Spatial and Temporal Scales Coupling in Reactive Flows

Ashraf N. Al-Khateeb
Reactive Flow Modeling Laboratory
King Abdullah University of Science \& Technology, Saudi Arabia
Joseph M. Powers and Samuel Paolucci
Aerospace \& Mechanical Engineering Department
University of Notre Dame, Notre Dame, Indiana, USA

The $3^{r d}$ International Workshop on Model Reduction in Reacting Flows Corfu, Greece

27 April 2011

Motivation and Background

- Severe stiffness, temporal and spatial, arises in detailed kinetics modeling.
- Typical reactive flow systems admit multi-scale character.
- To achieve DNS, the interplay between chemistry and transport needs to be captured.
- The interplay between reaction and diffusion length and time scales is well summarized by the classical formula $\ell \sim \sqrt{D \tau}$.
- Segregation of chemical dynamics from transport dynamics is a prevalent notion in reduced kinetics combustion modeling. Is this valid?
- Spectral analysis is a tool to understand the coupling between chemistry's and transport's reaction and diffusion scales.
- Computations should have fidelity
 with the underlying mathematics: verification.
- The mathematical model needs to represent observed physics: validation.
- In computational studies, it is a necessity to address these two issues.
- Proper numerical resolution of all scales is critical to draw correct conclusions.
- All relevant scales have to be brought into simultaneous focus for DNS.

Objectives

- To identify all the physical scales inherent in reacting systems with detailed kinetics and diffusive transport.
- To illustrate the coupling of time and length scales in reactive flows.
- To identify the scales associated with each Fourier mode of varying wavelength for unsteady spatially inhomogenous reactive flow problems.

Illustrative Model Problem

A linear one species model for reaction, advection, and diffusion:

$$
\begin{aligned}
& \frac{\partial \psi(x, t)}{\partial t}+u \frac{\partial \psi(x, t)}{\partial x}=D \frac{\partial^{2} \psi(x, t)}{\partial x^{2}}-a \psi(x, t) \\
& \psi(0, t)=\psi_{u},\left.\quad \frac{\partial \psi}{\partial x}\right|_{x \rightarrow \mathrm{~L}}=0, \quad \psi(x, 0)=\psi_{u}
\end{aligned}
$$

Time scale spectrum
For the spatially homogenous version: $\quad \psi_{h}(t)=\psi_{u} \exp (-a t)$,

$$
\text { reaction time constant: } \quad \tau=\frac{1}{a} \Longrightarrow \Delta t \ll \tau
$$

Length Scale Spectrum

- The steady structure:

$$
\begin{gathered}
\psi_{s}(x)=\psi_{u}\left(\frac{\exp \left(\mu_{1} x\right)-\exp \left(\mu_{2} x\right)}{1-\frac{\mu_{1}}{\mu_{2}} \exp \left(\mathrm{~L}\left(\mu_{1}-\mu_{2}\right)\right)}+\exp \left(\mu_{2} x\right)\right) \\
\mu_{1}=\frac{u}{2 D}\left(1+\sqrt{1+\frac{4 a D}{u^{2}}}\right), \quad \mu_{2}=\frac{u}{2 D}\left(1-\sqrt{1+\frac{4 a D}{u^{2}}}\right) \\
\ell_{i}=\left|\frac{1}{\mu_{i}}\right|
\end{gathered}
$$

- For fast reaction $\left(a \gg u^{2} / D\right)$:

$$
\ell_{1}=\ell_{2}=\sqrt{\frac{D}{a}}=\sqrt{D \tau} \Longrightarrow \Delta x \ll \sqrt{D \tau}
$$

Spatio-Temporal Spectrum

$$
\psi(x, t)=\Psi(t) e^{\mathbf{i} k x} \Rightarrow \Psi(t)=C \exp \left(-a\left(1+\frac{\mathbf{i} k u}{a}+\frac{D k^{2}}{a}\right) t\right)
$$

$\left.\begin{array}{l}\text { - For fast reaction: } \lim _{k \rightarrow 0} \tau=\lim _{\lambda \rightarrow \infty} \tau=\frac{1}{a}, \\ \text { - For slow reaction: } \lim _{k \rightarrow \infty} \tau=\lim _{\lambda \rightarrow 0} \tau=\frac{\lambda^{2}}{4 \pi^{2}} \frac{1}{D},\end{array}\right\} \quad \mathcal{S}_{t}=\left(\frac{2 \pi}{\lambda} \sqrt{\frac{D}{a}}\right)^{2}$.

- Balance between reaction and diffusion at $k \equiv \frac{2 \pi}{\lambda}=\sqrt{\frac{a}{D}}=1 / \ell$,
- Using Taylor expansion:

$$
|\tau|=\frac{1}{a}\left(1-\frac{D}{a\left(\frac{\lambda}{2 \pi}\right)^{2}}-\frac{u^{2}}{2 a^{2}\left(\frac{\lambda}{2 \pi}\right)^{2}}\right)+\mathcal{O}\left(\frac{1}{\lambda^{4}}\right) .
$$

- Similar to H_{2} - air : $\tau=1 / a=10^{-8} s, D=10 \mathrm{~cm}^{2} / \mathrm{s}$,
- $\ell=\sqrt{\frac{D}{a}}=\sqrt{D \tau}=3.2 \times 10^{-4} \mathrm{~cm}$.

Laminar Premixed Flames

Adopted Assumptions:

- One-dimensional,
- Low Mach number,
- Neglect thermal diffusion effects and body forces.

Governing Equations:

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho u) & =0, \\
\rho \frac{\partial h}{\partial t}+\rho u \frac{\partial h}{\partial x}+\frac{\partial \mathrm{J}^{q}}{\partial x} & =0, \\
\rho \frac{\partial y_{l}}{\partial t}+\rho u \frac{\partial y_{l}}{\partial x}+\frac{\partial \mathrm{j}_{l}^{m}}{\partial x} & =0, \quad l=1, \ldots, L-1, \\
\rho \frac{\partial Y_{i}}{\partial t}+\rho u \frac{\partial Y_{i}}{\partial x}+\frac{\partial J_{i}^{m}}{\partial x} & =\dot{\omega}_{i} \bar{m}_{i}, \quad i=1, \ldots, N-L .
\end{aligned}
$$

- Unsteady spatially homogeneous reactive system:

$$
\begin{gathered}
\frac{d \mathbf{z}(t)}{d t}=\mathbf{f}(\mathbf{z}(t)), \quad \mathbf{z}(t) \in \mathbb{R}^{N}, \quad \mathbf{f}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N} . \\
0=(\mathbf{J}-\lambda \mathbf{I}) \cdot \boldsymbol{v} . \\
\mathcal{S}_{t}=\frac{\tau_{\text {slowest }}}{\tau_{\text {fastest }}}, \quad \tau_{i}=\frac{1}{\left|\operatorname{Re}\left(\lambda_{i}\right)\right|}, \quad i=1, \ldots, R \leq N-L .
\end{gathered}
$$

- Steady spatially inhomogeneous reactive system:

$$
\begin{gathered}
\tilde{\mathbf{B}}(\tilde{\mathbf{z}}(x)) \cdot \frac{d \tilde{\mathbf{z}}(x)}{d x}=\tilde{\mathbf{f}}(\tilde{\mathbf{z}}(x)), \quad \tilde{\mathbf{z}}(x) \in \mathbb{R}^{2 N+2}, \quad \tilde{\mathbf{f}}: \mathbb{R}^{2 N+2} \rightarrow \mathbb{R}^{2 N+2} . \\
\tilde{\lambda} \tilde{\mathbf{B}} \cdot \tilde{\boldsymbol{v}}=\left(\tilde{\mathbf{J}}-\tilde{\mathbf{\Psi}} \cdot \frac{d \tilde{\mathbf{z}}}{d x}\right) \cdot \tilde{\boldsymbol{v}} . \\
\mathcal{S}_{x}=\frac{\ell_{\text {coarsest }}}{\ell_{\text {finest }}}, \quad \ell_{i}=\frac{1}{\left|\operatorname{Re}\left(\tilde{\lambda}_{i}\right)\right|}, \quad i=1, \ldots, 2 N-L .
\end{gathered}
$$

Laminar Premixed Hydrogen-Air Flame

- Standard detailed mechanism ${ }^{\text {a }} ; N=9$ species, $L=3$ atomic elements, and $J=19$ reversible reactions,
- stoichiometric hydrogen-air: $2 \mathrm{H}_{2}+\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right)$,
- adiabatic and isobaric: $T_{u}=800 \mathrm{~K}, p=1 \mathrm{~atm}$,
- calorically imperfect ideal gases mixture,
- neglect Soret effect, Dufour effect, and body forces,
- CHEMKIN and IMSL are employed.

[^0]- Unsteady spatially homogeneous reactive system:

- Steady spatially inhomogeneous reactive system: ${ }^{\text {a }}$

[^1]
Spatio-Temporal Spectrum

- PDEs $\longrightarrow 2 N+2$ PDAEs,

$$
\mathbf{A}(\mathbf{z}) \cdot \frac{\partial \mathbf{z}}{\partial t}+\mathbf{B}(\mathbf{z}) \cdot \frac{\partial \mathbf{z}}{\partial x}=\mathbf{f}(\mathbf{z}) .
$$

- Spatially homogeneous system at chemical equilibrium subjected to a spatially inhomogeneous perturbation, $\mathbf{z}^{\prime}=\mathbf{z}-\mathbf{z}^{e}$,

$$
\mathbf{A}^{e} \cdot \frac{\partial \mathbf{z}^{\prime}}{\partial t}+\mathbf{B}^{e} \cdot \frac{\partial \mathbf{z}^{\prime}}{\partial x}=\mathbf{J}^{e} \cdot \mathbf{z}^{\prime}
$$

- Spatially discretized spectrum,

$$
\mathcal{A}^{e} \cdot \frac{d \mathcal{Z}}{d t}=\left(\mathcal{J}^{e}-\mathcal{B}^{e}\right) \cdot \mathcal{Z}, \quad \mathcal{Z} \in \mathbb{R}^{2 \mathcal{N}(N+1)}
$$

- The time scales of the generalized eigenvalue problem,

$$
\tau_{i}=\frac{1}{\left|\operatorname{Re}\left(\lambda_{i}\right)\right|}, \quad i=1, \ldots,(\mathcal{N}-1)(N-1) .
$$

- L $=1 \mathrm{~cm}$ and $D_{m i x}=64 \mathrm{~cm}^{2} / \mathrm{s}$,
- modified wavelength: $\widehat{\lambda}=4 \mathrm{~L} /(2 \mathfrak{n}-1)$,
- associated length scale: $\ell=\widehat{\lambda} /(2 \pi) \Rightarrow \ell=\frac{2 \mathrm{~L}}{(2 \mathfrak{n}-1) \pi}$,

- $D_{m i x}=\frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} \mathfrak{D}_{i j}$,
- $\ell_{1}=\sqrt{D_{\text {mix }} \tau_{\text {slowest }}}=1.1 \times 10^{-1} \mathrm{~cm}$,
- $\ell_{2}=\sqrt{D_{\text {mix }} \tau_{\text {fastest }}}=8.0 \times 10^{-4} \mathrm{~cm} \approx \ell_{\text {finest }}=2.4 \times 10^{-4} \mathrm{~cm}$.

Conclusions

- Time and length scales are coupled.
- Coarse wavelength modes have time scales dominated by reaction.
- Short wavelength modes have time scales dominated by diffusion.
- Fourier modal analysis reveals a cutoff length scale for which time scales are dictated by a balance between transport and chemistry.
- Fine scales, temporal and spatial, are essential to resolve reacting systems; the finest length scale is related to the finest time scale by $\ell \sim \sqrt{D \tau}$.
- For a $p=1 \mathrm{~atm}, H_{2}+$ air laminar flame, the length scale where fast reaction balances diffusion is $\sim 2 \mu m$, the necessary scale for a DNS.

[^0]:

[^1]: ${ }^{\text {a }}$ A. N. Al-Khateeb, J. M. Powers, and S. Paolucci, Comm. Comp. Phys. 8(2): 304, 2010.

