundle carries a finite amount of energy proportional to the total
volumetric emission,

𝐸tot =
∫
𝑉

∫ ∞

0

∫
4𝜋
𝜖𝜆 𝑑Ω 𝑑𝜆 𝑑𝑉, (40)

and the total number of photon bundles emitted from the cell volume𝑉 . Once a photon is assigned an emission location,
direction, wavelength, and initial energy content, it is ejected from its origin and traced through the domain where it
deposits an amount of energy Δ𝐸 into the local medium as it traverses a distance 𝑠 by

Δ𝐸 = 𝐸0 (1 − 𝑒−𝜅𝜆𝑠) , (41)

where 𝐸0 is the photon bundles initial energy content. Each photon bundle is active until it leaves the computational
domain or its energy is depleted.

The absorption and emission and emission coefficients can be determined by

𝜅𝜆 = (𝑔𝑙𝑛𝑙𝐵𝑙𝑢 − 𝑔𝑢𝑛𝑢𝐵𝑢𝑙)
ℎ

𝜆
𝜙𝜆, (42)

𝜖𝜆 = 𝑔𝑢𝑛𝑢𝐴𝑢𝑙
ℎ𝑐

𝜆4𝜋
, (43)

where a number of particles, 𝑛, are at nondegenerate upper (𝑢) and lower (𝑙) energy states with 𝑔 degeneracy, and 𝐴𝑢𝑙
is the Einstein coefficient for spontaneous emission, 𝐵𝑢𝑙 is the Einstein coefficient for stimulated emission, 𝐵𝑙𝑢 is the
Einstein coefficient for absorption, ℎ𝑐/𝜆 represents the photon energy given Planck’s constant ℎ and speed of light
𝑐, and 𝜙𝜆 is a line shape function which describes how the spectral line is broadened. Equation (42) is the effective
volumetric absorption coefficient obtained in terms of the stimulated emission and absorption while Eq. (43) represents
the spontaneous emission coefficient [32]. To resolve Eq. (38), it is necessary to determine the strength of all spectral
lines. In local thermodynamic equilibrium, these can be computed a priori because the electronic state populations are
described by Boltzmann’s distribution. In nonequilibrium, one has to employ an appropriate method to compute the
number of particles at the upper and lower energy states. To that end, we select the NonEQuilibrium AIr Radiation
(NEQAIR) software package developed by Whiting et al. [22, 33, 34]. We set the NEQAIR code to a multitemperature
Boltzmann model and produce the emission and absorption spectrum at the various thermodynamic states described
by Table 1.

Under the proposed framework, we generate emission and absorption databases for use in nonequilibrium flows
characterized by two temperatures. Since emission from each individual species is not affected by the emission of other
species, the total emission can be represented as summation of each species individual contribution, [35]. Therefore,
we develop databases for the species generated from five-species air-chemical models, i.e., NO, N2, O2, N, O. Each
database is constructed according to Eq. (39) so that a single database contains the wavelength-random number relation
and the emission and absorption coefficients for 16 distinct translational and vibrational temperatures and 11 different
densities. In order to reconstruct the absorption coefficient at a thermodynamic state in between the database points,
bicubic (third-degree) polynomial interpolation for the two temperatures, and spline interpolation between densities.
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Parameters Range and values
Species N, O, NO, N2, O2

Spectral range 85.5 – 200, 0.0005 nm;
1500 – 7500, 0.005 nm

𝑛 1 × 1010 – 1 × 1020 cm−3,
for every order of magnitude

T𝑡 300 – 4800, 300 K
T𝑣 300 – 4800, 300 K

Table 1 Thermodynamic states of LBL database

V. Results and discussion

A. Verification of nonequilibrium thermal radiation model
The nonequilibirum radiation spectral model was first evaluated by reconstruction of the absorption coefficients

with the PMC method for NO and atomic N. A thermodynamic state is set for both cases where 𝑛 = 2.00666 × 1016

cm−3, T𝑡 = 4100 K, and T𝑣 = 3800 K. The Monte Carlo code was set to sample 1 × 105 rays. In order to reproduce
the absorption coefficient, a spline is constructed between the absorption coefficient at neighboring density databases,
where a sample at each of the nearest temperature databases is used to perform bicubic interpolation at the current
gas temperature. Figure 1 shows good agreement between samples and the curve produced by NEQAIR at the given
thermodynamic state. A small spectral interval in the infrared is shown for NO in Fig. 1a while Fig. 1b shows a small
window in the vacuum ultraviolet for atomic N.

5209.2 5209.7 5210.2 5210.7

λ (nm)

1.0× 10−7

1.0× 10−5

1.0× 10−3

1.0× 10−1

κλ (cm−1)

NEQAIR

Monte Carlo

(a) Absorption coefficient of NO

119.9 120.0 120.0 120.1

λ (nm)

1.0× 10−2

1.0× 100

1.0× 102

1.0× 104

κλ (cm−1)

NEQAIR

Monte Carlo

(b) Absorption coefficient of atomic N

Fig. 1 Comparison of absorption coefficient between Monte Carlo spectral module and NEQAIR results

Next the model is applied to a one-dimensional gas slab bounded by two parallel black walls. Modest [7] gives the
exact solution for the heat flux for this configuration in equilibrium. In nonequilibrium, the source term which contains
the Planck’s function 𝐼𝑏𝜆, or blackbody intensity, is replaced by the nonequilibrium source of 𝜖𝜆/𝜅𝜆. Two test cases are
constructed compare the divergence of heat flux between the exact method and the Monte Carlo method. Absorption and
emission coefficients are again produced by NEQAIR. Both test cases consider a domain size 0.1 cm with discretized
by 24 finite volumes, and 𝑛 = 2.00666× 1016 cm−3, T𝑡 = 4100 K, T𝑣 = 3800 K set as the local thermodynamic state in
each cell. Figure 2 compares the two solutions where Fig. 2a considers only NO participating in the infrared spectral
range, and Fig. 2b considers only N participating in the vacuum ultraviolet spectral range. The Monte Carlo method
was run with 1 × 105 rays for five statistical runs and the error bars represent one standard deviation from the mean.
Good agreement is shown where the exact solution is always within the error bars for both cases.

The final verification result for the new spectral database is a one-dimensional gas mixture of of N2, NO, O, O2,
and N. The temperatures and scaler fields are chosen to be similar to the Crew Exploration Vehicle (CEV) line of sight
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0.00 0.02 0.04 0.06 0.08 0.10

Distance (cm)

8.969× 10−3

8.970× 10−3

8.971× 10−3

8.972× 10−3

∂qrad,i/∂xi (W cm−3)

Exact solution

Monte Carlo

(a) Solution with NO in infrared spectral range

0.00 0.02 0.04 0.06 0.08 0.10

Distance (cm)

1.085× 10−7

1.358× 10−7

1.630× 10−7

1.903× 10−7

∂qrad,i/∂xi (W cm−3)

Exact solution

Monte Carlo

(b) Solution with N in vacuum ultraviolet spectral range

Fig. 2 Comparison of 𝜕𝑞rad,𝑖
𝜕𝑥𝑖

for hot gas mixture with Monte Carlo method and the analytical solution

data from NEQAIR. The CEV case offers a large range of temperatures Fig. 3a and densities Fig. 3b, and a region of
strong nonequilibrium near the shock for which to test the spectral database. For this case the divergence of heat flux
is compared with NEQAIR’s implementation of the exact solution given by Modest. The Monte Carlo code was again
run with 1× 105 rays for five statistical runs and only emission from the vacuum ultraviolet is considered. The result in
Fig. 3 shows good agreement with the exact solution. In this case, a small region near the body has greater absorption
than emission.

0
shock

1 2 4 5 6
body

Distance (cm)

200

1200

2200

3200

4200

Temperature (K)

Translational temperature

Vibrational temperature

(a) Temperature profile

0
shock

1 2 4 5 6
body

Distance (cm)

1.0× 1012

1.0× 1014

1.0× 1016

1.0× 1018

n (cm−3)

N2

O2

NO

N

O

(b) Number density profile

0
shock

1 2 4 5 6
body

Distance (cm)

−5.959× 10−6

1.099× 10−5

2.793× 10−5

4.488× 10−5

∂qrad,i/∂xi (W cm−3)

Exact solution

Monte Carlo

(c) Solution considering vacuum ultraviolet spectral
range

Fig. 3 Radiative transfer solution of a representative thermodynamic state of hypersonic flow
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B. Hypersonic flow with dissociation
We simulate the hypersonic flow of air over a cylinder. The model equations are the compressible reactive Navier-

Stokes equations. We model air as an ideal mixture of multiple monatomic and diatomic species, and we do not allow
for ionization. A two-temperature model is employed that captures the translational and vibrational kinetic energy
of the component gases. A multicomponent diffusion model is employed for species diffusion, and we use standard
mixture models for momentum and energy diffusion. The model is solved in a computational environment based on the
OpenFOAM computational simulation tool running in a massively parallel environment. The schematic of the domain
geometry and computational mesh are shown in Fig. 4. The boundary conditions for the free stream were set based on
an altitude of 24.384 (km), that is,𝑈∞ ≈ 2682 m/s, 𝑃∞ ≈ 2802 Pa, and 𝑇∞ ≈ 221 K. The computational mesh contains
a thin layer of hexahedral cells surrounding the two-dimensional cylinder to accurately capture the boundary layer
dynamics. Beyond this layer, the mesh is comprised of polyhedral cells. The total mesh contained 17,050 hexahedral
cells and 21,489 polyhedral cells, amounting to 38,539 cells in total. Sample predictions of translational and vibrational
temperatures are shown in Fig. 3a. Mass fraction profiles for NO, O, and N, are shown in Fig. 5c, 5d, 5e, respectively,
and the mixture density is shown in Fig. 5f. The radiative emission and absorption are illustrated in Fig. 6. It can be
observed the radiative emission closely follows the high vibrational tempearture regions, as well as the mass fractions
for NO, N, and O. The absorption coefficient has similar structures, but similar to the final verification case, the regions
which are not as energy dense have more absorption than emission.

(a) Schematic of computational domain and geometry (b) Mesh of simulation domain

Fig. 4 Mesh and schematic of simulation domain

VI. Conclusion
In this study, we introduced a simulation of hypersonic flow over a bluff body, coupled with the development of

a spectral module integrated with a photon Monte Carlo method. Because of nonequilibrium flow conditions, we
formulated a dual-temperature database that spans relevant species, and ranges in density and frequency space. To
verify the solver, the absorption coefficients were reproduced for a given thermodynamic state and the divergence of
radiative heat flux was compared for a variety of one dimensional problems where the exact solution could be computed.
This model is easily extended to the more complex simulations and is applied to the 2D flow over a cylinder. In this case,
there was high energy in the post-shock zone and in the wake region. This represents a large spatial volume which the
Monte Carlo code needs to compute. The primary benefit of the strategy is that radiative emission is received practically
for free as it is received directly from the pretabulated spectral database. However, in order to compute the the mixture
absorption coefficient, the ray tracing is charged with 16 more look-ups per cell per ray. In order to reduce the look-
ups per cell, we can consider exploring a default to a pure equilibrium strategy if the vibrational and translational
temperatures are close in magnitude.
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(a) Translational temperature (K) (b) Vibrational temperature (K)

(c) NO mass fraction (d) O mass fraction

(e) N mass fraction (f) Mixture (kg m−3)

Fig. 5 Thermodynamic state of flow field
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(a) Radiative emission (W m−3) (b) Radiative absorption (W m−3)

Fig. 6 Comparison of radiative emission and absorption for a 2D flow with significant energy in the shock and
wake region
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