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Abstract— We investigate the eigenvalue spectrum of the
one-dimensional laminar premixed flame in a reactive mix-
ture described by detailed mass-action kinetics. All the
physical scales, spatial and temporal, inherent in a reacting
system are accurately identified via eigenvalue analysis. The
interplay between chemistry and transport is addressed via
conducting a spectral analysis of the reactive flow structure.
It revealed that reacting systems’ physical scales are coupled,
the systems short wavelength modes are dominated by
diffusion-based scales, coarse wavelength modes are domi-
nated by reaction-based scales, and modes near a cross-over
wavelength have scales dictated by a combination of reaction
and diffusion effects.

I. I NTRODUCTION

Simulating reactive flow involves solving a large set
of partial differential equations (PDEs). For combustion
problems which are inherently unsteady and spatially
inhomogeneous, the dynamics are crucial. A common
notion in combustion theory is that chemical dynamics are
somehow segregated from the dynamics of advection and
diffusion; this notion is especially prevalent in discussion
of so-called operator splitting strategies for numerical
simulation of combustion events. In reality, unsteady,
spatially inhomogeneous combustion is better viewed as
an event in which reaction, advection, and diffusion time
scales are often fully coupled.

For accurate modeling, the interplay between chemistry
and transport needs to be captured. One way to gain a
better understanding of the coupling between transport
and chemistry can be achieved via conducting a spectral
analysis of a plane laminar flame structure. It is important
in a spectral analysis to guarantee that all length scales
in the underlying steady structure problem have been
brought into simultaneous focus. In recent studies [1],
it has been shown that the finest length scale for an
atmospheric-pressure laminar premixed flame is typically
on the order of10−4 cm.

This work will consider a premixed mixture of calori-
cally imperfect ideal gases that react and diffuse at widely
disparate rates. For this problem, we specifically consider
a model of hydrogen–air combustion.

II. A NALYSIS

We consider equations modeling a one-dimensional
unsteady laminar premixed flame propagating freely in a
mixtures ofN molecular species composed ofL atomic
elements which undergoesJ reversible reactions with no
body force precent. A detailed kinetics mechanism and

multi-component transport model are used to describe the
reactive mixture. The system is simplified by neglecting
the thermal diffusion effects, Soret’s effect and Dufour’s
effect, and adopting the low-Mach number assumption
[2]. This system, in a compact form, is

A(z) ·
∂z

∂t
+ B(z) ·

∂z

∂x
= f(z), z ∈ R

2N+2, (1)

where A and B are matrices of size(2N + 2) ×

(2N + 2) and the2N + 2 state variables contained in
z are composed of species mass fraction, species mass
flux, mixture specific enthalpy, and Fourier heat flux.
To identify all the time and length scales inherent in
this reactive flow’s model, the problem is split into two
separate problems that are treated independently: 1) an
unsteady spatially homogeneous reactive system, and 2)
a steady spatially inhomogeneous reactive system. Then,
the coupling between the scales from the two parts is
explored via conducting spectral analysis for the complete
reactive flow.

For unsteady spatially homogeneous mixtures of calori-
cally imperfect ideal gases described by detailed kinetics,
the governing equation are reduced into a set ofN +
1 non-linear autonomous ordinary differential equations
(ODEs) which exhibit a temporal stiffness,St. A standard
computational scheme is used to obtain the time evolution
of the system [3]. Linearization of the equations about
the local solution at each time step gives rise to a
standard eigenvalue problem which in turn provides full
information on all theN − L time scales,τ ’s, contained
in the problem.

For the steady spatially inhomogeneous reactive sys-
tem, the complete system is reduced into a coupled system
of 2N + 2 differential-algebraic equations (DAEs) which
exhibits a spatial stiffness,Sx. The method introduced
in [1] to obtain a resolved steady flame structure and to
calculate the2N −L physical length scales,ℓ’s, inherent
in the problem is employed.

Next, the time spectrum of the full reacting flow system
is studied. To this end, the governing equations for the
unsteady spatially inhomogeneous reactive system are
posed as a set of2N + 2 partial differential algebraic
equations (PDAEs). A perturbation from the steady struc-
ture is introduced to (1). Linearization of the resulting
system about the steady structure is performed. Spatial
discretization of the spatial derivative operators gives rise
to a generalized eigenvalue problem. Each time scale,
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given by the reciprocals of the generalized eigenvalues, is
associated with a particular Fourier mode of wavenumber
κ, which has a wavelengthΛ. For numerical results,
instead ofΛ, the modified wavelengtĥΛ is employed,
which is defined based on the eigenvectors’ number of
zero crossingsn, i.e. normal mode nodes,

Λ̂ =
4L

2n − 1
, n = 1, 2, 3, . . . , (2)

whereL is the spatial length.

III. R ESULTS

A stoichiometric atmospheric pressure hydrogen–air
mixture is considered, where the initial molar ratio is
given by 2H2 + (O2 + 3.76N2). A kinetic model iden-
tical to that of Smookeet al. [4], with L = 3 ele-
ments, N = 9 species, andJ = 19 reversible reac-
tions is used. In this mechanism, the reactive species
areH2, O2, H, O, OH, HO2, H2O2, andH2O. The inert
diluent for the mixture isN2.

A. Temporal scales

For the unsteady spatially homogeneous stoichiometric
hydrogen–air system, under adiabatic and isobaric condi-
tions, and initially at temperatureT ∗ = 800 K, the evolu-
tion of species in time is determined. Simultaneously, the
system’s temporal scales, given by the reciprocal of the
eigenvalues, over which the system evolves are calculated.
There areN − L = 6 independent modes; sixτ ’s in
the spectrum. Near equilibrium, the slowest time scale is
1.85×10−4 s, and the fastest time scale is1.03×10−8 s,
giving rise to St ∼ O

(
104

)
. Thus, to capture all the

physical dynamics in such a numerical simulation∆t <
τfastest ≈ 10−8 s, needs to be employed.

B. Spatial scales

The stationary structure of the one-dimensional, sto-
ichiometric, adiabatic, hydrogen–air laminar premixed
flame with unburned mixture’s temperature ofTu =
800 K is determined. Having the fully resolved structure
in hand, the local spatial eigenvalues are calculated from
the cold boundary to hot region. As a result, the local
length scalesℓ’s are predicted throughout the domain. The
finest length scale and the largest length scale found for
this system vary from7.60×10−4 cm and1.62×107 cm
in the preheat zone to2.41×10−4 cm and2.62×100 cm
in the reaction zone, respectively. The spatial stiffness in
the hot region isSx ∼ O

(
104

)
. Thus, to resolve the

flame structure in such a numerical simulation a spatial
resolution of∆x < ℓfinest ≈ 2 × 10−4 cm, needs to be
utilized.

C. Spatio-temporal spectrum

Now, instead of the steady laminar flame structure,
which presents overwhelming computational demands in
solving for eigenvalues, a system initially near a spatially
homogenous chemical equilibrium state is perturbed. The
unperturbed state is identical to the equilibrium state
of the unsteady spatially homogeneous system. This is

certainly relevant for the laminar flame structure, as it
represents the hot end. So, the spatially homogeneous
system at chemical equilibrium is subjected to a spatially
inhomogeneous perturbation, and its spatio-temporal re-
sponse is predicted.

In Fig. 1, the system’s times scales associated with the
fundamental modes,i.e. eigenfunctions withn = 1, are
tracked as we vary the system’s length. For largeL, the
reaction-advection-diffusion system’s time scales and the
reaction-only system’s time scales at equilibrium are iden-
tical. However, for̂Λ/(2π) ≡ 2L/π ∼ 10−1 cm the effect
of diffusion can be noted; it increases monotonically
as L decreases. Also, the balance between reaction and
diffusion is clear: short wavelength modes are dominated
by diffusion, and large wavelength modes are dominated
by reaction. Furthermore, the effect of adopting non-
uniform diffusion coefficients, the multicomponent dif-
fusion coefficientsDij , is noted in the time scale’s falloff
region,L ≤ 10−4 cm. One would expectτ ∼ L

2/Dij , and
thus on the log-log scale,ln τ ∼ 2 ln L − lnDij , so that
the slope of each should be the same, but the intercept is
different for eachDij . It is obvious that in the diffusion-
dominated region, there is a two decade drop inτ for
every one decade drop inL, consistent with our prediction.

It is clear from Fig.1 that the branch associated with the
slowest chemical time scales starts to become influenced
by diffusion before branches associated with the faster
chemical time scales; the turning point for the fastest
chemical time scale branch is2L/π ∼ 10−3 cm and
for the slowest chemical time scale branch is2L/π ∼

10−1 cm. These turning points represent the length scale
where diffusion starts to balance reaction.

Now we can also try to independently predict the turn-
ing points by employing anad hoc formula to estimate
the length scales,

ℓ1 =
√

Dmixτslowest, (3)

ℓ2 =
√

Dmixτfastest, (4)

whereτslowest andτfastest are, respectively, the slowest
and fastest time scales of the unsteady spatially ho-
mogeneous version of the problem, andDmix is the
mixture average diffusion coefficient. This is subject to
greater error because we actually have a multicomponent
diffusion process, coupled with diffusion of energy as
well. The mixture average diffusion coefficientDmix is
estimated and it taken to be the average of the species
mass diffusion coefficients,

Dmix =
1

N2

N∑

i=1

N∑

j=1

Dij . (5)

As a result, we estimate the turning points for fast and
slow reactions to be

ℓ1 = 1.06 × 10−1 cm, (6)

ℓ2 = 7.94 × 10−4 cm, (7)

whereτfastest = 1.03 × 10−8 s and τslowest = 1.85 ×

10−4 s. Both of these estimates, illustrated as dashed lines
in Fig. 1, predict well the turning points.
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Fig. 1. Time scales associated with the fundamental modes for the
hydrogen–air reactive system versus length scales.

For the more rigorous calculation of the system’s finest
length scale, Sec. III.B, it has been found that the finest
length scale admitted by the steady spatially homogeneous
version isℓfinest = 2.41 × 10−4 cm. Interestingly, the
simple estimate, Eq. (7), is close in magnitude toℓfinest

obtained by spatial eigenvalue analysis. Subsequently, it
is clear that the reactive systems’ temporal and spatial
scales are coupled, and for a resolved structure, Fourier
modes of varying wavelength are associated with time
scales which are dictated by a balance between transport
and chemistry.

IV. CONCLUSION

The time scale spectrum of a one-dimensional
atmospheric-pressure hydrogen–air system was calculated
via conducting a generalized eigenvalue analysis. It was
shown that when the reaction zone structure is resolved,
the small wavelength modes critical in the thin reaction
zone structures induced by fast reaction have associated
with them time scales which are dictated by a balance be-
tween chemistry and transport. Moreover, it was revealed
that short wavelength modes have very fast time scales
which are dominated by diffusion, modes which have
wavelengths ranging from the finest combustion length
scale to the coarsest combustion length scale have time
scales which are dictated by a combination of reaction
and diffusion effects, and modes which have coarse wave-
lengths have time scales which are reaction dominated.
These results have been achieved by conducting a spectral
analysis of onedimensional premixed reactive mixtures of
calorically imperfect ideal gases.
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