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Abstract. The behaviour of energetic solids subjected to simple shear loading is modelled to
predict ignition. The model is transient, one dimensional and includes effects of thermal diffusion,
plastic work and exothermic reaction with one-step irreversible Arrhenius kinetics. A common
power-law constitutive model for shear stress which accounts for strain hardening, strain-rate
hardening and thermal softening is used. For the energetic solid composite LX-14 subjected
to an average strain rate ofγ̇ = 2800 s−1, the model predicts reactive shear localization after an
induction time of approximatelyt = 5 ms, in which regions of high strain rate ( ˙γ > 20 000 s−1) are
confined to thin spatial zones. An approximate thermal explosion theory which enforces spatially
homogeneous stress, temperature and reaction progress as well as accounting for the early-time
dominance of plastic work over exothermic reaction allows the development of simple analytic
expressions for the temporal evolution of all variables. The simple expressions give predictions
which agree well with both: (a) numerical predictions of a spatially homogeneous theory which
allows simultaneous influences of reaction and plastic work and (b) numerical predictions of a
spatially inhomogeneous theory which accounts for spatial stress distributions, thermal diffusion
and spatially localized reaction. In particular, the induction time to ignition is captured accurately by
the approximate theory; hence, while reactive shear localization may accompany an ignition event,
ignition causality is most dependent on plastic work done during the time of spatially homogeneous
shear.

1. Introduction

A full understanding of detailed ignition mechanisms in energetic solids subjected to
mechanical loading does not currently exist. Under commonly encountered strong-shock
loading conditions, energetic solids are stressed well beyond their yield stress, and are often
modelled by equations of state similar to those used for fluids. However, a stress model
which accounts for the influences of strain, strain rate and temperature is more appropriate for
an energetic solid subjected to a milder dynamic mechanical loading event which is still of
sufficient strength to induce an ignition event on a longer time scale. Such a loading event may
be likely to occur in a variety of accident scenarios. As the key to ignition is thought to be the
formation of spatially localized hot spots [1], factors which influence the dissipation rate and
localization of an input of mechanical energy into thermal energy are thought to be critical.
The dissipation rate and localization behaviour are strong functions of material properties of
the energetic material.

While many mechanisms have been proposed for hot spot formation (e.g. jetting, void
collapse, viscous heating, shock interaction or friction, cf [2]), attention is focused here on
one commonly discussed mechanism: shear localization, also known as shear banding. Shear
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localization has been widely studied in inert materials, e.g. [3, 4]; additionally, experimental
evidence of shear localization in both homogeneous and heterogeneous energetic solids, e.g.
[5, 6], and reactive metallic powders [7] has been reported. Other relevant studies include
[8–20]. Chaudhri [21] argues that shear, whether localized or not, can only serve as an ignition
mechanism when strains are high, and that it remains to be seen whether brittle explosive
crystals can sustain sufficiently high strain. He concludes [22] that friction is a more likely
cause. While brittle fracture is likely to inhibit shear localization, there is evidence in other
materials that increasing hydrostatic stress, such as may be likely in a detonation, can serve to
suppress this failure mechanism [23]. Moreover, Frey [24] argues that on a microscopic level,
ordinary sliding friction and shear localization are actually identical processes, as frictional
forces are due to plastic work done during asperity contact.

Shear localization is thought to evolve in the following manner. A material which exhibits
strain hardening, strain-rate hardening and thermal softening is put in a state of spatially
uniform shear strain. As the material strains, strain hardening will increase the stress, while
thermal softening, which arises due to plastic work, tends to decrease stress. If the material
has a local heterogeneity of sufficient magnitude, a locally higher strain rate can be induced.
While this gives rise to strain-rate hardening, it also induces more thermal softening. Often,
thermal diffusion is too slow a process to remove accumulated thermal energy and the process
can accelerate and lead to dominance of thermal softening and ultimate material failure. As
temperatures in the zone of shear localization are often sufficiently high to induce chemical
reaction, their consideration as an ignition mechanism is natural.

There are few models which consider shear localization accompanied by chemical
reaction. The most relevant studies are those of Frey [24], Dienes [25], Caspar [26] and
Casparet al [27]. Frey models 2, 4, 6-trinitrotoluene (TNT) as a reactive linearly viscoplastic
material in which the coefficient of viscosity has a temperature dependence. Strain dependence
is not included in his constitutive model, nor is his model calibrated to experiments under
high strain-rate conditions. In some calculations a melt layer is included. The shear band
is initiated by assuming that a thin region exists which already has localized shear. In
regions of shear localization, velocities, pressures and temperatures of around 0.2 km s−1,
1 GPa and 2000 K, respectively, are predicted. A temperature rise to 1100 K is attributed to
plastic heating during the first 35 ns of calculation, at which time reaction over about 25 ns
commences, causing a further increase in temperature, which is continuing to rise at cessation
of the calculation. Numerical values of pressure and velocity are approaching those of a
detonation. Dienes finds time-independent solutions for the spatial structure of temperature,
considering a slab with isothermal boundaries subjected to exothermic reaction and uniform
plastic heating. He predicts critical slab thicknesses which induce high-temperature reaction in
cyclotetramethylene-tetranitramine (HMX) at shear stresses and strain rates up toτ = 100 MPa
and ˙γ = 104 s−1, respectively. Predictions of shear band formation are not possible as the
time dependence, influence of temperature, strain and strain rate on stress and momentum are
not included in his model.

Caspar and Casparet al study behaviour of the commonly used heterogeneous solid
explosive LX-14 undergoing shear loading. Data taken at high average strain rate,γ̇ = 300
and 2800 s−1 (where the overbar indicates a spatial average), for an inert simulant of LX-14,
Mock 900-20, from a torsional split Hopkinson bar are used to calibrate a constitutive model
for stress in terms of strain and strain rate. As described in detail in [27], the simulant is used
for safety purposes and contains barium nitrate and pentek crystals of similar density and size
distribution as that of reactive HMX particles in a nearly identical binder to that used in LX-
14. The constitutive model is then employed in a general one-dimensional unsteady model to
predict the thermomechanical response to an input of mechanical energy. Ignition is shown to
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be relatively sensitive to changes in mechanical properties, specific heat and activation energy,
and relatively insensitive to variation in heat release, thermal conductivity and kinetic rate
constant. The study extends that of both Frey and Dienes by including a constitutive model
verified under high strain-rate conditions. Further, it is not presupposed that localization has
commenced; instead localization is allowed to develop from a small perturbation. Also a
detailed account of the development of spatio-temporal fields of velocity, displacement, stress,
temperature and reaction progress, along with a sensitivity study is reported. Lastly, relative
to Frey, much lower magnitudes of stress and strain rate are studied, such as might be more
common in an accident scenario rather than an already established detonation; thus, a direct
comparison of results is difficult.

The present study extends the work of [26, 27] by developing a thermal explosion theory
which accurately describes the onset of a spatially homogeneous reaction in a material subjected
to spatially uniform shear strain. In contrast to the time-independent theory of Dienes, the
thermal explosion theory developed here has the ability to predict induction times, but is
incapable of predicting reactive shear band thicknesses, due to neglect of spatial gradients.
When spatial variations are included, the shear band thickness can be estimated; however,
the continual input of plastic work prevents the shear band thickness from reaching a time-
independent value.

The remainder of this paper is structured as follows. For completeness, we first present the
mathematical model. The model is nearly identical to that of [27], slightly simplified so that
a spatial disturbance in initial temperature, rather than geometry, induces localization. At this
point, we depart from our earlier work. After recasting the model in dimensionless form, we
give limiting assumptions under which a simple analytic description of displacement, velocity,
temperature and stress during build-up to reaction is available via an approximate analysis. An
algebraic relation is found which predicts the induction time of thermal explosion. Analytic
estimates are made for the time scales of vigorous reaction, and an analytic description of the
still straining material after reaction is given. In the high activation energy limit and for special
choices of material parameters, we find an expression for the induction time through use of
a more formal asymptotic analysis. Results of the spatially homogeneous thermal explosion
theory are shown to agree well with predictions of the spatially inhomogeneous model. The
paper is concluded after determining the sensitivity of the induction time to the magnitude of
the initial temperature perturbation. All results are obtained for parameters appropriate for
LX-14; however, the theory may be applied to a variety of energetic solids when the necessary
constitutive data become available.

2. Mathematical model

The mathematical model is given here. The geometry is that of a thin-walled cylinder (sketched
in figure 1). The specimen is loaded at timet = 0 such that the origin at axial distance
z = 0 is stationary, the endz = L is at constant circumferential velocityvL, and the
initial spatial variation of circumferential velocityvθ (z, 0), is linear for z ∈ [0, L]. For
tractability, the model neglects many features found in real physical systems, for example,
detailed chemical kinetics, variable material properties, porosity, material compressibility,
glass transition, material melting, latent heat, effects of microstructural heterogeneities, crystal
lattice effects and gas phase effects of reaction products. While a general theory may require
such ingredients, these are not critical features necessary for a phenomenological description
of reactive shear localization.

The following specific assumptions are made. There is no component of velocity or
displacement in radial or axial directions. This is reasonable given that the imposed velocity
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Figure 1. Model geometry.

atz = L is purely circumferential. Due to axisymmetry and the thin-walled geometry, there is
negligible variation in circumferential or radial directions. Under these assumptions, the stress
tensor reduces to one non-zero component on the axial face in the circumferential direction,
which will be referred to as the shear stress. The material is taken to undergo a one-step
irreversible exothermic chemical reaction. While progress is being made in formulating
detailed kinetic models for energetic solids (see, for example, [28]) it is well known that global
one-step models can predict ignition times accurately over many orders of magnitude of time.
All material properties are taken to be equal and constant in unreacted and reacted material.
We take numerical values for most material and kinetic properties, such as density, thermal
conductivity, specific heat, chemical heat release and kinetic rate constants, from a standard
source, Dobratz and Crawford [29], using values for the unreacted solid. In actuality, material
properties do change on phase transition from solid to gas; however, for many parameters
the change is not great. For example the model of Baer and Nunziato [30], which considers
granular HMX reacting to form gaseous products, uses a specific heat for the gas which is
roughly twice that of the solid. Moreover, upon reaction in a detonation environment, gas
phase densities are of a similar order of magnitude to solid phase densities. It is noted that
under extreme conditions of fast exothermic reaction that many of these parameters are not
known with great accuracy, but are the best available estimates.

As will be seen in the results section, use of these standard assumptions gives rise to
temperature predictions (T ∼ 5800 K) that at first glance may appear to be unreasonably high,
especially since these energetic solids are known to melt near 500 K. We note, however, that:

(a) our effectively one-material model can be thought of as modelling reaction products with
the same properties as the solid phase; phase change corresponds to a dramatic loss of
material strength near the melting temperature; moreover, such high temperatures are not
uncommon in gas phase products;

(b) the predictions are entirely consistent with all conservation principles; chemical energy
is converted to thermal energy and, on the very fast time scales of chemical reaction,
there is insufficient time for diffusion to dampen the temperature peaks; a straightforward
extension to a two-material model which accounted for the higher specific heat of product
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gases would correspondingly lower the temperature of the products but have a minimal
effect on the induction time;

(c) temperature predictions of two-material models for similar materials in detonation
conditions are actually near 10 000 K for the gas phase [30]; the higher temperatures
can be attributed to additional work done by irreversible shock heating;

(d) though the high temperatures predicted here are mainly due to exothermic reaction, we
note that shear band formation in inert materials is also characterized by high temperature;
DiLellio and Olmstead [32] report temperatures near 4000 K for steel subjected to a
homogeneous strain rate of 1000 s−1.

As many studies, e.g. [30, 31], consider the role of compressibility and acoustic wave
propagation in the transition to detonation, we briefly consider here the time scales for which the
incompressibility assumption should hold. Incompressibility implies that acoustic processes
have had sufficient time to relax. For a specimen of lengthLwith acoustic speedcA, this implies
relaxation after several acoustic time constantstA = L/cA have elapsed. For specimen lengths
L ∼ 1 mm and typical acoustic speedscA ∼ 103 m s−1, this impliestA ∼ 1µs.

For brevity, we do not give a detailed discussion of how these assumptions can be justified
based on an asymptotic analysis of a more general set of equations. It is noted that similar
restrictions are commonly adopted in nearly all the current shear banding literature, e.g. [4, 24].
It is plausible that most of the assumptions adopted are appropriate for capturing the essence
of a reactive shear band while at the same time minimizing the complexity of the model.

2.1. Dimensional equations

Under these assumptions, the dimensional governing equations are:

ρ
∂vθ

∂t
= ∂τ

∂z
(1)

ρ
∂e

∂t
= τ ∂vθ

∂z
− ∂qz
∂z

(2)

∂λ

∂t
= a(1− λ) exp

(
− E

<T
)

(3)

∂uθ

∂t
= vθ (4)

τ = α
(
T

T0

)ν(
∂uθ

∂z

)η(
∂vθ

∂z

L

vL

)µ
(5)

qz = −k ∂T
∂z

(6)

e = cT − λq̃. (7)

There are seven variables, all assumed to be, at most, functions ofz and t , in these seven
equations: circumferential velocityvθ , circumferential displacementuθ , shear stressτ , internal
energy per unit masse, axial heat fluxqz, reaction progressλ ∈ [0, 1] and temperatureT . The
parameters in equations (1)–(7) are the densityρ, kinetic rate constanta, activation energyE,
universal gas constant<, stress constantα, ambient temperatureT0, thermal softening exponent
ν, strain hardening exponentη, strain-rate hardening exponentµ, thermal conductivityk,
specific heatc and chemical energy per unit massq̃. Equation (1) models conservation of
linear momentum in the circumferential direction. Equation (2) describes conservation of
energy. Equation (3) is a one-step Arrhenius kinetics model. Equation (4) defines velocity.
Equations (5)–(7) are constitutive relations for stress, heat flux and internal energy, respectively.
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These equations are all commonly used in the general solid mechanics and combustion
literature. Equation (5), proposed by Cliftonet al [33], is an empirically motivated equation
and is often employed to model material behaviour under high strain-rate conditions. While
equation (5) has the advantage of being able to fit data well, a simple consideration of the
second law shows that it is somewhat restricted in validity. Specializing the Gibbs equation for
entropys for an incompressible substance, we obtainT ds = de. Using this to eliminatee in
favour ofs in equation (2), substituting forτ andqz from equations (5) and (6) and separating
the heat flux terms into reversible and irreversible parts gives an equation for the evolution of
entropy:

ρ
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∂t
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T
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T

T0

)ν(
∂uθ

∂z

)η(
∂vθ

∂z

)µ+1(
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+ k
∂
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(
1

T

∂T

∂z

)
. (8)

With the second law of thermodynamics requiring that

ρ
∂s

∂t
> k ∂
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(
1

T

∂T

∂z

)
(9)

substitution of equation (8) into equation (9) gives a Clausius–Duhem inequality in weak form:

α

T

(
T

T0

)ν(
∂uθ

∂z

)η(
∂vθ

∂z

)µ+1(
L
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+
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T 2

(
∂T

∂z

)2

> 0. (10)

The two terms in equation (10) describe entropy production due to irreversible plastic work and
heat transfer. The strong form of the Clausius–Duhem inequality requires that each individual
contribution to irreversibility must also be positive. For the heat transfer component, this
requires simply thatk > 0. The plastic work component is less general. Sufficient conditions
are those present in the experiment from which the model was developed, namely

∂uθ

∂z
> 0

∂vθ

∂z
> 0 (11)

in addition toT > 0, α > 0, L > 0, vL > 0 andT0 > 0. These conditions are maintained
in our simulations, so all results presented satisfy the second law of thermodynamics. That
said, a more robust constitutive theory without such restrictions, which additionally had full
multidimensional tensorial formalism, would be advantageous over the present model.

The following boundary conditions are sufficient to describe the system, which is held
fixed at one end, rotated at the other and thermally insulated at both:

vθ (t, 0) = 0 vθ (t, L) = vL uθ (t, 0) = 0 uθ(t, L) = vLt
∂T

∂z
(t, 0) = 0

∂T

∂z
(t, L) = 0.

(12)

For initial conditions, att = 0− we take the system to be at rest and undisplaced. Then at
t = 0, we impose a sudden acceleration to a state in which the spatial velocity distribution is
linear, while the specimen remains undisplaced. The initial temperature is taken to be uniform,
except for a small positive perturbation aroundz = 1

2L. The conditions att = 0 are thus

vθ (0, z) = vL z
L

uθ(0, z) = 0 λ(0, z) = 0

T (0, z) =
{
T0 z 6∈ [ 1

2L(1− ε̂L), 1
2L(1 + ε̂L)

]
T0(1 + ε̂T ) z ∈ [ 1

2L(1− ε̂L), 1
2L(1 + ε̂L)

]
.

(13)

Here ε̂L � 1 andε̂T � 1 are small dimensionless parameters which characterize the local
width and amplitude, respectively, of the temperature disturbance.
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While equations (1)–(13) are sufficient to describe a well-posed initial-boundary value
problem, it is also common to discuss results in terms of strain and strain rate and, to that end,
the following standard definitions are introduced. We take strainγ to be

γ = ∂uθ

∂z
. (14)

With this definition, various representations of strain rate, that is the partial derivative of strain
with respect to time, commonly denoted as ˙γ , are available:

γ̇ = ∂γ

∂t
= ∂

∂t

∂uθ

∂z
= ∂

∂z

∂uθ

∂t
= ∂vθ

∂z
. (15)

Lastly, the average strain rate is simply

γ̇ = 1

L

∫ L

0

∂vθ

∂z
dz = vL

L
. (16)

2.2. Dimensionless equations

The governing equations are reduced as follows. First the constitutive equations (5)–(7) are
substituted into equations (1)–(3) so as to eliminateτ , qz ande. Next, using a star subscript to
denote a dimensionless variable, we introduce scaled independent variables

z∗ = z

L
t∗ = vL

L
t (17)

and scaled dependent variables

v∗ = vθ

vL
T∗ = T

T0
λ∗ = λ u∗ = uθ

L
. (18)

With these operations, equations (1)–(4) are restated as a system of four nonlinear partial
differential equations in the four unknowns,v∗, T∗, λ∗ andu∗:
∂v∗
∂t∗
= α̂ ∂

∂z∗

(
T ν∗

(
∂u∗
∂z∗

)η(
∂v∗
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)µ)
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)
(20)

∂λ∗
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= â(1− λ∗) exp

(
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)
(21)

∂u∗
∂t∗
= v∗ (22)

with boundary and initial conditions

v∗(t∗, 0) = 0 v∗(t∗, 1) = 1 u∗(t∗, 0) = 0 u∗(t∗, 1) = t∗
∂T∗
∂z∗

(t∗, 0) = 0
∂T∗
∂z∗

(t∗, 1) = 0 v∗(0, z∗) = z∗ u∗(0, z∗) = 0 λ∗(0, z∗) = 0

T (0, z∗) =
{

1 z∗ 6∈
[

1
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]

1 + ε̂T z∗ ∈
[

1
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2(1 + ε̂L)
]
.

(23)

Six new dimensionless parameters, where the hat notation is employed for dimensionless
constants, arise in the scaling:

α̂ = α

ρv2
L

Êc = v2
L

cT0
P̂ e = ρc

k
vLL

q̂ = q̃

cT0
â = L

vL
a 2̂ = E

<T0
.

(24)
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Hereα̂ is the scaled stress constant,̂Ec is the Eckert number,̂Pe is the Peclet number,̂q is the
scaled heat release,â is the scaled kinetic constant and2̂ is the scaled activation energy.

It is also useful to define dimensionless shear stress and heat flux asτ∗ = τ/ρv2
L, qz∗ =

(Lk/T0)qz.With these definitions, constitutive equations for shear stress and heat flux can be
written as

τ∗ = α̂T ν∗
(
∂u∗
∂z∗

)η(
∂v∗
∂z∗

)µ
(25)

qz∗ = −∂T∗
∂z∗

. (26)

Also, we takeγ∗ = γ, γ̇∗ = γ̇ (L/vL), so that

∂u∗
∂z∗
= γ∗ (27)

∂γ∗
∂t∗
= γ̇∗ (28)

∂v∗
∂z∗
= γ̇∗. (29)

With the use of the above definitions, necessary to cast the governing equations as a system
of first-order partial differential equations, it is easily shown using the methods outlined by both
Whitham [34] or Zauderer [35] that equations (19)–(22), (26)–(29) form a parabolic system
of partial differential equations. This calculation is reported in detail for a nearly identical
system by Caspar.

3. Thermal explosion theory

We develop a thermal explosion theory here which shows that when spatial homogeneity
is assumed for most variables that three distinct periods can be identified. In the first and
most physically relevant, the induction period, spatially homogeneous plastic work induces
a temperature rise which brings the material to a temperature at which significant reaction
ensues. This is in contrast to traditional thermal explosion theory, in which thermal explosion
is caused by the accumulation of sufficient thermal energy due to slow reaction during the
induction period. We give estimates for the induction time from (a) a plausible approximate
theory which lacks full asymptotic rigour and (b) a more rigorous asymptotic theory found
when the strain hardening parameterη takes on special values. The second period is the reaction
period during which heat release due to chemical reaction primarily governs the process. In
the third period, after reaction completion, plastic work again governs the process. It is noted
that the model loses most of its physical validity soon after vigorous reaction commences. In
particular, strong fluid phase effects become important, and the constitutive models for stress
and reaction kinetics are beyond the domains in which they were calibrated. We nevertheless
give predictions in all three periods in the interest of giving a full exposition of the strengths
and weaknesses of models of this type.

A thermal explosion theory can be obtained in the following manner. We first make the
assumption that̂εT is negligibly small. Next it is assumed that temperature is a function of at
most time,T∗ = T∗(t∗). A necessary, but not sufficient, condition for the second assumption
is thatP̂ e be sufficiently large and temperature gradients sufficiently small to render thermal
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diffusion negligible relative to plastic work and reaction. Then the following expressions
satisfy equations (19), (22) and (23):

v∗ = z∗ (30)

u∗ = z∗t∗. (31)

The specimen has a linear variation of circumferential velocity with axial distance. The solution
describes a specimen subjected to a strainγ∗ = t∗, which is spatially homogeneous and linearly
increasing with time and a consequent strain rate, ˙γ∗ = 1, which is constant. The average
strain rate takes on the same value,γ̇ ∗ = 1. By further assuming that the reaction progress
variable is a function of time only,λ∗ = λ∗(t∗), equations (20) and (21) reduce to

dT∗
dt∗
= α̂Êc T ν∗ tη∗ + âq̂(1− λ∗) exp

(
− 2̂
T∗

)
T∗(0) = 1 (32)

dλ∗
dt∗
= â(1− λ∗) exp

(
− 2̂
T∗

)
λ∗(0) = 0. (33)

Equation (32) predicts that temperature changes in response to plastic work and chemical
reaction; equation (33) predicts temperature-sensitive reaction to occur whenever there is
unreacted material present. We can also form a supplementary equation for shear stress:

τ∗ = α̂T ν∗ tη∗ . (34)

3.1. Induction period

3.1.1. Approximate theory. The approximate thermal explosion theory is developed as
follows. For cases in which temperature variation at early time is predominantly governed
by the plastic work rate, temperature evolution is primarily governed by

dT∗
dt∗
= α̂Êc T ν∗ tη∗ t∗ < t∗i T∗(0) = 1. (35)

Heret∗i is defined as the induction time, before which chemical reaction does not significantly
influence temperature. Equation (35) has the solution

T∗(t∗) =
(

1− ν
1 +η

α̂ Êc tη+1
∗ + 1

)1/(1−ν)
t∗ < t∗i . (36)

An algebraic estimate for the induction timet∗i can be obtained by equating from equation (32)
the plastic work rate term to the chemical reaction rate term, taking care to replaceT∗ by its
estimate in the inert limit (36) and to considerλ∗ to be negligibly small. These assumptions
are verified later by a numerical analysis. The estimate is found from an appropriate root to
the equation

α̂Êc

(
1− ν
1 +η

α̂Êc t
η+1
∗i + 1

)ν/(1−ν)
t
η

∗i = âq̂ exp

[
− 2̂

(
1− ν
1 +η

α̂Êc t
η+1
∗i + 1

)−1/(1−ν)]
. (37)

In general, equation (37) must be solved via a numerical technique. Temperature att∗ = t∗i
is defined to beT∗i and is found by evaluating equation (36) at the induction timet∗i . The
special case whereν = −1, η = 1 andα̂Êc t2∗i � 1, has the approximate explicit solution and
dimensional counterpart

t∗i = 2̂√
α̂Êc ln

(
(âq̂)/

√
α̂Êc

) ti = LE

<T0vL

√
α

ρcT0
ln
(
La
vL

q̃

cT0
/
√

α
ρcT0

) . (38)

In this limit, thermal explosion is hastened by increases in stress constant, Eckert number,
kinetic rate constant, heat release and by decreases in activation energy.
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3.1.2. Asymptotic theory.A similar asymptotic analysis can yield a complementary result in
the limit of large activation energy,̂2 � 1. In the induction zone we consider the following
ordering of dependent variables:

T∗ = 1 +
1

2̂
T∗1 + · · · λ∗ = 1

2̂
λ∗1 + · · · (39)

whereT∗1 ∼ O(1)andλ∗1 ∼ O(1). Making these substitutions into equation (32) and retaining
only O(1) quantities, we obtain a simpler differential equation for the temperature perturbation
T∗1:

dT∗1
dt∗
= β̂1

(
tη∗ + β̂2eT∗1

)
T∗1(0) = 0 (40)

where the constantŝβ1 andβ̂2 are defined as

β̂1 = 2̂α̂Êc β̂2 = âq̂

α̂Êc e2̂
. (41)

Rescaling time so that

t̃∗ = β̂1/(1+η)
1 t∗ (42)

allows transformation of equation (40) to

dT∗1
dt̃∗
= t̃ η∗ + β̂3eT∗1 T∗1(0) = 0 (43)

where the constant̂β3 has the definition

β̂3 = β̂η/(1+η)
1 β̂2. (44)

In the high activation energy limit, the temperature dependence of the constitutive equation
for stress is not important, nor is the effect of reactant depletion. We also see that plastic work
effects dominate chemical reaction effects whenβ̂3� 1.

We do not have a general solution for equation (43) but can find solutions in two special
cases:η = 0, which implies there are no strain hardening effects, andη = 1, which implies a
linear dependence of stress with strain. Forη = 0, the solution is

T∗1(t̃∗) = ln

(
et̃∗

1 + β̂3
(
1− et̃∗

)). (45)

Equation (45) predicts a monotonic increase inT∗1 which reaches an infinite value at a finite
time, which is the induction timẽt∗i0. This time is reached when the denominator of the
argument of the logarithm is zero, givingt̃∗i0 = ln((1 + β̂3)/β̂3). For β̂3 � 1, this reduces to
t̃∗i0 = ln(1/β̂3). In terms of the original scaling, the induction time is thus

t∗i0 = 1

β̂1

ln
1

β̂3

= 1

2̂α̂Êc
ln

(
α̂Êce2̂

âq̂

)
(η = 0). (46)

Whenη = 1, equation (43) has a different closed form solution, namely,

T∗1(t̃∗) = 1

2
t̃2∗ − ln

(
1− β̂3

√
π

2
erfi

(
t̃∗√
2

))
(47)

where the imaginary error function,

erfi(ξ) = 1

i

√
2

π

∫ iξ

0
exp

(−ζ 2
)

dζ (48)
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with ξ as an arbitrary variable andζ as a dummy variable, has been employed. While the
imaginary number i appears in its definition, it is noted that erfi maps real elementsξ into a
strictly real range. Again, the solution for temperature perturbation, equation (47), becomes
unbounded at finite induction time, which indicates the onset of thermal explosion. This occurs
at t̃∗i1 =

√
2 erfi−1(

√
2/π/β̂3). In terms of the original time scaling, this becomes

t∗i1 =
√

2

β̂1

erfi−1

(√
2

π

1

β̂3

)
=
√

2

2̂α̂Êc
erfi−1

(√
2

π

α̂Êc e2̂

âq̂

)
(η = 1). (49)

Away from the limitsη = 0 and 1, one can integrate equation (43) numerically to determine
the induction time predicted by the asymptotic theory.

3.2. Reaction period

We next estimate reaction time scales via local linear analysis. Assuming that chemical reaction
dominates over plastic work in dictating temperature changes during the period of vigorous
reaction, equations (32) and (33) are approximated fort∗ > t∗i as

dT∗
dt∗
= âq̂(1− λ∗) exp

(
− 2̂
T∗

)
T∗(t∗i ) = T∗i (50)

dλ∗
dt∗
= â(1− λ∗) exp

(
− 2̂
T∗

)
λ∗(t∗i ) = 0. (51)

Subtracting the product of̂q and equation (51) from equation (50), an equation for energy
conservation during vigorous reaction is obtained:

d

dt∗
(T∗ − q̂λ∗) = 0. (52)

Integrating and applying appropriate initial conditions yields

T∗ − q̂λ∗ = T∗i . (53)

Using equation (53) to eliminateT∗ from equation (51), a single ordinary differential equation
for λ∗ is found during vigorous reaction:

dλ∗
dt∗
= â(1− λ∗) exp

(
− 2̂

T∗i + λ∗q̂

)
λ∗(t∗i ) = 0. (54)

A linear analysis at the time of onset of vigorous reaction shows the reaction time constant just
at ignition,t∗iR, has a value

t∗iR = 1

â
exp

(
2̂

T∗i

)
. (55)

A similar analysis near the point of complete reaction shows the time constant to have evolved
to the faster

t∗R = 1

â
exp

(
2̂

T∗i + q̂

)
. (56)

Thus, reaction evolves on scales which have an algebraic dependence on the kinetic constant
and an exponential dependence on activation energy, temperature at ignition and heat release.
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3.3. Post-reaction period

After completion of reaction, plastic work again dominates. Though at this point the
constitutive model for stress is no longer in a regime which can be compared with experiment,
the model predicts a return to a condition in which plastic work dictates the rate of temperature
rise. Temperature can be predicted by solving equation (35) subject to the initial condition
T∗(t∗i ) = T∗i + q̂, which has the solution

T∗(t∗) =
(

1− ν
1 +η

α̂Êc (tη+1
∗ − tη+1

∗i ) + (T∗i + q̂)1−ν
)1/(1−ν)

t∗ > t∗i . (57)

4. Numerical methods

Here the numerical methods used to solve the governing equations are briefly described. In
the next section, we solve the set of two ordinary differential equations which result from
thermal explosion theory: equations (32) and (33). These equations are solved to a precision
of 16 digits using the NDSolve routine in the Mathematica 3.0 software package. Solution time
on a Sun UltraSparc 1 is under 1 min. Then, in the following section, a set of partial differential
equations, equations (19)–(22), is solved for the spatially inhomogeneous problem. As the
system is parabolic, the equations are suited to solution via a time-marching technique. The
system is solved with a method-of-lines approach, embodied in a double-precision Fortran 77
computer code, on a uniform spatial grid of 49 nodes in a few minutes on the same machine.
To implement the method of lines, spatial derivatives are represented as second-order spatially
accurate centred finite differences. What results is a set of 196 (four equations for each of the
49 nodes) ordinary differential equations in time. These equations are solved implicitly using
the method found in the standard LSODE subroutines [36]. While the implicit method does not
have as severe restrictions on time step size as do explicit methods, an adaptive time-stepping
procedure is employed to guarantee convergence of the Newton’s method iteration required
by the implicit method at each time step. The adaptive time step algorithm selects a time step
so as to suppress large changes in any fundamental variables during any given time step. All
solutions presented have a temporal accuracy appropriate for the level of spatial resolution
employed. Reference [26] demonstrates convergence of error norms with grid size, consistent
with the specified accuracy of spatial discretization.

5. Results

Here, results are presented first for the spatially homogeneous thermal explosion theory. Then a
detailed comparison between the predictions of the spatially homogeneous and inhomogeneous
theories, which highlights the generally small differences, is presented. Lastly, to demonstrate
limits under which thermal explosion theory is a good predictor of ignition, the sensitivity of
induction time to variation in initial temperature perturbationε̂T is reported.

For all calculations we select a set of parameter values which models the explosive
LX-14, chosen because of the ready availability of constitutive data. Dimensional and
corresponding dimensionless values are listed in table 1, which are identical to those used in
[27]. Thermochemical parameters are taken from Dobratz and Crawford [29], who describe this
material by the chemical formula C1.52H2.92N2.59O2.66and report that the material is 95.5% mass
fraction granular HMX bound in a 4.5% estane (a co-polymer of polyester and polyurethane)
binder. The mean particle size of the HMX grains is less than 250µm. Mechanical properties
were determined experimentally and the thermal softening exponentν was estimated so that



Thermal explosion theory for shear localizing energetic solids 115

Table 1. Parameters used in baseline numerical calculations [26, 27, 29].

Material properties Reaction parameters

α (N m−2) 4.239× 107 a (s−1) 5.00× 1019

ν −1.28× 100 q̃ (J kg−1) 5.95× 106

η 3.20× 10−1 E (J mol−1) 2.206× 105

µ 8.00× 10−2 < (J mol−1 K−1) 8.314× 100

ρ (kg m−3) 1.849× 103

c (J kg−1 K−1) 1.130× 103

k (W m−1 K−1) 4.39× 10−1

Test parameters Dimensionless parameters

vL (m s−1) 7.00× 100 α̂ = α

ρv2
L

4.68× 102

L (m) 2.50× 10−3 Êc = v2
L

cT0
1.46× 10−4

T0 (K) 2.98× 102 P̂ e = ρcvLL

k
8.33× 104

â = La

vL
1.79× 1016

q̂ = q̃

cT0
1.77× 101

2̂ = E

<T0
8.90× 101

β̂3 1.54× 10−20

the material lost significant strength near its melting point [26, 27]. The imposed strain rate
wasγ̇ = 2800 s−1.

5.1. Spatially homogeneous solutions

We solve equations (32) and (33) numerically. Figure 2 gives solutions for (a) T∗(t∗), (b)
λ∗(t∗), (c) τ∗(t∗) and (d) the magnitude of the difference in temperature predictions between the
numerical solution of equations (32) and (33) (labelledT∗num) and the approximate solutions
of equations (36) and (57) (labelledT∗app) as a function oft∗. From figure 2(a) it is seen
that the dimensionless temperature increases from its initial value of unity to a value of 2.18
(649 K) at the induction time oft∗i = 15.13 (ti = 5.40 ms), predicted by iterative solution of
equation (37). In fact, the crude explicit estimate of equation (38),t∗i = 8.20 (ti = 2.93 ms),
is only in error by a factor of roughly two. Additionally, numerical solution of the asymptotic
temperature perturbation equation, equation (43), givest∗i = 5.77 (ti = 2.07 ms). Estimates
are also found for special nearby values ofηgiven by equation (46)(t∗i0 = 7.53(ti0 = 2.69 ms))
and by equation (49)(t∗i1 = 3.98 (ti0 = 1.42 ms)). It is seen that for the parameters
chosen, the less rigorous approximate theory somewhat better predicts the induction time
than the asymptotic theory, most likely because the approximate theory retains the effect of a
temperature-dependent stress and finite activation energy.

At the onset of vigorous reaction, the reaction is predicted to occur on time scales
comparable tot∗iR = 30.0 (tiR = 10.7 ms). However, near complete reaction, the model’s
exponential sensitivity of the reaction time scale to temperature induces evolution on scales
of t∗R = 5.1× 10−15 (tR = 1.8× 10−18 s). These very small scales are a direct consequence
of using standard kinetic parameters for this material, albeit beyond the range in which the
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Figure 2. Temporal evolution of (a) temperatureT∗, (b) reaction progressλ∗, (c) stressτ∗ and (d)
the magnitude of the difference of numerical predictions of temperatureT∗num from equations (32),
(33) and predictions of the temperature approximations,T∗app: equations (36), (57) for simulations
of LX-14, γ̇ = γ̇ = 2800 s−1 using spatially homogeneous, thermal explosion theory.

parameters were experimentally calibrated. Near complete reaction, temperature is sufficiently
high to have nearly overcome the model activation energy barrier and kinetics are being
driven towards the limiting time constant given by the reciprocal of the kinetic prefactor:
1/â = 5.6× 10−17 (1/a = 2× 10−20 s). However, the kinetic prefactor and activation energy
are typically estimated from a curve fit to experimental cook-off data far from the complete
reaction limit, in which induction times may range from days to 10−4 s. A more physical
model might explicitly account for both phonon interaction length and time scales and effects
of porosity, crack growth and gas phase kinetics which must limit such high-temperature
reactions. Even if such an accounting were made, it seems likely that reaction times would
be extremely fine relative to induction times and the results would be indistinguishable when
plotted simultaneously with induction time scale phenomena.

At complete reaction, temperature reaches a value ofT∗ = 19.74(T = 5883 K). This high
temperature is reasonable insofar as it is consistent with model assumptions and nearly identical
to the sum,T∗ = 19.9 (T = 5914 K), of the temperature at the induction time,T∗i = 2.18
(Ti = 649 K), and a simple estimate of the temperature rise which is attributable to reaction,
q̂ = 17.7 (q̃/c = 5265 K). The small difference is attributed to the small amount of reaction
which occurs in the induction period. Also, there is no mechanism in the thermal explosion
model to reduce temperature. Additionally, it is shown in the next section that diffusion is too
slow a mechanism to significantly reduce temperature during reaction. Further, the temperature
after reaction would be reduced somewhat if account were taken of the increase in specific
heat of the reaction products. After thermal explosion, the temperature resumes a relatively
slow increase, which is difficult to perceive in figure 2(a), due to continued shearing.
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The behaviour ofλ∗ is shown in figure 2(b) on a logarithmic scale. Fort∗ < 4, the
extremely low values ofλ∗ are not plotted. For 0< t∗ < t∗i , it is clear that there is a gradual
increase inλ∗. WhenT∗ = T∗i , the strong temperature sensitivity of the reaction rate induces
a rapid change inλ∗, bringing it to unity over the same time scales as the temperature changes
during the reaction.

In figure 2(c) the shear stressτ∗ shows a rapid rise from zero to a peak ofτ∗ = 536
(τ = 48.5 MPa), realized att∗ = 4.1 (t = 1.46 ms), well before the induction time. At
early time, strain and strain-rate hardening dominate over thermal softening. After the time
of peak stress, thermal softening dominates. Whent∗ = t∗i , stress rapidly drops toτ∗ ∼ 24.6
(τ ∼ 2.23 MPa), after which it slowly rises.

The plot of figure 2(d) demonstrates that the approximations toT∗ are excellent for nearly
all of the time domain. For 0< t∗ < 3.6, the error is roughly 2× 10−15. In this domain, the
difference between the numerical solution and the approximate solution is attributable to the
error in the numerical solution of equations (32) and (33). While the Mathematica function
NDSolve can solve to arbitrary precision, computation time increases with specified precision,
so here precision is limited to 16 digit accuracy. Thus for 0< t∗ < 3.6, equation (36)
gives the more accurate prediction. Fort∗ > 3.6, the difference can be attributed to errors in
the approximate solution. Fort∗ < t∗i , the approximate solution neglects influences of the
reaction; this is manifested in a gradual increase in the difference up to the time of thermal
explosion seen in the period 3.6 6 t∗ < 15.13. The difference, however, is large just around
the time of thermal explosion and has a magnitude of|T∗num− T∗app| = 17.5. In this region,
with no explicit closed-form solution with structure available, the solution is approximated as
a Heaviside step function. The consequent error is evident for an extremely short duration.
After thermal explosion, equation (57) predicts temperature very well, as the difference is
seen to drop roughly to the value of error accumulated during build-up to thermal explosion,
near|T∗num− T∗app| = 0.002. The fact that the differences are of widely varying order of
magnitude is a reflection of the absence of a formal asymptotic formulation of the approximate
equations. Nevertheless, it is clear that the approximate formula performs well in predicting
the temperature.

5.2. Spatially inhomogeneous solutions

To verify the ability of spatially homogeneous theory to accurately predict induction times
as compared to the more robust spatially inhomogeneous theory, solutions from the previous
section are compared to solutions of equations (19)–(23). In these calculations, temperature
perturbation parameters are held fixed atε̂T = 0.0116, ε̂L = 0.02. The dimensional value
of temperature perturbation is 3.5 K and the dimensional zone width is 50µm. All other
parameter values are as given in table 1. Calculation was ceased after complete reaction was
achieved in the centremost cell, at which time the computational time step was of the order of
1t∗ ∼ 1× 10−16 (1t ∼ 4× 10−20 s).

Once again these extremely small time scales are a consequence of the model assumptions.
The kinetic model has not been calibrated for such fine time scales and in actuality neglected
molecular level physical mechanisms which are most likely to be limiting the reaction
rate in this period. While early portions of the calculation can be computed rapidly, the
computation is extremely sluggish upon commencement of reactive shear banding, due to
stiffness from chemical reaction and shear localization. As the key feature is the onset of
ignition, and the constitutive model becomes less valid as more reaction products are present,
it is reasonable to report results only up to ignition. It is noted that adaptive methods, such as
the adaptive Chebyshev pseudo-spectral method recently employed by Baylisset al [37] on
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Figure 3. Time and space variation of difference (1) between predictions of spatially
inhomogeneous theory and thermal explosion theory for (a) velocity1v∗; (b) displacement1u∗;
(c) stress,1τ∗; (d) reaction progress,λ∗ (note, not a difference); (e) temperature1T∗ (absolute
scale) and (f ) temperature1T∗ (logarithmic scale), for LX-14,̇γ = 2800 s−1.

an inert shear banding problem, could likely be used effectively to overcome the stiffness near
localization.

Predictions are shown in figure 3. Except for figure 3(d), all plots in this figure represent the
difference(1) between predictions of spatially inhomogeneous theory and thermal explosion
theory. As can be seen differences are near zero fort∗ � t∗i ∼ 13.73 (ti ∼ 4.90 ms),
both spatially inhomogeneous and thermal explosion theories give nearly identical results
during the induction period. Neart∗ = t∗i , shear begins to localize near the site of the initial
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small inhomogeneity atz∗ = 1
2 (z = 1.25 mm) and differences become more pronounced.

Nevertheless, it is noted that the magnitude of differences is quite small for the bulk of the
induction period; the scaling employed in figure 3 highlights those differences that do exist.

Figure 3(a) gives the difference of velocity predictions of the full model and that of
equation (30). The differences are near zero at early time and approach a peak of1v∗ = 0.15
(1vθ = 1.05 m s−1) at the cessation of calculation, at which time the strain rate at the centre
of the shear band, calculated by a finite difference centred over two cells, is predicted to be
γ̇∗ = 7.5 (γ̇ ∼ 2 × 104 s−1). This should be considered a lower bound dictated by the
finite spatial resolution employed, as it is noted that it is of the same order of magnitude
as the finite difference assuming a full drop of velocity over two cells: 1/21z∗ = 25
(vL/21z = 7× 104 s−1).

Figure 3(b) gives differences in displacement,1u∗, which reach a peak of1u∗ = 0.079
(1uθ = 0.20 mm) at cessation of calculation. Thermal explosion theory values for
displacement are given by equation (31). Stress differences, with thermal explosion values
from equation (34), are shown in figure 3(c), which are near zero for most of the domain and
reach a peak of1τ∗ = 68.4 (1τ = 6.2 MPa) at cessation of calculation. As we have no
analytic estimate forλ∗ in the induction period, figure 3(d) plots the magnitude ofλ∗ for the
full calculation on a logarithmic scale. The nearly spatially uniform rise is evident, with a
small, but important, tendency for reaction to predominate in the vicinity of the temperature
perturbation. It is seen that the centremost cell has progressed to complete reaction,λ∗ = 1,
at cessation of calculation.

Figures 3(e) and (f ) give plots of the difference in temperature predictions of the full
model and those of equation (36), on an absolute and logarithmic scale, respectively. The
absolute scale prediction highlights the accuracy of the approximate solution for the bulk of
the domain, except at the ignition point, where the difference is1T∗ = 17.8 (1T = 5304 K).
The large difference exists because the two theories predict slightly different times for thermal
explosion. The inhomogeneous theory predicts an absolute peak temperature ofT∗ = 19.77
(T = 5892 K), almost identical to that predicted by thermal explosion theory:T∗ = 19.74
(T = 5883 K). One might expect that diffusion would lower the peak predicted by the
inhomogeneous theory. However, it is recalled from classical thermal diffusion theory
that the time necessary for diffusion to play a significant role in reducing temperature over
one finite-difference cell size ist∗D = P̂ e1z2

∗, which, for this problem, ist∗D = 33.3(11.9 ms),
orders of magnitude greater than the reaction time scale, and about twice as long as the
induction time scale. Hence it is not surprising that even when diffusion is included, that
high localized temperatures are predicted; moreover, the differences are likely to be due to
numerical truncation errors. The plot on the logarithmic scale highlights the evolution of the
temperature perturbation and the slow accumulation of error due to neglect of reaction in the
approximation of equation (36).

The induction time, defined here as the time at whichλ∗ = 1
2 in the centremost cell, is

t∗i = 13.73 (ti = 4.90 ms), about 10% less than that predicted by thermal explosion theory.
The difference is dependent on the magnitude of the initial temperature perturbation, as shown
in figure 4. A perturbation of̂εT = 0 gives identical results to thermal explosion theory. As
the perturbation increases, the induction time slowly decreases, until the perturbation becomes
of a similar order of magnitude as the activation energy2̂. Then, the induction time drops
rapidly with increasinĝεT until it reaches a limiting value dictated by the reciprocal of the
kinetic prefactor: 1/â. It is noted that large values ofε̂T correspond to generally unrealizable
temperatures; they are included to show the global mathematical character of the response.

A preferable limiting study would model temperature perturbation as a Dirac delta
function, whose strength gave a measure of the energy of the perturbation. One would then
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Figure 4. Variation of induction time,t∗i , with the magnitude of the initial temperature perturbation,
ε̂T .

study ignition sensitivity as the energy perturbation was varied. However, proper consideration
of this problem would require extremely fine grids. A finite-difference model of this would
deposit all energy in one very thin cell. The temperature would be high enough to induce a
high-order reaction which would evolve on a time scale oft∗R = 1/â. The reaction would face
competition from thermal diffusion. To model this properly, the thermal diffusion time for a
cell of width1z∗ would need to be at least as small as the reaction time. With the thermal

diffusion time ast∗D = P̂ e1z2
∗, the resulting spatial discretization limit is1z∗ <

√
1/(âP̂ e).

For the parameters of table 1, this would require1z∗ < 2.6× 10−11 (6.5× 10−14 m) which,
in addition to giving rise to difficulties with the continuum assumption, would be difficult to
model given present computational limitations.

6. Conclusions

It is evident from the results for the HMX-based material LX-14 that a spatially homogeneous
thermal explosion model for a strained energetic solid is adequate to predict ignition, even in
the presence of small perturbations which can induce shear localization. Indeed, enhanced
plastic work during a localization event will accelerate reaction in the region of localization;
however, at this time the surrounding material is also at the threshold of reaction. As thermal
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diffusion is seen to be a relatively slow event, it is predicted that the material surrounding a
vigorously reacting shear-localized hot spot will not react as a consequence of diffusion of
energy from the hot spot, but rather will react because of the accumulated thermal energy
during the relatively long period of homogeneous plastic work. That is, relatively large hot
spots associated with regions of homogeneous shear and significant material strength induce
reaction; more concentrated reactive hot spots associated with possible shear localization
are simply harbingers of an already imminent ignition process, and not its cause. Similar
conclusions may be valid for any material which reacts at a temperature near the temperature
where material strength is lost, such as HMX, but could potentially be quite different for classes
of energetic material without this property.
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