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Motivation and Background

Severe stiffness, temporal and spatial, arises in detailed kinetics modeling.
Typical reactive flow systems admit multi-scale character.

To achieve DNS, the interplay between chemistry and transport needs to be

captured.

The interplay between reaction and diffusion length and time scales is well
summarized by the classical formula ¢ ~ /D T.

Segregation of chemical dynamics from transport dynamics is a prevalent

notion in reduced kinetics combustion modeling. Is this valid?

Spectral analysis is a tool to understand the coupling between chemistry’s and

transport’s reaction and diffusion scales.
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Computations should have fidelity
with the underlying mathematics:

verification.

The mathematical model needs to
represent observed physics:

validation.

In computational studies, itis a neces-

sity to address these two issues.

Proper numerical resolution of all

scales is critical to draw correct con-

clusions.

All relevant scales have to be brought

into simultaneous focus for DNS.




Objectives

e To identify all the physical scales inherent in reacting systems with detailed

kinetics and diffusive transport.
e To illustrate the coupling of time and length scales in reactive flows.

e To identify the scales associated with each Fourier mode of varying wavelength

for unsteady spatially inhomogenous reactive flow problems.




lllustrative Model Problem

A linear one species model for reaction, advection, and diffusion:
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Time scale spectrum

For the spatially homogenous version: ¥, (t) = ¥, exp (—at) ,

reaction time constant: T = — At LT,
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Length Scale Spectrum

e The steady structure:
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e For fast reaction (a > u*/ D):
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Spatio-Temporal Spectrum
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e Balance between reaction and diffusion at k = 2{ —

e Using Taylor expansion:
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Similarto Hy — air : 7 = 1/a = 107% s, D = 10 cm? /s,

(=4/2 =vDr=32x10"*cm.




Laminar Premixed Flames

Adopted Assumptions:

e One-dimensional,
e Low Mach number,

e Neglect thermal diffusion effects and body forces.

Governing Equations:
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e Unsteady spatially homogeneous reactive system:
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e Steady spatially inhomogeneous reactive system:
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Laminar Premixed Hydrogen—Air Flame

Standard detailed mechanism?; N = 9 species, L. = 3 atomic elements,

and J = 19 reversible reactions,

stoichiometric hydrogen-air: 2Hs + (O3 + 3.76 N>),
adiabatic and isobaric: 17, = 800 K, p = 1 atm,
calorically imperfect ideal gases mixture,

neglect Soret effect, Dufour effect, and body forces,

CHEMKIN and IMSL are employed.

2J. A. Miller, R. E. Mitchell, M. D. Smooke, and R. J. Kee, Proc. Combust. Ins. 19, p. 181, 1982.




e Unsteady spatially homogeneous reactive system:
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e Steady spatially inhomogeneous reactive system:?
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2A. N. Al-Khateeb, J. M. Powers, and S. Paolucci, Comm. Comp. Phys. 8(2): 304, 2010.




Spatio-Temporal Spectrum

e PDEs — 2/ 4+ 2 PDAEs,

A(z)-%JrB(z)-%:f( ).

e Spatially homogeneous system at chemical equilibrium subjected to a spatially
inhomogeneous perturbation, z’ = z — z°,
0z’ 0z’
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e Spatially discretized spectrum,
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e The time scales of the generalized eigenvalue problem,
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elL.—=1cmand D,,;, = 64 cmz/s,
e modified wavelength: A = 4L/(2n — 1),

e associated length scale: £ = /):/(27'(') = (=
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® Do = 55 Doiey 2ory Dij.

L 61 — \/Dmi:cTslowest = 1.1 X 10_1 cm,

o /o — \/DmmTfaSteSt =8.0x 107% em ~ Crinest = 2.4 X 10~% em.

Trastest = 1.8 x 107 % s
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Conclusions

Time and length scales are coupled.
Coarse wavelength modes have time scales dominated by reaction.
Short wavelength modes have time scales dominated by diffusion.

Fourier modal analysis reveals a cutoff length scale for which time scales are

dictated by a balance between transport and chemistry.

Fine scales, temporal and spatial, are essential to resolve reacting systems;

the finest length scale is related to the finest time scale by £ ~ v/ Dr.

Fora p = 1 atm, Ho + air laminar flame, the length scale where fast

reaction balances diffusion is ~ 2 pm, the necessary scale for a DNS.




