Detonation Simulation Using the Parallel
Wavelet Adaptive Multiresolution
Representation

By

Z. J. ZIKOSKI, S. PAaoLucci, AND J. M. POWERS

AEROSPACE AND MECHANICAL ENGINEERING
UNIVERSITY OF NOTRE DAME, INDIANA 46556

13th International Conference on Numerical Combustion
Corfu, Greece  April 27-29, 2011



PROJECT SUMMARY

An adaptive method is applied
to the simulation of compressible
reacting flow.

Model includes detailed chemical
kinetics, multi-species transport,
momentum and energy diffusion.

Problems are typically multi-
dimensional and contain a wide
range of spatial and temporal
scales.

Method resolves the range of scales
present, while greatly reducing
required computational effort and
automatically produces verified
solutions.
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COMPRESSIBLE REACTIVE FLOW

Code solves the n-D compressible reactive Navier-Stokes equations:

dp 0
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Where p-density, u;-velocity vector, E-specific total energy, Yi-mass
fraction of species k, 7;;-viscous stress tensor, g;-heat flux, j; p-species
mass flux, Mi-molecular weight of species k, and w-reaction rate of
species k.



COMPRESSIBLE REACTIVE FLOW (CONT.)
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WAVELET APPROXIMATION IN DOMAIN [0, 1]¢

Approximation of u(x) by the interpolating wavelet, a multiscale basis,
on x € [0,1]¢ is given by

u(x) & u’(x) = wj D k(%) + Z Zdj AU (x
k

Jj=Jo

where x € R% A\ = (e, k) and U, \(x) = W (%)

e Scaling function:

d
X) = H qu,k(xq;), k; € /'ig-)
1=1

e Wayvelet function:

sz]k r;), ki € /iefi

where e € {0,1}"\ 0, w;?,k@c) qu k() ‘cmd V() = Pjk(z), and
k] ={0,---,2} and k; = {0,---,27 — 1}.



SPARSE WAVELET REPRESENTATION (SWR) AND
IRREGULAR SPARSE GRID

> For a given threshold parameter €, the multiscale approximation of
a function u(x) can be written as

u” (x) Z wjo kP k(x) + Z > diava(x)

J=30 {X: |d; x|=¢e}

J—1
+> D diavinax),

J=do A+ ld; x| <<}

J/

RrY
and the SWR is obtained by discarding the term R/.

> For interpolating wavelets, each basis function is associated with one
dyadic grid point, i.e.

(I)j,k(X) with Xik — (k12_‘j7 c ooy de—j)

Uia(x) with  xjx = Xj41 2Kkte



SWR AND IRREGULAR SPARSE GRID (CONTINUED)

> For a given SWR, one has an associated grid composed of essential
points, whose wavelet amplitudes are greater than the threshold
parameter €

Ve={Xjoso [J x50 - A€M} Aj={X: |dja| > e}

J=Jo

> To accommodate the possible advection and sharpening of solution
features, we determine the neighboring grid points:

Vy = U Nj A,

where N x is the set of neighboring points to x; x.

> The new sparse grid, V), is then given by



SWR AND IRREGULAR SPARSE GRID (CONTINUED)

> There exists an adaptive fast wavelet transform (AFWT), with
O(N), N = dim{V} operations, mapping the function values on
the irregular grid YV to the associated wavelet coeflicients and wice-
versa:

AFWT({u(x) : x € V}) = D = {{ujo i}, {djxn, A€ Aj}jsjo}-

> Provided that the function u(x) is continuous, the error in the SWR
u? (x) is bounded by

S

lu—uZlls < Cre.

> Furthermore, for the function that is smooth enough, the number of
basis functions N = dim{u?} required for a given ¢ satisfies

N<Cye ¥ and |ju—u!|e < Cy NP/



DERIVATIVE APPROXIMATION OF SWR

> Direct differentiation of wavelets is costly (with O(p(J — jo)N)
operations) because of different support sizes of wavelet basis on
different levels.

> Alternatively, we use the connection with Lagrange interpolating
polynomials to approximate the derivative on a grid of irregular
points. The procedure can be summarized as follows:

® For a given SWR of a function, perform the inverse interpolating
wavelet transform to obtain the function values at the associated
irregular points.

® Apply locally a finite difference scheme of order n to approximate
the derivative at each grid point.

> Estimate shows that the pointwise error of the derivative
approximation has the following bound:

0% /0a° — DPu |y, 00 < ON—RR@=DM2 | g o = max|f(a)]



DYNAMICALLY ADAPTIVE ALGORITHM FOR SOLVING
TIME-DEPENDENT PDES

Given the set of PDEs

0
6—7: = F(t,u, Ug, Ugs, - - .),

with initial conditions
u(z,0) = u'.

® Obtain sparse grid, V", based on thresholding of magnitudes of
wavelet amplitudes of the approximate solution u".

® Integrate in time using an explicit time integrator with error control
to obtain the new solution »™* 1.

m—+1

® Assign u — u"™ and return to step @.
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PARALLELIZATION

Parallel algorithm uses an MPI- 10 ST

based domain decomposition. T
_N__ =500 000

Hilbert space-filling curve used 4| |- --Linear Speedup ’
for partitioning and load- g
balancing. §

: 610" S~
Strong scaling up to 256 cores o
with > 90% parallel efficiency. {/"
Chemkin-II  and  Transport 10500' ST
Libraries wused for evaluation Number of Processes, P
of thermodynamics, transport Dual Quad-Core, 2.7 GHz
properties, and reaction source L5520 Intel Nehalem nodes

(8 cores/node), 12 GB RAM,

Infiniband interconnect

terms.



2-D VIscous DETONATION

Initial Conditions:

y (em)

x {em)
[

Domain: [0, 60] x [0, 6] cm
Front: * = 15.0 cm
Unreacted pocket:

[1.05 x 1.43] cm

at r = 14.7 cmm

2H> : Oy : TAr mixture
9 species, 37 reactions

Wavelet parameters:

_ —3
P = 4.7 x 10° dyne/cm? 6:16>< 10_5
T = 2100 K p="0 1=
128 cores

[N, x N,];, = [600 x 60]

391 hrs runtime J —Jo =10
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SHOCK / H,-BUBBLE INTERACTION
Initial Conditions:

nsity (gm/em®)

0.6
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X C

Domain: [0, 3] x [0,0.75] cm
Mach 2 shock: z = 0.5 cm

(=]

H2 02 N2 mixture

Po = 1.0 x 106 dyne/cm? 9 species, 37 reactions
T =1 K

\/ 0o 1 Wavelet parameters:
r=yl@— 174y e=1x10"3

r < 0.28 cm: 83H5 : 17N

— 6 —
r > 0.28 cm: 2205 : 78 N5 Z[?N ><, N?. = [30 x §]
64 cores "o =10
J —jo=10

runtime
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SHOCK / H,-BUBBLE INTERACTION (CONT.)
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RICHTMEYER-MESHKOV INSTABILITY

Initial Conditions:

-3
x 10
4
08 k:
Eo 3
<
Py
0.4
2
02
0 1
0 2 4 T 6 3 10 12 14 16 18 20
X (cm)

Shock

Density (gm/cm®)

Domain: Varicose sheet at x = 6.3 cm
0,20] x [0,1.08] cm Yn, = 0.01, Ysr, = 0.99
Ambient mixture: Balakumar et al.
Yn, =0.99, Ysr, = 0.01 Phys. Fluids 20, 2008
P =179.5 kPa
T'=300 K Wavelet parameters:
M, = 1.2 shock e=1x10"*
at £ = 5.0 cm p=6, n=25
64 cores [Nz X Nylj, =200 x 10]

118 hrs runtime J — 790 =10
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RICHTMEYER-MESHKOV INSTABILITY (CONT.)
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RICHTMEYER-MESHKOV
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RICHTMEYER-MESHKOV INSTABILITY — (GRID
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SUMMARY

> The wavelet adaptive multiresolution method provides a means to
capture a wide range of scales present in multidimensional reactive
compressible flows.

> The parallel algorithm shows excellent scaling up to the maximum
number of cores tested.

> Resolved (verified) solutions in large geometries require large
computational resources even with an adaptive method.
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1-D INTERPOLATING SCALING FUNCTION AND WAVELET

Some properties of ¢, and 1, i of order p (p € N, even):
> ¢, 1 is defined through ¢ (272 — k) where ¢(x) = [ v,(y)pp(y — )dy,
the auto-correlation of the Daubechies Wavelet ©p(T).
> The support of ¢; is compact, i.e. supp{¢p;x} ~ |O(277)|.
> ¢ p(xjn =n277) = O.p, i.e. satisfies the interpolation property.

> Yk = Qj11.2k+1-

> span{¢; i} = span{{®j_1 x}, {Vj—1,k}}-

> {1,z,---, 2P~ 1} for x € [0, 1], can be written as a linear combination
of {¢jr, k=0,---,27}.

> {1} {zpj,k};?‘;JO} forms a basis of a continuous 1-D function on
the unit interval [0, 1].
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