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The interplay between chemistry and transport is addressed by exploring the coupling
between the spatial and temporal scales of one-dimensional laminar premixed combus-
tion in reactive mixtures described by detailed chemical kinetics and multicomponent
transport. System dynamics are investigated in the neighbourhood of the equilibrium
state; in so doing, the time scales associated with modes of varying wavelength for the
complete unsteady, spatially inhomogeneous system are obtained. The results reveal
that short wavelength modes are dominated by diffusion-based time scales, and long
wavelength modes are dominated by reaction-based time scales. The analysis further
identifies critical wavelengths where the effects of reaction and diffusion are balanced,
and it is seen that the critical wavelengths are well estimated by classical diffusion
theory.
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1. Introduction

Simulating chemically reactive flow involves solving a large set of Partial Differential
Equations (PDEs) that represent chemical species evolution coupled with conservations of
mass, momentum and energy. For combustion problems that are inherently unsteady and
spatially inhomogeneous, correctly capturing the dynamics can be crucial. This is a conse-
quence of the extreme nonlinear temperature and minor-species-concentration sensitivities
of the reaction rates; in short, many problems require accuracy spanning many scales in
both space and time for all state variables.

A common approximation in combustion theory is to decouple chemical dynamics
from those of advection and diffusion; this approximation is especially prevalent when
using operator splitting strategies for numerical simulation of combustion events. Often,
these splitting strategies are employed to facilitate the use of either (a) an implicit solution
of the uncoupled chemical kinetics equations at each spatial point, or (b) a reduced kinetics
model, where the reduction has been built around an analysis of the chemical time scales
only. Both methods often enable stable numerical solutions on relatively coarse spatial
grids with large time steps which exhibit many plausible, realistic features of combustion
phenomena, such as steady propagating flames. However, it has long been recognised that
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Combustion Theory and Modelling 77

there are inherent dangers in such splitting strategies in problems with rich multi-scale
dynamics [1–3].

In fact, unsteady, spatially inhomogeneous combustion is better viewed as an event in
which reaction, advection and diffusion time scales are fully coupled; in reality, reactions
cannot occur without molecular diffusion [4]. On a molecular scale, reaction and diffusion
are both related to molecular collisions. For spatially homogeneous systems, diffusion still
occurs at the molecular level; there simply is no net macroscopic effect. Note that colli-
sion theory at the molecular level is the basis for continuum models of both reaction and
diffusion. Reaction–diffusion coupling is especially important in the thin zone of rapid
temperature rise and species mass fraction adjustment embedded within any flame. In a
recent study not employing operator splitting [5], it has been shown via so-called spatial
eigenvalue analysis that the finest relevant continuum length scale for an atmospheric-
pressure laminar premixed flame is typically on the order of a few microns. Others are also
finding it necessary to use such fine scales for direct numerical simulation of combustion
phenomena. For example, the recent direct numerical simulations of hydrogen–air combus-
tion of Lu et al. [6] can be inferred to have employed a grid size of around seven microns.
In the detonation regime, Ziegler et al. [7] describe an adaptive refinement method that
for hydrogen–oxygen–argon mixtures resolved down to 1.06 microns. See also Martelli
et al. [8], who find for two-dimensional edge flames in an H2/O2/Ar mixture with detailed
kinetics that a grid resolution of 2.44 microns is necessary to capture peak values of HO2.

However, one must realise that resolution requirements are often dependent on the
problem considered, and that for some problems such fine scales are not required. Flame
features such as equilibrium concentrations, temperatures and steady flame speeds are
relatively insensitive to details of numerical resolution. For other problems, such as ignition,
extinction, stability, or prediction of wrinkled and cellular flame structures, the delicate
balance between reaction, advection and diffusion is often obtained only within thin zones
where fast time scale events occur, requiring appropriately fine spatio-temporal resolution
for numerical capture of these challenging physical phenomena. Indeed, Sharpe and Falle
[9] note that ‘It is important that the reaction zones of the flame, which correspond to the
shortest length and time scales of the problem, are always well resolved in order that correct
cellular dynamics are computed.’

While the need for finely resolved combustion simulations is beginning to be recog-
nised, the underlying physical rationale for this resolution is often less clear and may require
consideration on a case-by-case basis. Thus, the computational combustion modeller would
be well served by having simple physically-based estimates for the necessary space and time
resolution necessary to capture the most demanding continuum scales correctly. Such an es-
timate is best formulated by considering the full interplay between chemistry and transport.

In this work, a refinement and extension of the first two authors’ earlier study [10],
we investigate such interplay with spectral analysis of near equilibrium structures obtained
from planar laminar flame theory for the purpose of elucidating the coupling between
the temporal and spatial scales. The main objective is to identify the time scales associ-
ated with each linearly independent mode of varying wavelength for unsteady, spatially
inhomogeneous, reactive flow problems. We study three different mixtures: hydrogen–air,
nitrogen–oxygen and ozone. First, we identify the time scales associated with the unsteady,
spatially homogeneous version of the model. Then, for hydrogen–air and ozone, we study
the time-independent, spatially inhomogeneous version of the model and subsequently ob-
tain the length scales associated with planar laminar flames. Lastly, focus is placed on small
spatio-temporal perturbations to the spatially homogeneous chemical equilibrium portion
of the flame. Spectral analysis of the reactive flow problem is conducted, and the time scales
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78 A.N. Al-Khateeb et al.

associated with each linearly independent mode of varying wavelength are identified. In
so doing, we extend the recent work of Lu et al. [6], who included a similar study of the
time scales induced by chemistry alone within a hydrogen–air premixed laminar flame, not
including the important effects of transport on the time scales.

In a key result, our detailed kinetics predictions suggest that a simple formula from
classical diffusion theory [11] is sufficient to describe the critical length and time scales
that must be resolved in order to claim a Direct Numerical Simulation (DNS). We note that
a DNS typically implies a continuum solution which has been mathematically verified as
well as experimentally validated; our focus will be restricted to mathematical verification.
Indeed, validation of the scales we will discuss can be done on important sub-models of our
more general model, e.g. inert viscous shock structures, or simple molecular dissociation
dynamics; however, full validation of all scales of detailed kinetic models is beyond the abil-
ity of present-day diagnostic methods. To obtain our estimate of necessary DNS scales, one
need only perform a simple spatially homogeneous calculation to determine the chemical
time scales, and have available the diffusive transport coefficients to determine the appro-
priate continuum length scales associated with the modelled reaction–advection–diffusion
process.

This paper is organised as follows. In Section 2, a brief description of the mathematical
model is presented. Then, in Section 3 a detailed description of the methodology is given.
In Section 4 results for the three reactive flows are shown, and we close in Section 5 with
short conclusions. Appendix A gives the constitutive equations, and Appendix A shows
how our results can be interpreted in the context of a simple scalar model problem having
a closed-form solution.

2. Mathematical model

The governing equations for a premixed reactive mixture ofN gas phase molecular species
composed of L atomic elements which undergo J reversible reactions are given by the
unsteady reactive Navier–Stokes equations. In conservative form, with no momentum or
energy sources present, these N + 4 equations can be written as [12]

∂ρ

∂t
= −∇ · (ρu), (1a)

∂

∂t
(ρu) = −∇ · (ρuu + pI − τ ), (1b)

∂

∂t

(
ρ
(
e + u · u

2

))
= −∇ ·

(
ρu
(
e + u · u

2

)
+ jq + (pI − τ ) · u

)
, (1c)

∂

∂t

(
ρY e

l

) = −∇ · (ρuY e
l + je

l

)
, l = 1, . . . , L− 1, (1d)

∂

∂t
(ρYi) = −∇ · (ρuYi + jm

i

)+ ω̇imi, i = 1, . . . , N − L, (1e)

where ∇ ≡ (∂/∂x1,∂/∂x2,∂/∂x2)T is the gradient operator, and the independent variables
are the time t and the spatial coordinates x = (x1, x2, x2)T. Here, ρ is the mixture mass
density, u is the mixture’s mass-averaged velocity vector, p is the mixture pressure, I is the
unit tensor, τ is the viscous stress tensor, e is the mixture mass-averaged specific internal
energy, jq is the energy flux vector, Yi , ω̇i , mi and jm

i are, respectively, the mass fraction,
the molar production rate per unit volume, the molecular mass, and the diffusive mass flux
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Combustion Theory and Modelling 79

vector of the ith species. For the lth element, Y e
l and je

l are, respectively, the element mass
fraction and the element mass flux vector, which are defined as

Y e
l = me

l

N∑
i=1

φliYi

mi
, l = 1, . . . , L, (2a)

je
l = me

l

N∑
i=1

φlijm
i

mi
, l = 1, . . . , L, (2b)

where me
l is the elemental mass, and φli is the element index matrix which provides the

number of moles of element l in the ith species.
Equations (1a)–(1c) describe the conservation of mass, linear momenta and energy of

the mixture. Together Equations (1a) and (1d) describe the conservation of the L atomic
elements, and, in conjunction with Equation (1e), they describe the evolution of the N
species in time. This system is completed by adopting the constitutive relations given
in Appendix A. The element conservation formulation is uncommon, but useful. The
major advantage is to gain an extra L− 1 conservation constraints. It will be seen that
this formulation leads to a more highly refined version of the equations which enables
additional analysis tools to be brought to bear on the problem. Specifically, this will be
critical in formulating a generalised eigenvalue problem from a set of differential-algebraic
equations which will be derived.

The complete system of equations, Equations (1), (2) and (A1), is simplified by adopting
the low Mach number assumption [13] with the pressure at leading order being uniform,
neglecting thermal diffusion effects (DT

i = 0), and considering only one dimension in
space. Moreover, we assume these equations are written in a reference frame in which their
time-independent version describes a stationary planar laminar flame. Thus, the governing
equations in a non-conservative form, after performing standard mathematical manipula-
tions, become

∂ρ

∂t
+ ∂

∂x
(ρu) = 0, (3a)

ρ
∂h

∂t
+ ρu

∂h

∂x
+ ∂jq

∂x
= 0, (3b)

ρ
∂Y e

l

∂t
+ ρu

∂Y e
l

∂x
+ ∂j e

l

∂x
= 0, i = 1, . . . , L− 1, (3c)

ρ
∂Yi

∂t
+ ρu

∂Yi

∂x
+ ∂jm

i

∂x
= ω̇imi, i = 1, . . . , N − L, (3d)

where

jm
i = ρmi

m

N∑
j=1
j �=i

Dij Yj

Xj

∂Xj

∂x
, i = 1, . . . , N, (4a)

jq = q +
N∑
i=1

jm
i hi . (4b)
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80 A.N. Al-Khateeb et al.

Equations (3) describe a standard multi-scale problem: the unsteady one-dimensional lam-
inar premixed flame propagating freely in a mixture of calorically imperfect ideal gases
described by detailed kinetics and multicomponent transport. Further details are given by
Al-Khateeb [12].

3. General analysis

Here, the temporal and the spatial scales of a reactive flow model governed by Equations (3)
are investigated, and the upper bounds for time step and spatial grid size are provided for
scenarios in which accurate knowledge of the spatio-temporal distribution of detailed
species concentrations is required. Then, the coupling between temporal and spatial scales
is explored via conducting a spectral analysis of the reactive flow problem. To this end, the
problem is split into three separate problems that are treated independently. The first problem
represents an unsteady, spatially homogeneous reactive system; the second represents a
steady spatially inhomogeneous reactive system; and the third is coupled. For the first
problem, we identify the intrinsic time scale spectrum over which the system evolves.
Analogously, in the second problem the inherent length scale spectrum is identified. Then, in
the third problem the time scales associated with each linearly independent mode of varying
wavelength for the full unsteady, spatially inhomogeneous system, linearly perturbed near
its spatially homogeneous equilibrium state, are identified.

3.1. Time scale analysis

Here, we consider unsteady, spatially homogeneous reactive mixtures under adiabatic–
isobaric conditions; we will further use a standard eigenvalue-based technique [6, 10,
12, 14–17] to estimate chemical time scales. The governing equations, extracted from
Equations (3), are the following set of N + 1 nonlinear autonomous Ordinary Differential
Equations (ODEs):

dh

dt
= 0, (5a)

dY e
l

dt
= 0, l = 1, . . . , L, (5b)

dYi
dt

= ω̇imi

ρ
, i = 1, . . . , N − L. (5c)

Following integration, Equation (5a) states that the mixture specific enthalpy is a conserved
quantity h(T , Yi) = ho, which is a consequence of the system being under adiabatic and
isobaric conditions. Following integration, Equations (5b) imply that theL atomic elements
are conserved, and that L values of Yi can be obtained from the integrated version of
Equation (5b). The right hand side of Equation (5c) has dependency on ρ(T , Yi) and
ω̇i(ρ, T , Yi). Using Equations (A1e) and (A1w) and the constant pressure assumption, we
have that ρ(T , Yi) = po/(�T

∑N
i=1 Yi/mi), where po is the uniform pressure. The species

production rate ω̇i(ρ, T , Yi) is then fixed by Equations (A1k), (A1l), (A1m) and (A1w). All
of these algebraic constraints allow the final version of the system to be written as (N − L)
ODEs in the (N − L) linearly independent values of Yi .

As an aside, one notes that in the spatially homogeneous limit for this isobaric, adi-
abatic problem, dρ/dt �= 0, though cursory examination of Equation (3a) in the spatially

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ot
re

 D
am

e]
 a

t 0
7:

54
 0

8 
Fe

br
ua

ry
 2

01
3 



Combustion Theory and Modelling 81

homogeneous limit might lead one to the opposite conclusion. However, by integration of
Equation (3a) from x = 0 to xp(t), where xp(t) is some prescribed function of a piston
location, straightforward application of Leibniz’s rule, and enforcement of spatial homo-
geneity of ρ, one deduces that ρ(t) = ρ(0)xp(0)/xp(t). Thus as a piston moves to maintain
an isobaric state as combustion occurs, the density will adjust in time.

To obtain the temporal evolution of the spatially homogeneous reactive system, Equa-
tions (5c) are integrated, starting from an initial condition, using any standard ODE solver.
Simultaneously, in order to calculate the frequency spectrum over which the system evolves,
a standard spectral analysis is performed [6, 14, 15]. First, the ODEs are linearised at each
time step about the instantaneous solution state, which gives rise to a standard eigen-
value problem. Then, the constant (instantaneous) Jacobian matrix J is calculated. Next, its
eigenvalues λi are found. The time scales τi over which the system evolves are given by the
reciprocals of the non-zero eigenvalues’ real parts: τi = 1/ |Re(λi)| , i = 1, . . . , N − L.
Note that the homogeneous Equations (5a) and (5b) contribute L+ 1 eigenvalues, each
with a value of zero. The ratio between the largest and the smallest time scales identifies
the system’s temporal stiffness:

St = τslowest

τfastest
. (6)

In general, the eigenvalues can be complex, where the reciprocals of the real parts provide
the scales of the amplitude growth, and the reciprocals of the imaginary parts represent the
periods of oscillation. Note that, in this instantaneous local analysis, we are not concerned
with the time scales of oscillation.

3.2. Length scale analysis

Next, we consider the steadily propagating laminar premixed flame for reactive mixtures.
From Equations (3) the governing equations are given by the following set of ODEs [5]:

d

dx
(ρu) = 0, (7a)

d

dx
(ρuh+ jq) = 0, (7b)

d

dx

(
ρuY e

l + j e
l

) = 0, l = 1, . . . , L− 1, (7c)

d

dx

(
ρuYi + jm

i

) = ω̇imi, i = 1, . . . , N − L. (7d)

The system consists of 2N + 2 equations, though only N + 1 ODEs are listed explicitly
in Equations (7); the other N + 1 are given by Equations (4) supplemented by the one-
dimensional version of Equation (A1d), which represent the definitions of jq and jm

i . The
homogeneous Equations (7a)–(7c) imply that there areL+ 1 conserved quantities, obtained
by integration. Also, since the species’ mass fluxes are constrained by Equation (A1i), the
number of independent variables is actually 2N − L, and the system thus comprises 2N − L

modes.
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82 A.N. Al-Khateeb et al.

To compute a resolved steady flame structure, a more traditional set of ODEs is employed
[18–20], which can be easily extracted from Equations (7), (A1c), (A1p) and (A1s) [12]:

d

dx
(ρu) = 0, (8a)

ρucp
dT

dx
+ dq

dx
= −

N∑
i=1

(
jm
i

dhi
dx

+ ω̇imihi

)
, (8b)

ρu
dYi
dx

+ djm
i

dx
= ω̇imi, i = 1, . . . , N − 1. (8c)

The appropriate set of boundary conditions is [18, 19]

x = 0 : T = To, Yi + jm
i

ρu
= Yio, i = 1, . . . , N − 1, (9a)

x → ∞ :
dT

dx
→ 0,

dYi
dx

→ 0, i = 1, . . . , N − 1, (9b)

x = xf : T = Tf , (9c)

where xf is a specified spatial point and Tf is the specified temperature at that location. A
solution of this boundary value problem, Equations (8) with the boundary conditions Equa-
tions (9), is obtained using the standard procedure embodied in the PREMIX algorithm
[21]. In all cases studied, the error tolerances for iterative convergence, as defined in detail
in [21], are relative tolerance RTOL = 10−9, and absolute tolerance ATOL = 10−14. The
values utilised here are several orders of magnitude more stringent than the default values;
the absolute tolerance is approaching the machine precision error. Furthermore, all results
are obtained on adaptively refined grids to control the error and capture regions of steep
gradient.

To compute all the length scales accurately, the robust method developed by Al-Khateeb
et al. [5] is used. In general, the complete set of ODEs, Equations (7), is reduced to a
highly refined non-traditional system of 2N + 2 Ordinary Differential-Algebraic Equations
(ODAEs). With a solution in hand from PREMIX, this form is convenient for a posteriori
determination of the length scales in the system. Linearising the system of ODAEs about
each spatial point in the reaction zone gives rise to a generalised eigenvalue problem.
By obtaining the system’s generalised eigenvalues λi , the local length scales �i , given
by the reciprocal of the real part of the λi , are predicted throughout the reaction zone;
�i = 1/ |Re(λi)| , i = 1, . . . , 2N − L.

Similar to the unsteady, spatially homogeneous system’s eigenvalues, the generalised
eigenvalues can be complex. The reciprocals of their real parts provide the length scales of
the amplitude growth, and the reciprocals of their imaginary parts represent the oscillatory
length scale. Furthermore, the ratio of the coarsest to the finest length scale identifies the
system’s spatial stiffness,

Sx = �coarsest

�finest
. (10)

Further details are given by Al-Khateeb et al. [5]. In this spatially local analysis, we are not
concerned with the length scale of any possible oscillations.
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Combustion Theory and Modelling 83

3.3. Advection–reaction–diffusion time scale analysis

We next study the time spectrum of the reacting flow system governed by Equations (3).
The time spectrum can be obtained by first linearising Equations (3) about a known state,
giving rise to a set of linear PDEs. These PDEs can be cast into a large system of ODEs by a
spatial discretisation sufficiently fine to capture all of the embedded spatial structures in the
solution. The eigenvalues of the Jacobian matrix of the forcing function of the ODEs can
then be associated with the time scales of the coupled advection–reaction–diffusion system.
Our approach is similar to that of Kirkby and Schmitz [22], which has been successful for
studying the stability of laminar flames with one-step kinetics. A related study for one-step
models is given by Sharpe [23].

In principle, we could perturb the steady laminar flame structure of Section 3.2 and com-
pute the system’s eigenvalue spectrum. However, this presents overwhelming computational
demands in solving for eigenvalues of very large matrices. As a useful alternative, we exam-
ine the time scale spectrum associated with a system defined on a spatial domain of length
L initially near a spatially homogeneous chemical equilibrium state of Section 3.1. This is
certainly relevant for laminar flame structure, as it represents the equilibrated portion of the
flame found as x → ∞. Thus, a spatially homogeneous system at chemical equilibrium is
subjected to a spatially inhomogeneous perturbation, and its spatio-temporal response is pre-
dicted. To achieve this, the governing equations, Equations (3), are most conveniently posed
as a set of 2N + 2 Partial Differential Algebraic Equations (PDAEs) in terms of 2N + 2
state variables contained in z = (z1, . . . , z2N+2)T = (Y1, . . . , YN, j

m
1 , . . . , j

m
N , h, q)T. This

system, in a compact representation, is

A(z) · ∂z

∂t
+ B(z) · ∂z

∂x
= f(z), z ∈ R

2N+2, f : R
2N+2 → R

2N+2, (11)

where A and B are square matrices of dimension 2N + 2, and f is a set of 2N + 2 nonlinear
functions of the state variables z.

To linearise the system, we consider z = zeq, a constant vector. At this point, we take
the system to be in its equilibrium state so that f(zeq) = 0, and we note that Equations (5)
are also in equilibrium. Additionally jm

i = 0 and q = 0. By defining perturbations from
the equilibrium state as z′ ≡ z − zeq and retaining only linear terms, we get

Aeq · ∂z′

∂t
+ Beq · ∂z′

∂x
= Jeq · z′, (12)

where Aeq ≡ A(zeq) and Beq ≡ B(zeq) are now constant. Furthermore, Jeq, the constant
Jacobian, is given as

Jik
eq = ∂fi

∂zk

∣∣∣∣
z=zeq

, i = 1, . . . , 2N + 2, k = 1, . . . , 2N + 2. (13)

We transform the problem to the time domain via discretisation of the spatial derivative
operator. While we recognise there are a set of length scales associated with the laminar
flame structure, for purposes of analysing the near-equilibrium flame structure we employ
the arbitrary domain length L. Equation (12) is spatially discretised using a standard
second order finite difference approximation such that N grid points are used to discretise
the domain; N = (L/�x) + 1. Consequently, the discretised version of Equations (12) is
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84 A.N. Al-Khateeb et al.

cast as a dynamical system of the form

Aeq · dZ
dt

= (J eq − Beq) · Z, Z ∈ R
2N (N+1), (14)

where Aeq and J eq − Beq are singular square matrices of dimensions 2N (N + 1), and Z
is the set of 2N (N + 1) state variables among which (N − 1)(N − L) are independent.
In Section 3.1, it was noted that the spatially homogeneous system has N − L modes.
Subsequently, although the number of spatial points isN , one of the laminar premixed flame
boundary conditions is a Dirichlet boundary condition, thus giving rise to the computed
number of independent state variables.

Now, since Aeq is singular, standard eigenvalue analysis is not applicable. Instead,
generalised eigenvalues are computed [24]. Next, we adopt the standard assumption that

Z = exp (λt) v, (15)

where λ and v are to be determined. Substitution of Equation (15) into Equation (14), and
defining Ceq = (J eq − Beq), yields the following generalised eigenvalue problem:

(Ceq − λAeq) · v = 0, (16)

where λ is the generalised eigenvalue, and v is the corresponding generalised eigenvector.
Solving for λi , then using Equation (15), it is easily seen that the system’s time scales are
given by the reciprocals of the real parts of the generalised eigenvalues,

τi = 1

|Re (λi)| , i = 1, . . . , (N − 1)(N − L). (17)

Once again, we are not concerned here with the oscillatory behaviour associated with any
imaginary component of the generalised eigenvalue.

The associated generalised eigenvectors, i.e. discrete approximations of the continuous
eigenfunctions which are the linearly independent modes of the dynamical system, are
calculated next. The approximation of the eigenfunctions improves as N increases, with
larger N allowing higher wavenumber modes to be well approximated. It is found that large
values of τi are associated with eigenfunctions which are weakly oscillatory in space (low
wavenumber κ), and that τi decreases as the wavelength decreases (high wavenumber κ).
We estimate the wavelength of a linearly independent mode 
 by the modified wavelength

̂, which is defined based on the eigenfunctions’ number of zero crossings nz, i.e. linearly
independent mode nodes, such that


 ∼ 
̂ = 4L
2nz − 1

, nz = 1, 2, 3, . . . (18)

In terms of the wavenumber κ , we have the standard relation


 = 2π

κ
. (19)
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Combustion Theory and Modelling 85

4. Results and discussion

All of our results for realistic chemical systems employ the algorithms of the CHEMKIN
[25] and TRANSPORT [26] packages drawing upon an associated thermodynamic data
base [27] to evaluate reaction rates and thermodynamic and transport properties.

4.1. Hydrogen–air mixture

The detailed kinetics mechanism extracted from Miller et al. [28], which has been widely
employed in the literature [19, 29, 30], is used to describe the hydrogen–air reactive system
under adiabatic and isobaric conditions. This mechanism consists of J = 19 reversible
reactions involving N = 9 species composed of L = 3 elements, see Table 1. In this
mechanism, the reacting species are H2, O2, H, O, OH, HO2, H2O2 and H2O. The inert
diluent for the mixture is N2.

We will focus attention on a mixture initially at To = 800 K. This is considerably
higher than values typically used in laminar flame calculations. However, commonly used
colder values preclude direct comparison to results from spatially homogeneous simulations
because, at low temperatures, the reaction rates in the spatially homogeneous limit are
vanishingly small. For completeness, we will in Section 4.1.4 summarise the more limited

Table 1. Hydrogen–air detailed kinetics mechanism.

Aj Ej

j Reaction (mol/cm3)1−ν ′
Mj−

∑N
i=1 ν

′
ij /s/Kβj βj (cal/mol)

1 H2+O2 ⇀↽ OH+OH 1.70 × 1013 0.0 47,780
2 OH+H2 ⇀↽ H2O+H 1.17 × 109 1.3 3,626
3 H+O2 ⇀↽ OH+O 5.13 × 1016 −0.816 16,507
4 O+H2 ⇀↽ OH+H 1.80 × 1010 1.0 8,826
5 H+O2 + M ⇀↽ HO2 + Ma 2.10 × 1018 −1.0 0
6 H+O2+O2 ⇀↽ HO2+O2 6.70 × 1019 −1.42 0
7 H+O2+N2 ⇀↽ HO2+N2 6.70 × 1019 −1.42 0
8 OH+HO2 ⇀↽ H2O+O2 5.00 × 1013 0.0 1,000
9 H+HO2 ⇀↽ OH+OH 2.50 × 1014 0.0 1,900

10 O+HO2 ⇀↽ O2+OH 4.80 × 1013 0.0 1,000
11 OH+OH⇀↽ O+H2O 6.00 × 108 1.3 0
12 H2 + M ⇀↽ H+H+Mb 2.23 × 1012 0.5 92,600
13 O2 + M ⇀↽ O+O+M 1.85 × 1011 0.5 95,560
14 H+OH+M⇀↽ H2O+Mc 7.50 × 1023 −2.6 0
15 H+HO2 ⇀↽ H2+O2 2.50 × 1013 0.0 700
16 HO2+HO2 ⇀↽ H2O2+O2 2.00 × 1012 0.0 0
17 H2O2 + M ⇀↽ OH+OH+M 1.30 × 1017 0.0 45,500
18 H2O2+H⇀↽ HO2+H2 1.60 × 1012 0.0 3,800
19 H2O2+OH⇀↽ H2O+HO2 1.00 × 1013 0.0 1,800

Note. The non-unity third body collision efficiency coefficients are:
a for reaction 5, α5,H2 = 3.3, α5,H2O = 21;
b for reaction 12, α12,H2 = 3, α12,H2O = 6, α12,H = 2;
c for reaction 14, α14,H2O = 20.
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86 A.N. Al-Khateeb et al.

Figure 1. The time evolution of species mass fractions for the spatially homogeneous stoichiometric
hydrogen–air reactive system, To = 800 K, po = 1 atm (color version online).

available results for the more realistic To = 300 K and find that all results are qualitatively
similar to the higher temperature case.

4.1.1. Spatially homogeneous system

Here, an unsteady, spatially homogeneous stoichiometric premixed mixture is considered,
where the initial molar ratio is given by 2H2+O2+3.76N2. The constant pressure is po =
1 atm, and the system was initially at To = 800 K. The governing equations are given
by Equations (5). Using the initial value problem solver DLSODE [31], the evolution of
species’ mass fractions is determined and presented in Figure 1.

In Figure 1, a power law growth of the minor species is clearly noted for t < 10−8 s.
For some minor species, this growth slightly modulates at t ≈ 10−8 s, which indicates
that dissociation of H2 and O2 must have been induced. At t ≈ 10−6 s, the minor-
species growth rates change, which indicates that significant reactions are induced. For
10−6 < t < 101 s, the minor species continue to increase with disparate growth rates. On
the other hand, the major species H2, O2 and N2 have essentially constant concentra-
tions. Just past t ≈ 101 s, all the species undergo significant change, and the radicals’
(e.g. HO2 and H2O2) mass fractions reach their maximum values. At t ≈ 2 × 101 s, an
exothermic recombination of radicals commences, forming the predominant product H2O,
which continues up to t ≈ 4 × 101 s, after which the system approaches the equilibrium
state.

The time scales over which the system evolves are presented in Figure 2. These tem-
poral scales are purely chemical scales that reflect reaction only. There are six time scales
in the spectrum. This is because the reaction mechanism has N = 9 species with L = 3
elements being conserved. Thus, we have N − L = 6 independent modes. The multiscale
nature of this problem is clearly seen. Near equilibrium, we have τfastest = 1.03 × 10−8 s
and τslowest = 1.85 × 10−4 s giving rise to a stiffness of St ∼ O(104). The fastest time
scale is consistent with the time scale over which minor species evolve. Thus, to cap-

ture all the physical dynamics in a numerical simulation, �t <∼ 10−8 s needs to be

employed.
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Figure 2. Time scales over which the spatially homogeneous stoichiometric hydrogen–air reactive
system evolves, To = 800 K, po = 1 atm (color version online).

4.1.2. Steady spatially inhomogeneous system

Here, an adiabatic steady one-dimensional laminar premixed flame freely propagating in a
stoichiometric hydrogen–air mixture at po = 1 atm is considered. The unburned mixture’s
temperature is To = 800 K, and the temperature of Tf = 900 K is assigned at xf = 2.30 cm.
The system’s unburned, i.e. cold, boundary conditions are identical to the initial conditions
of the spatially homogeneous system considered in Section 4.1.1.

A solution for this system can be easily obtained using the standard computational
code PREMIX [21]. By employing a grid that is adaptively refined to control the error and
capture regions of steep gradient, a fully resolved steady species profile is obtained. Figure 3
shows the spatial distribution of species’ mass fractions throughout the entire flame zone. At

Figure 3. Species mass fraction versus distance for a steady stoichiometric hydrogen–air flame,
To = 800 K, po = 1 atm (color version online).
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x ≈ 10−3 cm, the minor-species’ (e.g. HO2, H2O, H2O2) growth rates change slightly, which
reveals that significant reactions at this scale are induced. Another increase in the minor-
species’ (e.g. H2O2) mass fraction growth rates is noted at x ≈ 10−2 cm, which indicates
the occurrence of more vigorous chemical interaction of the minor species. For 10−2 < x <

2.30 × 100 cm, the minor-species’ mass fractions continue to increase rapidly with different
growth rates. On the other hand, the major species H2, O2 and N2 have essentially constant
mass fractions. Just past x = 2.20 × 100 cm, which is near the end of the preheat zone,
all the species’ mass fractions undergo significant change, and the radicals’ mass fractions
(such as HO2 and H2O2) reach their maximum values. At x = 2.40 × 100 cm, exothermic
recombination of radicals commences forming the predominant product H2O. This zone
extends up to x = 1.39 × 101 cm, after which the system approaches its equilibrium state
where all the spatial gradients vanish.

Having the fully resolved structure in hand, the local Jacobian and the spatial generalised
eigenvalues are computed throughout the entire domain using the procedure discussed in
Section 3.2. As a result, the local length scales �i are predicted throughout the domain
as shown in Figure 4. The multiscale nature of the problem and the length scales over
which the species evolve are clearly shown; the system exhibits spatial stiffness. Because
the reaction mechanism has N = 9 species with L = 3 elements being conserved, there
are 2N − L = 15 length scales in the spectrum. Thus, there are 15 independent modes.
The finest and coarsest length scales for this system vary from �finest = 7.60 × 10−4 cm
and �coarsest = 1.62 × 107 cm in the preheat zone to �finest = 2.41 × 10−4 cm and �coarsest =
2.62 × 100 cm in the hot far-field region, respectively. Thus, the spatial stiffness in the hot
region is Sx ∼ O(104).

4.1.3. Spatio-temporal spectrum

Now, following the procedure discussed in Section 3.3, the time scale spectrum resulting
from perturbing the chemical equilibrium state of the one-dimensional laminar premixed
hydrogen–air flame is presented in Figure 5. The unperturbed state is identical to the
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Figure 4. Length scales over which a steady stoichiometric hydrogen–air flame evolves versus
distance, To = 800 K, po = 1 atm (color version online).
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Figure 5. Time scale spectrum for the hydrogen–air reaction–advection–diffusion system versus the
modified wavelength, L = 100 cm. The unperturbed state represents the chemical equilibrium state
of a typical one-dimensional laminar premixed flame propagating freely in a To = 800 K, po = 1 atm
hydrogen–air mixture (color version online).

equilibrium state of Section 4.1.1 and the hot end of the flame of Section 4.1.2; T eq =
2617.95 K, po = 1 atm, and Y eq

i = [2.47 × 10−3, 1.44 × 10−2, 2.96 × 10−5, 1.74 × 10−3,
1.22 × 10−2, 5.49 × 10−6, 4.13 × 10−7, 2.24 × 10−1, 7.45 × 10−1]T, where i = {1, . . . , 9}
corresponds to the species H2, O2, H, O, OH, HO2, H2O2, H2O and N2, respectively.

Because of the difficulty in calculating the generalised eigenvalues and eigenvectors of
large systems, we can only present a window that contains one decade of wavelengths of the
system’s linearly independent modes. Figure 5 clearly shows that the time scales associated
with long wavelength modes match with the chemical time scales at the equilibrium state
shown in Figure 2. Moreover, as 
̂ is decreased, diffusion effects begin to appear through
the slowest time scales associated with longer wavelength modes. The length scale where
the slowest time scale begins to be influenced by diffusion, �coarsest ≈ 3.75 × 10−1 cm, is
shown on the figure. This is about one order of magnitude less than �coarsest estimated earlier
by spatial eigenvalue analysis; however, we note because of the narrowness of the window
of length scales studied, there is some arbitrariness in defining actually where the bending
of the curve begins.

By focusing on the fundamental mode only and varying L, a better understanding
can be realised. In Figure 6, the system’s times scales associated with the fundamental
modes, i.e. eigenfunctions with nz = 1, are tracked as we vary L. Because for nz = 1,

̂ = 4L from Equation (18), we have 
̂/(2π) = 2L/π, and we use this for the abscissa.
For large L, the reaction–advection–diffusion system’s time scales and the reaction-only
system’s time scales at equilibrium are identical (compare Figure 2 with Figure 6 at large
L). However, for 2L/π ∼ 10−1 cm, the effect of diffusion can be noted; it induces the time
constant associated with the slowest reaction mode to decrease as L decreases. Also, the
balance between reaction and diffusion is clear: short wavelength modes are dominated by
diffusion, and long wavelength modes are dominated by reaction. Furthermore, the effect
of adopting non-uniform diffusion coefficients, the multicomponent diffusion coefficients
Dij in Equations (4a), is noted in the time scale’s falloff region, L ≤ 10−4 cm. In this region
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Figure 6. Time scales associated with the fundamental modes for the hydrogen–air reaction–
advection–diffusion system versus the length 2L/π. The unperturbed state represents the chemi-
cal equilibrium state of a typical one-dimensional laminar premixed flame propagating freely in a
To = 800 K, po = 1 atm hydrogen–air mixture (color version online).

where diffusion is dominant, one can note that the slope of each τfundamental is the same, but
their intercepts are different. Also, it is obvious that in the diffusion-dominated region there
is a two decade drop in τ for every one decade drop in L. Thus, one would expect that in
this region τ ∼ L2/Dij , which is consistent with predictions.

It is clear from Figures 5 and 6 that the branch associated with the slowest chemical
time scales starts to become influenced by diffusion before branches associated with the
faster chemical time scales; the turning point for the fastest chemical time scale branch
is 2L/π ≈ 10−3 cm and for the slowest chemical time scale branch is 2L/π ≈ 10−1 cm.
These turning points represent the length scale where diffusion starts to balance reaction.

The length scale over which diffusion and reaction are balanced is the finest length
scale that should be captured in a DNS. This length scale can be estimated by notions from
classical diffusion theory. For example, Landau and Lifshitz [11] argue that if τ represents
some reaction time scale and D represents the mixture diffusivity, then the width of the
combustion zone, �, is given by

� =
√
Dτ. (20)

Others, e.g. Mazaheri, et al. [32], have used such a formula to estimate reaction zone
thicknesses induced by one-step kinetic models.

With this as a motivation, we can also try to predict the turning points independently
by employing the following useful ad hoc formulæ to estimate the length scales:

�finest =
√
Dminτfastest, (21a)

...

�coarsest =
√
Dmaxτslowest, (21b)
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where τfastest and τslowest are, respectively, the fastest and slowest time scales of the unsteady,
spatially homogeneous version of the problem calculated in Section 3.1, andDmin andDmax

are, respectively, the minimum and maximum diffusion coefficients in the multicomponent
diffusion matrix, Dij . In Appendix B, we show for a scalar linear problem with constant
coefficients that this estimate is exact. Our estimate for reacting mixtures is subject to greater
error because we actually have a multicomponent diffusion process, coupled with diffusion
of energy as well. For our system, Dmin = DHO2,H2O2 = 6.376 cm2/s and Dmax = DH2,H =
760.73 cm2/s. Consequently, we estimate the turning points for fast and slow reactions to
be

�finest = 2.56 × 10−4 cm, (22a)

�coarsest = 3.75 × 10−1 cm, (22b)

where τfastest = 1.03 × 10−8 s and τslowest = 1.85 × 10−4 s. Both of these estimates, illus-
trated as dashed lines in Figure 6, well predict the turning points.

For the more rigorous calculation of the system’s finest length scale presented in Sec-
tion 4.1.2, it has been found that the finest length scale admitted by the steady spatially
homogeneous version is �finest = 2.41 × 10−4 cm. Interestingly, the simple estimate, Equa-
tion (22a), is close in magnitude to that obtained by the spatial eigenvalue analysis. It is
thus clear that the reactive systems’ temporal and spatial scales are coupled, and for a
resolved structure, linearly independent modes of varying wavelength are associated with
time scales which are dictated by a balance between transport and chemistry.

4.1.4. To = 300 K

We next consider an otherwise identical mixture with To = 300 K. For such a low ini-
tial temperature, spatially homogenous analysis such as given in Section 4.1.1 generates
unphysical long reaction dynamics because the kinetics model is not appropriate in this
regime. However, because diffusion transports thermal energy from the flame region into
the cold region, laminar flame analysis is appropriate. Thus, similar to the procedure
employed in Section 4.1.2, a fully resolved structure for an adiabatic–isobaric steady one-
dimensional laminar premixed flame freely propagating in a stoichiometric hydrogen–air
mixture held at To = 300 K is obtained using the standard code PREMIX [21]. The sys-
tem’s local length scales are obtained via spatial eigenvalue analysis. The finest length
length was �finest = 3.33 × 10−4 cm. Finally, similar to the procedure employed in Sec-
tion 4.1.3, the time scale spectrum resulting from perturbing the chemical equilibrium
state of this one-dimensional laminar premixed hydrogen–air flame is obtained. The un-
perturbed state is T eq = 2365.62 K and Y eq

i = [8.35 × 10−4, 1.16 × 10−2, 5.56 × 10−5,
4.41 × 10−4, 5.34 × 10−3, 2.52 × 10−6, 2.26 × 10−7, 2.36 × 10−1, 7.45 × 10−1]T, where
i = {1, . . . , 9} corresponds to the species H2, O2, H, O, OH, HO2, H2O2, H2O and N2,
respectively.

The perturbed system’s time scales associated with the fundamental modes are tracked
as we vary L and are presented in Figure 7. By comparing Figure 7 with Figure 6, it is seen
that the results obtained in Section 4.1.3 hold qualitatively for To = 300 K. The turning
point for the fastest chemical time scale branch is 2L/π ≈ 8 × 10−4 cm and for the slowest
chemical time scale branch is 2L/π ≈ 5 × 10−1 cm. The turning points, which represent
the length scale where diffusion starts to balance reaction, are also predicted well by the ad
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Figure 7. Time scales associated with the fundamental modes for the hydrogen–air reaction–
advection–diffusion system versus the length 2L/π. The unperturbed state represents the chemi-
cal equilibrium state of a typical one-dimensional laminar premixed flame propagating freely in a
To = 300 K, po = 1 atm hydrogen–air mixture (color version online).

hoc formulæ presented in Equation (21),

�finest =
√
Dminτfastest = 3.58 × 10−4 cm, (23a)

�coarsest =
√
Dmaxτslowest = 6.05 × 10−1 cm. (23b)

Here, the maximum diffusion coefficient in the mixture is Dmax = 651.13 cm2/s, the min-
imum diffusion coefficient in the mixture Dmin = 5.41 cm2/s, and the reaction-only fast
and slow time scales are τfastest = 2.37 × 10−8 s and τslowest = 5.62 × 10−4 s, respectively.
Moreover, similar to Section 4.1.1, the simple estimate, Equation (23a), is close to the more
rigorous calculation of the finest length scale admitted by the steady spatially homogeneous
premixed flame, �finest = 3.33 × 10−4 cm.

4.2. Zel’dovich mechanism

As a second example, the Zel’dovich mechanism of nitric oxide formation is considered.
This mechanism consists ofN = 5 species,L = 2 elements, and J = 2 reversible reactions.
Kinetic data are adopted from Baulch et al. [33]; see Table 2. Note that this is not a

Table 2. Zel’dovich mechanism of nitric oxide formation.

Aj Ej

j Reaction (mol/cm3)1−∑N
i=1 ν

′
ij /s/Kβj βj (cal/mol)

1 N+O2 ⇀↽ NO+O 5.841 × 109 1.01 6195.6
2 N+NO⇀↽ N2+O 21.077 × 1012 0.00 0.0
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Figure 8. Time evolution of species mass fractions for the spatially homogeneous Zel’dovich de-
composition reactive system, To = 3000 K, po = 1 atm (color version online).

typical mixture for studying combustion problems; in particular, ordinary freely propagating
laminar premixed flame structures are not admitted as any potential ‘fuel’ such as N or
O is intrinsically unstable at low temperature ambient conditions. As such, we restrict our
study here to spatially homogeneous combustion and spatio-temporal perturbation of the
near equilibrium state.

4.2.1. Spatially homogeneous system

For the unsteady, spatially homogeneous version, the considered system is adiabatic, iso-
baric and initially atTo = 3000 K with an initial mole fraction composition ofXi = 1/5, i =
1, . . . , 5, atpo = 1 atm. Using the methodology described in Section 3.1, the time evolution
of species’ mass fractions and the time scale spectrum over which the unsteady, spatially
homogeneous reactive system evolves are determined; see Figures 8 and 9.

In Figure 8, starting from a metastable initial state, a vigorous change in the species
mass fraction is noted beginning at t ≈ 10−9 s, which indicates that significant reactions
are induced. Just past t = 10−7 s, the system relaxes to a metastable state for less than a
decade. Finally at t = 10−6 s, dissociation of NO commences forming more N2 before the
system relaxes to equilibrium near t = 10−4 s.

In Figure 9, N − L− 1 = 2 time scales instead of N − L = 3 scales are seen in the
spectrum, although our reaction mechanism hasN = 5 species with L = 2 elements being
conserved. For this reactive system, an additional constraint to element conservation arises
as a consequence of including only bi-molecular reactions. This extra constraint implies
that the total number of molecules is constant. The multiscale nature of this problem is
clearly seen. Initially, the fastest and slowest time scales are 2.16 × 10−8 s and 1.10 ×
10−7 s, respectively. The fastest time scale correlates well with the time at which the first
significant reaction commences. Near equilibrium, τfastest = 8.43 × 10−8 s, and τslowest =
3.21 × 10−6 s, giving rise to St ∼ O(102).

4.2.2. Spatio-temporal spectrum

Following the procedure presented in Section 3.3, the time scale spectrum, for the system
resulting from perturbing the chemical equilibrium state of the spatially homogeneous
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Figure 9. Time scales over which the spatially homogeneous Zel’dovich decomposition reactive
system evolves, To = 3000 K, po = 1 atm.

Zel’dovich reactive system, is presented in Figure 10, where the modified wavelength
is defined by Equation (18). Here, the unperturbed state is identical to the equilibrium
state of Section 4.2.1; Y eq

N2
= 4.06 × 10−1, Y

eq
O2

= 2.00 × 10−1, Y
eq
NO = 1.27 × 10−1, Y

eq
N =

1.16 × 10−3, Y
eq
O = 2.65 × 10−1 and T eq = 4695.96 K.

Figure 10 is generated from combining four small windows of the system’s linearly
independent modes. Each window contains approximately two decades of wavelength and
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Figure 10. Time scale spectrum versus the modified wavelength for the Zel’dovich reaction–
advection–diffusion system. The unperturbed state represents the chemical equilibrium state of a
reactive mixture initially at To = 3000 K, po = 1 atm (color version online).
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Figure 11. Time scales associated with the fundamental modes for the Zel’dovich reaction–
advection–diffusion system versus the length 2L/π. The unperturbed state represents the chemical
equilibrium state of a reactive mixture initially at To = 3000 K, po = 1 atm (color version online).

has been computed for a specific length, L = {2 × 100, 3 × 10−2, 5 × 10−3, 5 × 10−4} cm.
Also, a plot of the system’s times scales associated with the fundamental modes versus 2L/π
is given in Figure 11.

Figures 10 and 11 clearly show that the time scales associated with long wavelength
modes match with the chemical time scales shown in Figure 9; they are dictated by
the reactions. However, at 
̂/2π = 2L/π ≈ 10−2 cm the diffusion effects begin to ap-
pear through the slowest time scales associated with the moderate wavelength modes.
Also, the balance between reaction and diffusion is clear: short wavelength modes,

̂/2π = 2L/π < 10−3 cm, are dominated by diffusion, and long wavelength modes,

̂/2π = 2L/π > 6 × 10−2 cm, are dominated by reaction. Furthermore, the effect of
adopting non-uniform diffusion coefficients, the multicomponent diffusion coefficients Dij

in Equations (4a), is noted in the diffusion dominated region, 
̂/2π = 2L/π ≤ 10−3 cm.
Similar to the hydrogen–air mixture, one would expect τ ∼ L2/Dij , so that the slope of
each should be the same, but the intercept is different for each Dij . It is obvious that in the
diffusion-dominated region there is a two decade drop in τ for every one decade drop in L,
consistent with the prediction.

It is clear from Figures 10 and 11 that the branch associated with the slowest chemical
time scales starts to become influenced by diffusion before branches associated with the
faster chemical time scales; the turning point for the fastest chemical time scale branch
is 2L/π ≈ 10−3 cm and for the slowest chemical time scale branch is 2L/π ≈ 10−2 cm.
Similar to the hydrogen–air system, analysed in Section 4.1.3, the two turning points are
predicted well by the ad hoc formulæ presented in Equation (21),

�finest =
√
Dminτfastest = 1.25 × 10−3 cm, (24a)

�coarsest =
√
Dmaxτslowest = 1.40 × 10−2 cm. (24b)

Here, the maximum diffusion coefficient in the mixture is Dmax = 60.89 cm2/s, the min-
imum diffusion coefficient in the mixture Dmin = 18.42 cm2/s, and the reaction-only
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96 A.N. Al-Khateeb et al.

Table 3. Ozone decomposition reaction mechanism I. Adopted from [34].

Aj Ej

j Reaction (mol/cm3)1−ν ′
Mj−

∑N
i=1 ν

′
ij /s/Kβj βj (cal/mol)

1 O3 + M ⇀↽ O+O2 + M 6.76 × 106 2.50 24123
2 O+O3 ⇀↽ O2+O2 4.58 × 106 2.50 6000
3 O2 + M ⇀↽ O+O+M 5.71 × 106 2.50 117350

fast and slow time scales, from Section 4.2.1, are τfastest = 8.43 × 10−8 s and τslowest =
3.21 × 10−6 s, respectively.

So, similar to the hydrogen–air system, it is clear that this reactive system’s temporal
and spatial scales are coupled, and for a resolved structure, linearly independent modes of
varying wavelength are associated with time scales which are dictated by a balance between
transport and chemistry.

4.3. Ozone dissociation system

As a final example, ozone dissociation is considered. The employed kinetic mechanism
consists of J = 3 reversible reactions involving N = 3 species; an irreversible version of
the employed kinetic model has been used in the laminar flame literature [34, 35]; see
Table 3.

4.3.1. Spatially homogeneous system

For the unsteady, spatially homogeneous version, the considered system is adiabatic, iso-
baric and initially at To = 800 K with an initial mass fraction composition of YO = 0, YO2 =
2/3 and YO3 = 1/3, at po = 0.821 atm. Using the methodology described in Section 3.1,
the time evolution of species mass fractions and the time scale spectrum over which the
unsteady, spatially homogeneous reactive system evolves are determined, see Figures 12
and 13.

In Figure 12, a power law growth of O is noted for t < 10−7 s. This growth modulates
at t ≈ 2 × 10−7 s. At t = 4 × 10−5 s, the species undergo significant changes that indicate
vigorous reactions have commenced. Just past t = 1 × 10−4 s, the system relaxes to a
metastable state for a half decade. Finally, at t = 5 × 10−4 s, recombination of O and
dissociation of O3 commence forming more of the predominant product O2 before the
system relaxes to equilibrium near t = 5 × 10−1 s.

In Figure 13, two time scales are seen in the spectrum. Because our reaction mechanism
has N = 3 species with L = 1 elements being conserved, we find N − L = 2 independent
modes. The multiscale nature of this problem is clearly seen. Initially, the fastest and
slowest time scales are 1.67 × 10−7 s and 6.96 × 10−5 s, respectively. The fastest time
scale correlates well with the time at which the first significant reaction commences.
Near equilibrium, τfastest = 2.78 × 10−7 s, and τslowest = 4.99 × 10−2 s, giving rise to St ∼
O(105).

4.3.2. Steady spatially inhomogeneous system

For the one-dimensional steady planar flame, the methodology presented in Section 3.2 is
employed to calculate the spatial distribution of the dependent variables and to determine the

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ot
re

 D
am

e]
 a

t 0
7:

54
 0

8 
Fe

br
ua

ry
 2

01
3 



Combustion Theory and Modelling 97

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

t (s)

10
−8

10
−6

10
−4

10
−2

10
0

Y i

Figure 12. Time evolution of species mass fractions for the spatially homogeneous ozone decom-
position reactive system, To = 800 K, po = 0.821 atm (color version online).

system’s length scales. Thus, an adiabatic steady one-dimensional laminar premixed flame
freely propagating in an O–O2–O3 mixture at po = 0.821 atm is considered. The unburned
mixture’s composition and temperature are YO = 0, YO2 = 2/3, YO3 = 1/3 and To = 800 K,
and the temperature of Tf = 900 K is assigned at xf = 2.30 cm. Similar to Section 4.1.2,
these are not typical conditions for studying freely propagating laminar premixed flames;
in particular, the unburned mixture’s temperature is relatively high. Again the high To is
employed to enable meaningful comparisons with spatially homogeneous predictions of
Section 4.3.1. A system with a more realistic unburned mixture temperature, To = 300 K,
will be considered later in this section for completeness.
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Figure 13. Time scales over which the spatially homogeneous ozone decomposition reactive system
evolves, To = 800 K, po = 0.821 atm (color version online).
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Figure 14. Species mass fraction versus distance for the steady laminar premixed ozone flame,
To = 800 K, po = 0.821 atm (color version online).

Following the procedure presented in Section 3.2, a fully resolved steady species profile
is obtained and presented in Figure 14. Then, the local length scales �i are predicted
throughout the domain, see Figure 15. The multiscale nature of the problem and the length
scales over which the species evolve are shown. Since there are 2N − L = 5 independent
variables, there are 2N − L = 5 length scales in the spectrum. The length scale analysis
reveals that the finest and coarsest length scales vary from 3.60 × 10−3 cm and 1.84 ×
101 cm in the preheat zone to 2.75 × 10−3 cm and 3.20 × 100 cm in the hot far-field region,
respectively. Thus, the spatial stiffness in the hot region is Sx ∼ O(103).
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Figure 15. Length scales versus distance for the steady laminar premixed ozone dissociation flame,
To = 800 K, po = 0.821 atm (color version online).
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Figure 16. Time scale spectrum versus the modified wavelength for the ozone reaction–advection–
diffusion system. The unperturbed state represents the chemical equilibrium state of a typical one-
dimensional laminar premixed flame propagating freely in a To = 800 K O/O2/O3 mixture at po =
0.821 atm (color version online).

4.3.3. Spatio-temporal spectrum

Following the procedure presented in Section 3.3, the time scale spectrum for the system
resulting from perturbing the chemical equilibrium state of the spatially homogeneous ozone
decomposition reactive system is presented in Figure 16, where the modified wavelength
is defined by Equation (18). Here, the unperturbed state is identical to the equilibrium
state of Section 4.3.1; Y eq

O = 2.02 × 10−5, Y
eq
O2

= 999.98 × 10−3, Y
eq
O3

= 1.39 × 10−8 and
T eq = 1690.56 K.

Figure 16 is generated by combining four small windows of the system’s linearly
independent modes. Each window contains approximately three decades of wavelength and
has been obtained for the specific lengths L = {103, 100, 10−3, 10−5} cm. Also, a plot of
the system’s times scales associated with the fundamental modes versus 2L/π is given in
Figure 17.

Figures 16 and 17 clearly show that the time scales associated with long wavelength
modes match with the chemical time scales shown in Figure 13; they are dictated by
reaction. At 
̂/2π = 2L/π ∼ 100 cm diffusion effects begin to appear through the slowest
time scales associated with moderate wavelength modes. Also, the balance between reaction
and diffusion is clear: short wavelength modes, 
̂/2π = 2L/π < 10−7 cm, are affected by
diffusion, and long wavelength modes, 
̂/2π = 2L/π > 100 cm, are affected by reaction.
Furthermore, the effect of adopting non-uniform diffusion coefficients, the multicomponent
diffusion coefficients Dij in Equations (4a), is noted in the diffusion-dominated region,

/2π = 2L/π ≤ 10−7 cm. Similar to the hydrogen–air mixture, one would expect τ ∼
L2/Dij , so that the slope of each should be the same, but the intercept is different for each
Dij . It is obvious that in the diffusion-dominated region, there is a two decade drop in τ for
every one decade drop in L, consistent with our prediction.

It is clear from Figures 16 and 17 that the branch associated with the slowest chemical
time scales starts to become influenced by diffusion before the branch associated with the
faster chemical time scales; the turning point for the fastest chemical time scale branch
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Figure 17. Time scales associated with the fundamental modes for the ozone reaction–advection–
diffusion system versus the length 2L/π. The unperturbed state represents the chemical equilibrium
state of a typical one-dimensional laminar premixed flame propagating freely in a To = 800 K
O/O2/O3 mixture at po = 0.821 atm (color version online).

is 2L/π ∼ 10−7 cm and for the slowest chemical time scale branch is 2L/π ∼ 10−1 cm.
Similar to the hydrogen–air system, analysed in Section 4.1.3, the two turning points
predicted by the ad hoc formulæ presented in Equation (21) are

�finest =
√
Dminτfastest = 9.92 × 10−4 cm, (25a)

�coarsest =
√
Dmaxτslowest = 6.13 × 10−1 cm. (25b)

Here, the mixture’s largest and smallest diffusion coefficient, respectively, are Dmax ≈
7.52 cm2/s and Dmin ≈ 3.54 cm2/s, and the reaction-only fast and slow time scales, from
Section 4.3.1, are τfastest = 2.78 × 10−7 s and τslowest = 4.99 × 10−2 s, respectively. The
coarsest scale is well predicted by Equation (25b). However, the finest scale is not predicted
correctly. For �finest there is good agreement between the prediction of Equation (25a) and
the independent prediction of spatial eigenvalue analysis of Section 4.3.2. However, the
turning points associated with the finest scale shown in Figures 16 and 17 have a much
lower value. We do not have a good explanation for this. One can question the ozone kinetics
model. Careful examination of the kinetic model reported by Margolis [34] reveals that it
is difficult to reconcile with that of his cited source, Hirschfelder et al. [20]. Moreover, the
work of Hirschfelder et al. contains additional assumptions on the kinetics model that render
it incompatible with our model. However, similar behaviour is realised when alternative
ozone kinetics models are employed [36, 37]. As such, we are satisfied at this stage to leave
this as an open question for future work.

Similar to Section 4.1.4, a fully resolved structure for an adiabatic–isobaric steady
one-dimensional laminar premixed flame freely propagating in a mixture composed of
YO = 0, YO2 = 2/3 and YO3 = 1/3 held at To = 300 K, po = 1 atm is obtained using the
standard computational code PREMIX [21]. A kinetic mechanism consisting of J = 6
elementary reaction steps involving N = 3 species was adopted from [36]; see Table 4.
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Table 4. Ozone decomposition reaction mechanism II. Adopted from [36].

Aj Ej

j Reaction (mol/cm3)1−ν ′
Mj−

∑N
i=1 ν

′
ij /s/Kβj βj (cal/mol)

1 O3 + M −→ O+O2 + Ma 4.31 × 1014 0.0 22,164.38
1b O+O2 + M −→ O3 + M 1.20 × 1013 0.0 −1,938.21
2 O +O3 −→ O2 + O2 1.14 × 1013 0.0 4,567.52
2b O2 +O2 −→ O + O3 1.19 × 1013 0.0 100,485.40
3 O+O+M −→ O2 + Mb 1.38 × 1018 −1.0 339.585
3b O2 + M −→ O + O +Mb 2.75 × 1019 −1.0 118,620.43

Note. The non-unity third body collision efficiency coefficients are:
a for reaction 1, α1,O = 0.44, α1,O2 = 0.44;
b for reaction 3, α1,O = 3.6.

Then, the system’s local length scales are obtained via spatial eigenvalue analysis, and the
finest length was �finest = 7.41 × 10−4 cm. Finally, the time scale spectrum resulting from
perturbing the chemical equilibrium state of this one-dimensional laminar premixed flame
is obtained, and the perturbed system’s times scales associated with the fundamental modes
tracked as we vary L are obtained and presented in Figure 18. By comparing Figure 18 with
Figure 17, it is seen that the two ozone mechanisms employed with typical and atypical
unburned mixture temperature display the same qualitative results. This conclusion holds
for a third ozone kinetic mechanism adopted from [37].
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Figure 18. Time scales associated with the fundamental modes for the ozone reaction–advection–
diffusion system versus the length 2L/π. The unperturbed state represents the chemical equilibrium
state of a typical one-dimensional laminar premixed flame propagating freely in a To = 300 K
O/O2/O3 mixture at po = 1 atm.
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In summary, similar to the hydrogen–air system, it is clear that these reactive systems’
temporal and spatial scales are coupled, and for a resolved structure, linearly independent
modes of varying wavelengths are associated with time scales which are dictated by a
balance between transport and chemistry.

5. Conclusions

The time scale spectrum of a one-dimensional premixed reactive mixture of calorically
imperfect ideal gases is calculated by employing a generalised eigenvalue analysis. It is
shown that when the reaction zone structure is resolved, the small wavelength modes critical
in the thin reaction zone structures induced by fast reactions have associated with them time
scales which are dictated by a balance between chemistry and diffusive transport. Moreover,
it is revealed that short wavelength modes have fast time scales which are dominated
by diffusion; modes which have wavelengths ranging from the finest combustion length
scale to the coarsest combustion length scale have time scales which are dictated by a
combination of reaction and diffusion effects; and modes which have coarse wavelengths
have time scales which are reaction-dominated. Certainly for hydrogen–air as well as
nitrogen–oxygen chemistry, the transition length scales �i for which diffusion effects begin
to dominate reaction effects are well predicted by a simple formula found in classical
diffusion theory: �i ∼ √

Dτi , where τi is the chemical time scale predicted by a spatially
homogeneous theory, and D is an appropriate diffusion coefficient. We note that there is
still an open issue associated with the ozone dynamics. Overall, however, the implications
for the very fine length and time scales necessary to claim a resolved simulation, i.e. a
DNS, of a combustion process with realistic kinetics and diffusion are obvious.
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Appendix A. Constitutive equations
A standard set of constitutive equations for an ideal mixture of reacting calorically imperfect ideal
gases with a multicomponent diffusive transport model is given here.

τ = η

[
∇u + (∇u)T − 2

3
(∇ · u) I

]
, (A1a)

jm
i =

N∑
j=1
j �=i

ρmiDij Yj

m

[∇Xj
Xj

+
(

1 − mj

m

)∇p
p

]
−DT

i

∇T
T
, i = 1, . . . , N, (A1b)

jq = q +
N∑
i=1

jm
i hi − �T

N∑
i=1

DT
i

mi

[∇Xi
Xi

+
(

1 − mi

m

)∇p
p

]
, (A1c)

q = −k∇T , (A1d)

p = �T
N∑
i=1

ρi, (A1e)

e = h− p

ρ
, (A1f)

1 =
N∑
i=1

Yi, (A1g)

1 =
L∑
l=1

Y e
l , (A1h)

0 =
N∑
i=1

jm
i , (A1i)

0 =
L∑
l=1

je
l , (A1j)

ω̇i =
J∑
j=1

νij rj , i = 1, . . . , N, (A1k)

rj = kj

(
N∏
i=1

(ρi)
ν′
ij − 1

Kc
j

N∏
i=1

(ρi)
ν′′
ij

)
, j = 1, . . . , J, (A1l)

kj = Aj T
βj exp

(
−Ej

�T

)
, j = 1, . . . , J, (A1m)
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Kc
j =

(
pref

�T

)∑N
i=1 νij

exp

⎛⎝−
∑N

i=1
μoi νij

�T

⎞⎠, j = 1, . . . , J, (A1n)

ρMj
=

N∑
i=1

αjiρi, j = 1, . . . , J, (A1o)

hi = h
f

i +
∫ T

T ref
cpi(T̃ ) dT̃ , i = 1, . . . , N, (A1p)

soi = s
f

i +
∫ T

T ref

cpi

T̃
dT̃ , i = 1, . . . , N, (A1q)

μoi = mi

(
hi − T soi

)
, i = 1, . . . , N, (A1r)

h =
N∑
i=1

Yihi, (A1s)

cp =
N∑
i=1

Yicpi, (A1t)

m =
N∑
i=1

Ximi, (A1u)

Xi = m

mi

Yi, i = 1, . . . , N, (A1v)

ρi = ρYi

mi

, i = 1, . . . , N, (A1w)

mi =
L∑
l=1

me
lφli , i = 1, . . . , N, (A1x)

νij = ν ′′
ij − ν ′

ij , i = 1, . . . , N, j = 1, . . . , J, (A1y)

0 =
N∑
i=1

φliνij , j = 1, . . . , J, l = 1, . . . , L. (A1z)

In Equations (A1), the new variables are mixture viscosity coefficient η, temperature T , Fourier’s
heat flux q, mixture mass-based specific enthalpy h, and mixture mass-based specific heat at constant
pressure cp . For the ith specie, Xi, ρi , cpi , hi , s

o
i and μoi are mole fraction, molar density, mass-

based specific heat at constant pressure, mass-based specific enthalpy, mass-based specific entropy at
standard pressure, and molar-based specific chemical potential, respectively. Also, the j th reaction,
rj , kj and Kc

j denote the reaction rate, the temperature-dependent Arrhenius coefficient, and the
equilibrium constant, respectively. The terms Dij , k and DT

i are the multicomponent diffusion
coefficients between species i and species j , the mixture isotropic thermal conductivity, and the
thermal diffusion coefficient of specie i, respectively. The constant parameters are the universal
gas constant � = 8.314 × 107 erg/(mol K), the reference pressure pref = 1 atm and the reference
temperature T ref = 298 K. Also, for each reaction from j = 1, . . . , J, we have Aj , βj , Ej , ν ′′

ij ,
ν ′
ij and νij , which represent the collision frequency factor, the temperature-dependency exponent,

the activation energy, the stoichiometric coefficients of species i denoting the number of moles of
products, reactants, and the net stoichiometric coefficient, respectively. Moreover, for the j th reaction,
ρMj

and αji are the third body molar concentration and the coefficients of the collision efficiency of
the ith species with the third body, where these coefficients play a role only in reactions that include
a third body.
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Equations (A1a)–(A1c) describe the diffusive transport of momentum, mass and energy within
a mixture of ideal gases. Equation (A1d) defines Fourier’s law. Equation (A1e) is the thermal state
equation for an ideal gas mixture. Equation (A1f) is the definition of enthalpy. Equations (A1g)–(A1j)
constrain the species and element mass fractions as well as species and element mass fluxes to sum to
unity and zero, respectively. Equations (A1k)–(A1n) are expressions of the molar species evolution
rate per unit volume of specie i, the law of mass action, the Arrhenius reaction rate, and the equilibrium
constant, respectively. Equation (A1o) is an expression for the third body molar concentration in
reaction j . Equations (A1p)–(A1r) define the temperature-dependent enthalpy, entropy and chemical
potential for species i at the reference pressure, respectively. Equations (A1s)–(A1t) are mixture
rules for mixture mass-based specific enthalpy and heat. Equations (A1u)–(A1y) define the mixture-
averaged molecular mass, the mole fraction of species i, the molar concentration of species i, the
molecular mass of species i, and the net stoichiometric coefficients, respectively. Equation (A1z)
is a stoichiometric constraint on element l in reaction j , which represents a mass balance for each
element.

Appendix B. Linear scalar model problem
In order to acquire a better understanding of the present work, a model problem is employed here to
illustrate the basic ideas. Consider the following linear advection–diffusion–reaction problem:

∂ψ(x, t)

∂t
+ u

∂ψ(x, t)

∂x
= D

∂2ψ(x, t)

∂x2
− aψ(x, t), (B1a)

ψ(x, 0) = ψo, (B1b)

ψ(0, t) = ψo, (B1c)

∂ψ

∂x
(∞, t) → 0, (B1d)

where the independent variables are t > 0 and x ∈ (0,∞). Here, ψ(x, t) is a general scalar, u > 0
is a constant advective wave speed, D > 0 is a diffusion coefficient, and a > 0 is the chemical
consumption rate constant.

The spatially homogeneous version of Equations (B1) is

dψh(t)

dt
= −aψh(t), ψh|t=0 = ψo, (B2a)

which has the solution

ψh(t) = exp (−at)ψo. (B2b)

The time scale τ over which ψh evolves is τ = 1/a. This time scale serves as an upper bound for
the required time step to capture the dynamics in a numerical simulation. Since there is only one
dependent variable in this problem, the temporal spectrum contains only one time scale. Consequently,
this formulation of the system is not temporally stiff.

A simple means to determine an upper bound for the required spatial grid resolution is to obtain
the steady structure ψs(x), which is governed by

u
dψs(x)

dx
= D

d2ψs(x)

dx2
− aψs(x), ψs |x=0 = ψo,

dψs
dx

∣∣∣∣
x→∞

→ 0. (B3a)

The solution of Equation (B3a) is

ψs(x) = exp (λx)ψo, (B3b)
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where

λ = u

2D

(
1 −

√
1 + 4aD

u2

)
. (B3c)

Here, there is one length scale in the system, � ≡ 1/|λ|; this formulation of the system is not spatially
stiff. By examining Equation (B3c) in the limit aD/u2 � 1, one finds that

� ≈
√
D

a
=

√
Dτ, (B4)

where τ = 1/a is the time scale from spatially homogeneous reaction. So, this length scale � reflects
the inherent physics of coupled reaction–advection–diffusion. In the opposite limit of aD/u2 � 1,
one finds λ → 0, � → ∞ and ψs(x) → ψo, a constant.

Now, for Equations (B1), it is possible to find a simple analytic expression for the continuous
spectrum of time scales τ associated with a particular linearly independent mode of wavenumber κ .
A linearly independent mode with wavenumber κ has wavelength 
 = 2π/κ , from Equation (19).
Assume a solution of the form

ψ(x, t) = exp (iκx)�(t), (B5)

where �(t) is the time-dependent amplitude of the chosen linearly independent mode. Substituting
this into Equation (B1a) gives the following ODE:

d�(t)

dt
= −λ�(t), �(0) = �o, (B6)

where

λ = a

(
1 + Dκ2

a
+ iκu

a

)
. (B7)

This has a solution of the form

�(t) = exp (−λt)�o. (B8)

We see that the continuous time scale spectrum for amplitude growth or decay is given by

τ = 1

|Re(λ)| = 1

a

(
1 + Dκ2

a

) , 0 < κ ∈ R. (B9)

From Equation (B9), it is clear that for Dκ2/a � 1, i.e. for sufficiently small wavenumbers or
long wavelengths, the time scales of amplitude growth or decay will be dominated by reaction:

lim
κ→0

τ = 1

a
. (B10a)

However, forDκ2/a � 1, i.e. for sufficiently large wavenumbers or small wavelengths, the amplitude
growth/decay time scales are dominated by diffusion:

lim
κ→∞

τ = 1

Dκ2
= 1

D

(



2π

)2

. (B10b)
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108 A.N. Al-Khateeb et al.

Figure B1. Time scale spectrum versus wavelength for the simple reaction–advection–diffusion
model (color version online).

From Equation (B9), we see that a balance between reaction and diffusion exists for κ = √
a/D. In

terms of wavelength, and recalling Equations (19) and (B4), we see the balance at




2π
= 1

κ
=
√
D

a
=

√
Dτ = �, (B11)

where � = 1/κ is proportional to the wavelength.
The oscillatory behaviour is of lesser importance. The continuous time scale spectrum for oscil-

latory mode, τO is given by

τO = 1

|Im(λ)| = 1

κu
. (B12)

As κ → 0, τO → ∞. While τO → 0 as κ → ∞, it approaches at a rate ∼ 1/κ , in contrast to the more
demanding time scale of diffusion which approaches zero at a faster rate ∼ 1/κ2. Thus, it is clear that
advection does not play a role in determining the limiting values of the time scale spectrum; reaction
and diffusion are the major players.

As an illustration, we examine the behaviour of the system quantitatively by choosing arbitrary nu-
merical values, loosely motivated by parameters of gas phase systems, of a = 108 1/s,D = 101 cm2/s,
u = 102 cm/s. For these values, we find the estimate from Equation (B4) for the length scale where
reaction balances diffusion as � = 
/(2π) = 3.16228 × 10−4 cm. A plot of τ versus � = 
/(2π)
from Equation (B9) is given in Figure B1. For long wavelengths, the time scales are determined by
reaction; for fine wavelengths, the time scale’s falloff is dictated by diffusion, and our simple formula
for the critical � = √

Dτ , illustrated as a dashed line, predicts the transition well. For large κ , it is seen
that a one decade decrease in � induces a two decade decrease in τ , consistent with the prediction of
Equation (B10b): limκ→∞ (ln τ ) ∼ 2 ln (�) − ln (D) . Lastly, over the same range of �, the oscillatory
time scales induced by advection are orders of magnitude less demanding, and are thus not included
in the plot.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ot
re

 D
am

e]
 a

t 0
7:

54
 0

8 
Fe

br
ua

ry
 2

01
3 




