Verified Calculation of Multiscale Combustion in Gaseous Mixtures

Joseph M. Powers

DEPARTMENT OF AEROSPACE & MECHANICAL ENGINEERING

DEPARTMENT OF APPLIED & COMPUTATIONAL MATHEMATICS & STATISTICS

UNIVERSITY OF NOTRE DAME

NOTRE DAME, INDIANA, USA

delivered to

Purdue University

19 January 2012

Acknowledgments

- Samuel Paolucci, U. Notre Dame
- Ashraf al-Khateeb, Khalifa U.
- Zach Zikoski, Post-doctoral student, U. Notre Dame
- Christopher Romick, Ph.D. student, U. Notre Dame
- Tariq Aslam, Los Alamos National Laborarory
- Stephen Voelkel, NSF-REU undergraduate student, U. Notre Dame
- Karel Matouš, U. Notre Dame
- NSF
- NASA
- DOE

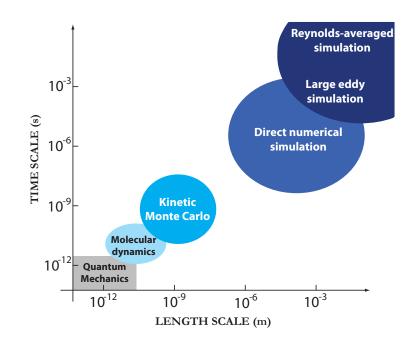
Outline

- Part I: Preliminaries
- Part II: Fundamental linear analysis of length scales of reacting flows with detailed chemistry and multicomponent transport. (with al-Khateeb and Paolucci)
- Part III: Direct Numerical Simulation (DNS) of complex reacting and inert flows with a) traditional methods, and b) a wavelet-based adaptive algorithm implemented in a massively parallel computing architecture. *(1D detonations with Romick and Aslam; 2D detonations of Zikoski and Paolucci, inert implosions with Voelkel and Romick using Zikoski's algorithm)*

Part I: Preliminaries

Some Semantics

- Verification: Solving the equations right—a math exercise.
- Validation: Solving the right equations—a physics exercise.
- DNS: a verified and validated computation that resolves all ranges of relevant continuum physical scales present.



"Research needs for future internal combustion engines," *Phys. Today,* 2008.

Hypothesis

DNS of fundamental compressible reactive flow fields (thus, detailed kinetics, viscous shocks, multi-component diffusion, etc. are represented, verified, and validated) is on a trajectory toward realization via advances in

- adaptive refinement algorithms, and
- massively parallel architectures.

Corollary I

A variety of modeling compromises, e.g.

- shock-capturing (FCT, PPM, ENO, WENO, etc.),
- implicit chemistry with operator splitting,
- low Mach number approximations,
- turbulence modeling (RANS, $k \epsilon$, LES, etc.), or
- reduced/simplified kinetics, flamelet models,

need not be invoked *when and if* this difficult goal of DNS is realized; **simple low order explicit discretizations suffice if spatio-temporal grid resolution is achieved.**

Corollary II

Micro-device level DNS is feasible today; macro-device level DNS remains in the distant future.

Corollary III

A variety of challenging fundamental unsteady multi-dimensional compressible reacting flows are now becoming amenable to DNS, especially in the weakly unstable regime; we would do well as a community to direct more of our efforts towards *unfiltered* simulations so as to more starkly expose the richness of unadulterated continuum scale physics.

[Example (only briefly shown today): ordinary WENO shock-capturing applied to unstable detonations can dramatically corrupt the long time limit cycle behavior; retention of physical viscosity allows relaxation to a unique dissipative structure in the unstable regime.]

Part II: Fundamental Linear Analysis of Length Scales

Motivation

- To achieve DNS, the interplay between chemistry and transport needs to be captured.
- The interplay between reaction and diffusion length and time scales is well summarized by the classical formula

 $\ell \sim \sqrt{D \tau}.$

- Segregation of chemical dynamics from transport dynamics is a prevalent notion in reduced kinetics combustion modeling.
- But, can one rigorously mathematically verify an NS model without resolving the small length scale induced by fast reaction? *Answer: no.*
- Do micro-scales play a role in macro-scale non-linear dynamics? *Answer: in some cases, yes*, see Romick, Aslam, & Powers, 2012, *JFM*, in review.

Illustrative Linear Model Problem

A linear one-species, one-dimensional unsteady model for reaction, advection, and diffusion:

$$\begin{aligned} \frac{\partial \psi}{\partial t} + u \frac{\partial \psi}{\partial x} &= D \frac{\partial^2 \psi}{\partial x^2} - a \psi, \\ \psi(0, t) &= \psi_u, \quad \frac{\partial \psi}{\partial x} \Big|_{x=\mathbf{L}} = 0, \qquad \psi(x, 0) = \psi_u \end{aligned}$$

Time scale spectrum

For the spatially homogenous version:

$$\psi_h(t) = \psi_u \exp\left(-at\right),$$

reaction time constant: au

$$\tau = \frac{1}{a} \implies \Delta t \ll \tau.$$

Length Scale Spectrum

• The steady structure:

$$\psi_s(x) = \psi_u \left(\frac{\exp(\mu_1 x) - \exp(\mu_2 x)}{1 - \frac{\mu_1}{\mu_2} \exp(\mathcal{L}(\mu_1 - \mu_2))} + \exp(\mu_2 x) \right),$$
$$u_1 = \frac{u}{2D} \left(1 + \sqrt{1 + \frac{4aD}{u^2}} \right), \qquad \mu_2 = \frac{u}{2D} \left(1 - \sqrt{1 + \frac{4aD}{u^2}} \right),$$
$$\ell_i = \left| \frac{1}{\mu_i} \right|.$$

 \bullet For fast reaction ($a\gg u^2/D$):

$$\ell_1 = \ell_2 = \sqrt{\frac{D}{a}} = \sqrt{D\tau} \implies \Delta x \ll \sqrt{D\tau}.$$

Spatio-Temporal Spectrum

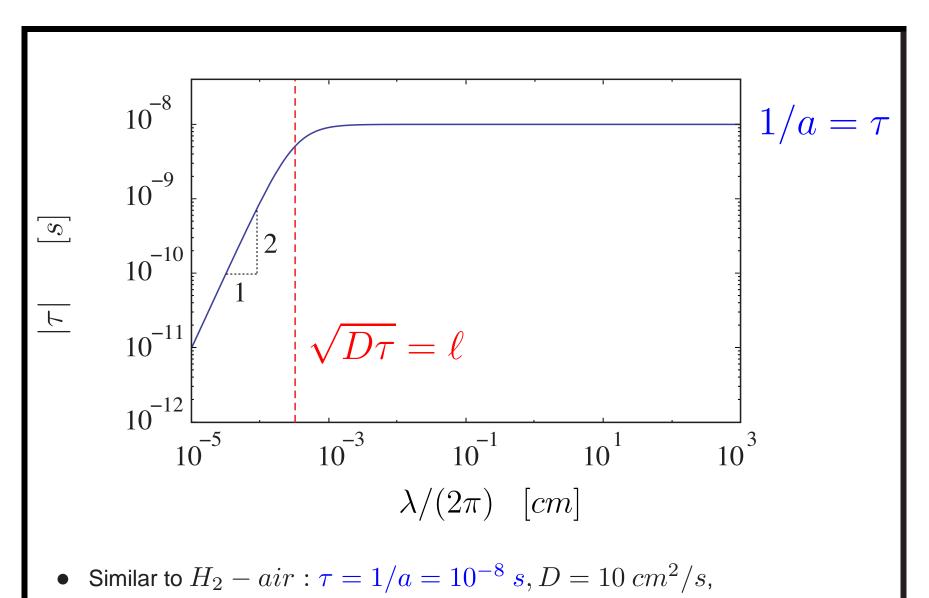
$$\psi(x,t) = \Psi(t)e^{\mathbf{i}kx} \quad \Rightarrow \quad \frac{d\Psi}{dt} = \left(-a\left(1 + \frac{\mathbf{i}ku}{a} + \frac{Dk^2}{a}\right)t\right)\Psi.$$

$$\Psi(t) = C \exp\left(-a\left(1 + \frac{\mathsf{i}ku}{a} + \frac{Dk^2}{a}\right)t\right).$$

• For long length scales:
$$\lim_{k \to 0} \tau = \lim_{\lambda \to \infty} \tau = \frac{1}{a},$$

• For fine length scales:
$$\lim_{k \to \infty} \tau = \lim_{\lambda \to 0} \tau = \frac{\lambda^2}{4\pi^2} \frac{1}{D}, \quad \mathcal{S}_t = \left(\frac{2\pi}{\lambda} \sqrt{\frac{D}{a}}\right)^2.$$

• Balance between reaction and diffusion at $k\equiv \frac{2\pi}{\lambda}=\sqrt{\frac{a}{D}}=1/\ell,$



•
$$\ell = \sqrt{\frac{D}{a}} = \sqrt{D\tau} = 3.2 \times 10^{-4} \, cm.$$

Laminar Premixed Flames

Adopted Assumptions:

- One-dimensional,
- Low Mach number,
- Neglect thermal diffusion effects and body forces.

Governing Equations:

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} \left(\rho u\right) = 0,$$

$$\rho \frac{\partial h}{\partial t} + \rho u \frac{\partial h}{\partial x} + \frac{\partial j^q}{\partial x} = 0,$$

$$\rho \frac{\partial y_l}{\partial t} + \rho u \frac{\partial y_l}{\partial x} + \frac{\partial j_l^m}{\partial x} = 0, \quad l = 1, \dots, L - 1,$$

$$\rho \frac{\partial Y_i}{\partial t} + \rho u \frac{\partial Y_i}{\partial x} + \frac{\partial j_i^m}{\partial x} = \dot{\omega}_i \bar{m}_i, \quad i = 1, \dots, N - L$$

• Unsteady spatially homogeneous reactive system:

$$\frac{d\mathbf{z}(t)}{dt} = \mathbf{f}\left(\mathbf{z}(t)\right), \quad \mathbf{z}(t) \in \mathbb{R}^{N}, \quad \mathbf{f} : \mathbb{R}^{N} \to \mathbb{R}^{N}.$$
$$\mathbf{0} = (\mathbf{J} - \lambda \mathbf{I}) \cdot \boldsymbol{v}.$$
$$\mathcal{S}_{t} = \frac{\tau_{slowest}}{\tau_{fastest}}, \quad \tau_{i} = \frac{1}{|Re(\lambda_{i})|}, \quad i = 1, \dots, R \leq N - L.$$

• Steady spatially inhomogeneous reactive system:

$$\tilde{\mathbf{B}}\left(\tilde{\mathbf{z}}(x)\right) \cdot \frac{d\tilde{\mathbf{z}}(x)}{dx} = \tilde{\mathbf{f}}\left(\tilde{\mathbf{z}}(x)\right), \qquad \tilde{\mathbf{z}}(x) \in \mathbb{R}^{2N+2}, \quad \tilde{\mathbf{f}}: \mathbb{R}^{2N+2} \to \mathbb{R}^{2N+2}.$$
$$\tilde{\lambda}\tilde{\mathbf{B}} \cdot \tilde{\boldsymbol{\upsilon}} = \tilde{\mathbf{J}} \cdot \tilde{\boldsymbol{\upsilon}}.$$
$$\mathcal{S}_{x} = \frac{\ell_{coarsest}}{\ell_{finest}}, \quad \ell_{i} = \frac{1}{|Re(\tilde{\lambda}_{i})|}, \qquad i = 1, \dots, 2N - L.$$

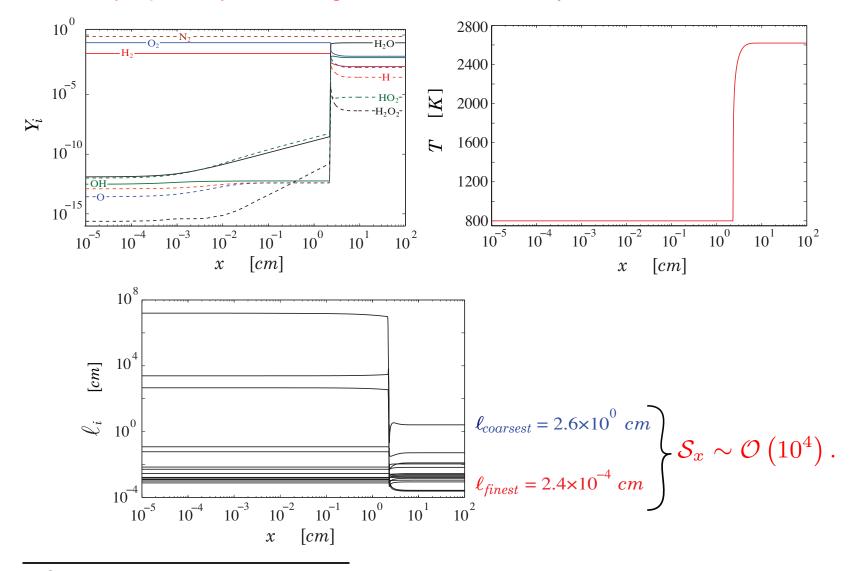
Laminar Premixed Hydrogen–Air Flame

- Standard detailed mechanism^a; N = 9 species, L = 3 atomic elements, and J = 19 reversible reactions,
- stoichiometric hydrogen-air: $2H_2 + (O_2 + 3.76N_2)$,
- adiabatic and isobaric: $T_u = 800 \ K, \ p = 1 \ atm$,
- calorically imperfect ideal gases mixture,
- neglect Soret effect, Dufour effect, and body forces,
- CHEMKIN and IMSL are employed.

^aJ. A. Miller, R. E. Mitchell, M. D. Smooke, and R. J. Kee, *Proc. Combust. Ins.* **19**, p. 181, 1982.

• Unsteady spatially homogeneous reactive system: 10^0 2600 10^{-5} 2200 10^{-10} ₹ ₁₈₀₀ 10^{-15} H_2 \mathbf{Y}_{l} O_2 H_2O 10^{-20} **E** 1400 Η 0 ÕН 10⁻²⁵ 1000 HO₂ $-H_2O_2$ 10^{-30} N_2 600 10^{-4} 10^{-2} 10^{0} 10^{-10} 10^{-8} 10^{-6} 10^{-10} 10⁻⁸ 10^{-6} 10^{2} 10^{-4} 10^{-2} 10^{2} 10^{0} [s][s]t t 10^{4} 10² 10^{0} 10^{-2} $\begin{bmatrix} s \end{bmatrix}$ $\tau_{slowest} = 1.8 \times 10^{-2} s$ $S_t \sim \mathcal{O} (10^4).$ $\tau_{fastest} = 1.0 \times 10^{-8} s$ 10⁻⁴ au_i 10⁻⁶ 10⁻⁸ 10^{-10} 10^{-8} 10^{-6} 10^{-4} 10^{-2} 10^{0} 10^{2} [s]t

• Steady spatially inhomogeneous reactive system:^a



^aA. N. Al-Khateeb, J. M. Powers, and S. Paolucci, *Comm. Comp. Phys.* 8(2): 304, 2010.

Spatio-Temporal Spectrum

• PDEs
$$\longrightarrow 2N + 2$$
 PDAEs,

$$\mathbf{A}(\mathbf{z}) \cdot \frac{\partial \mathbf{z}}{\partial t} + \mathbf{B}(\mathbf{z}) \cdot \frac{\partial \mathbf{z}}{\partial x} = \mathbf{f}(\mathbf{z}).$$

• Spatially homogeneous system at chemical equilibrium subjected to a spatially inhomogeneous perturbation, $\mathbf{z}' = \mathbf{z} - \mathbf{z}^e$,

$$\mathbf{A}^{e} \cdot \frac{\partial \mathbf{z}'}{\partial t} + \mathbf{B}^{e} \cdot \frac{\partial \mathbf{z}'}{\partial x} = \mathbf{J}^{e} \cdot \mathbf{z}'.$$

• Spatially discretized spectrum,

$$\mathcal{A}^{e} \cdot \frac{d\mathcal{Z}}{dt} = (\mathcal{J}^{e} - \mathcal{B}^{e}) \cdot \mathcal{Z}, \qquad \mathcal{Z} \in \mathbb{R}^{2\mathcal{N}(N+1)}$$

• The time scales of the generalized eigenvalue problem,

$$\tau_i = \frac{1}{|Re(\lambda_i)|}, \quad i = 1, \dots, (\mathcal{N} - 1)(N - 1).$$

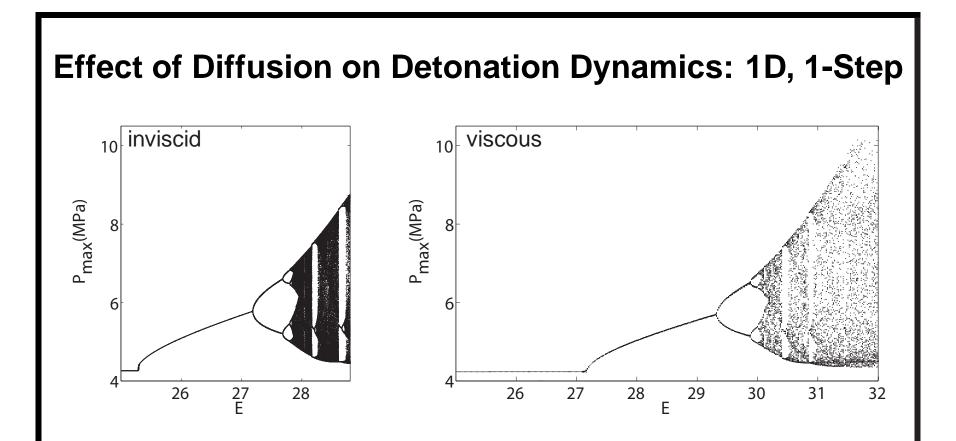
•
$$D_{mix} = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \mathfrak{D}_{ij},$$

• $\ell_1 = \sqrt{D_{mix}\tau_s} = 1.1 \times 10^{-1} cm,$
• $\ell_2 = \sqrt{D_{mix}\tau_f} = 8.0 \times 10^{-4} cm \approx \ell_{finest} = 2.4 \times 10^{-4} cm.$
 $10^{-4} \int_{10^{-6}} \frac{1}{10^{-6}} \int_{10^{-6}} \frac{1}{10^{-4}} \int_{10^{-2}} \frac{1}{10^{-2}} \int_{10^{-1}} \frac{1}{10^{-2}} \int_{10^{-2}} \frac{1}{10^{-2}} \int_{10^{-1}} \frac{1}{10^{-2}} \int_{10^{-2}} \frac{1}{10^{-2}} \int_{10^{-$

Conclusions: Part II

- Time and length scales are coupled.
- Coarse wavelength modes have time scales dominated by reaction.
- Short wavelength modes have time scales dominated by diffusion.
- Fourier modal analysis reveals a cutoff length scale for which time scales are dictated by a balance between transport and chemistry.
- Fine scales, temporal and spatial, are essential to resolve reacting systems; the finest length scale is related to the finest time scale by $\ell \sim \sqrt{D\tau}$.
- For a $p = 1 \ atm, H_2 + air$ laminar flame, the length scale where fast reaction balances diffusion is $\sim 2 \ \mu m$, the necessary scale for a DNS.

Part III: DNS of Complex Reacting and Inert Flows



- Small physical diffusion significantly delays transition to instability.
- In the unstable regime, small diffusion has a large role in determining role for the long time dynamics.
- Romick, Aslam, Powers, *JFM*, in review, 2012.

Effect of Diffusion on Detonation Dynamics: 1D, N-Step

Case Examined

- Romick, Aslam, Powers, AIAA ASM, 2012
- Overdriven detonations with ambient conditions of $0.421 \ atm$ and $293.15 \ K$
- Initial stoichiometric mixture of $2H_2 + O_2 + 3.76N_2$
- Detailed kinetics: 9 species, 19 reversible reactions
- a) Inviscid via shock-fitting, and b) viscous (multicomponent diffusion of a viscous, heat conducting fluids) via WAMR studied
- $D_{CJ} \sim 1961 \ m/s$
- Overdrive is defined as $f = D_o^2/D_{CJ}^2$
- Overdrives of 1.025 < f < 1.150 were examined

Continuum Scales

- The mean-free path scale is the cut-off minimum length scale associated with continuum theories.
- A simple estimate for this scale is given by Vincenti and Kruger (1967):

$$\lambda = \frac{\overline{M}}{\sqrt{2\pi}N_A\rho d^2} \sim \mathcal{O}\left(10^{-6}\ cm\right). \tag{1}$$

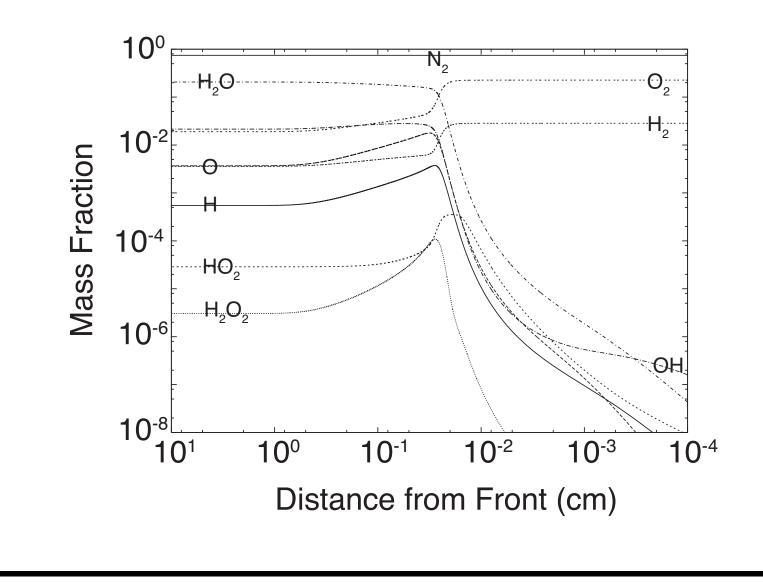
- The finest reaction length scale is $L_r \sim \mathcal{O}\left(10^{-4} \ cm\right)$.
- A simple estimate of a viscous length scale is:

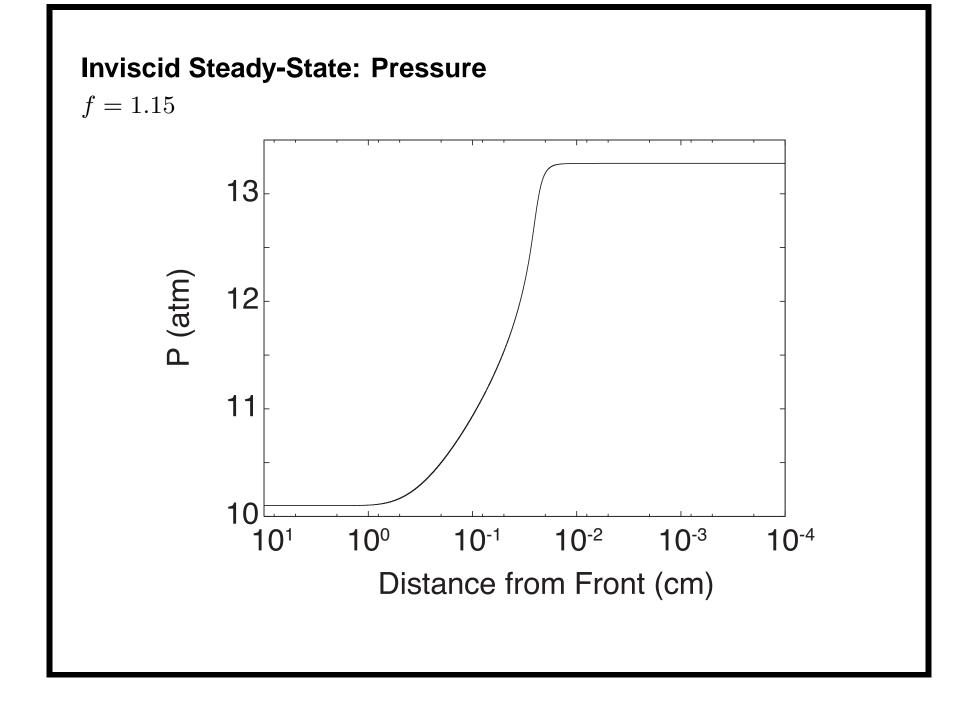
$$L_{\mu} = \frac{\nu}{c} = \frac{6 \times 10^{-1} \ cm^2/s}{9 \times 10^4 \ cm/s} \sim \mathcal{O}\left(10^{-5} \ cm\right).$$
(2)

• $\lambda < L_{\mu} < L_{r}$

Inviscid Steady-State: Mass Fractions

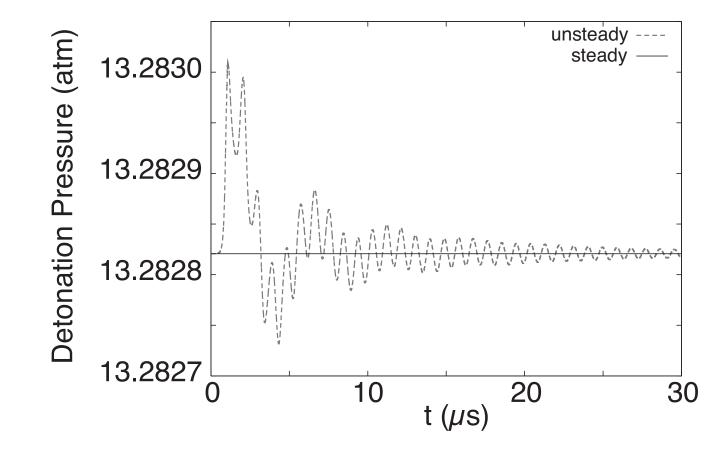
f = 1.15

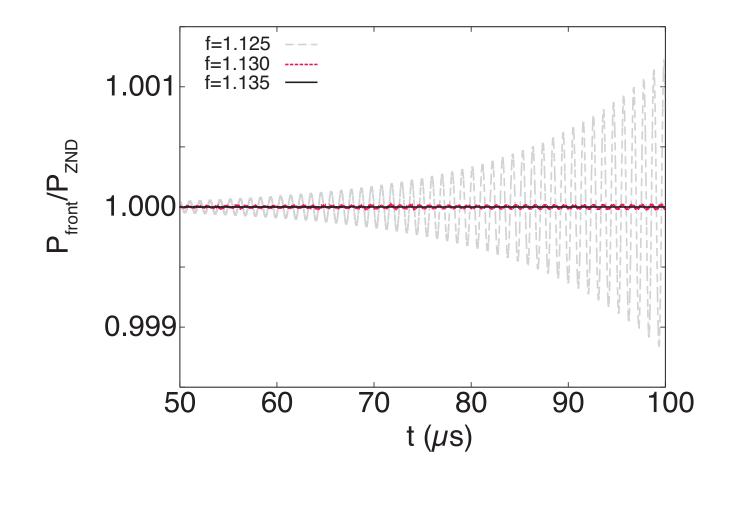




Inviscid Transient Behavior: Stable Detonation

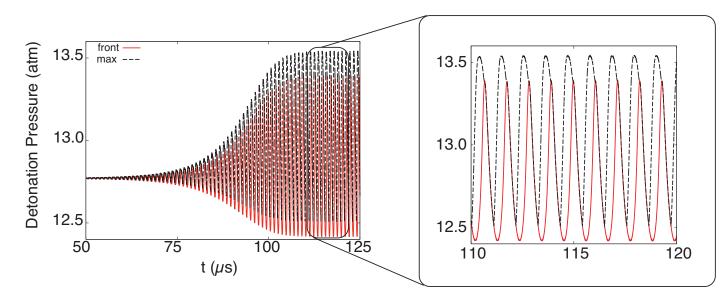
f = 1.15





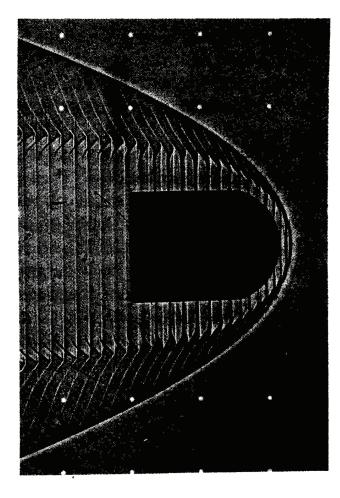
Inviscid Transient Behavior: Unstable Detonation

f = 1.10



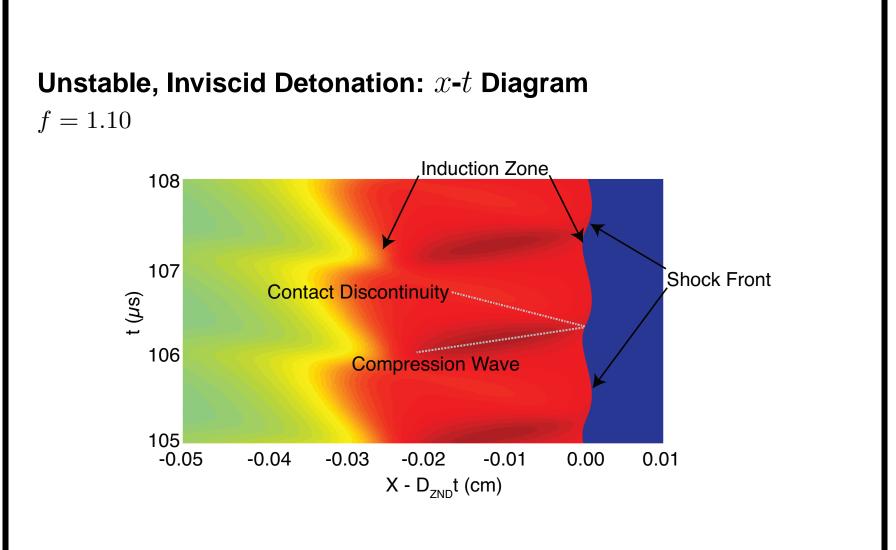
- Frequency of 0.97 MHz agrees well with both the frequency, 1.04 MHz, observed by Lehr (*Astro. Acta*, 1972) in experiments and the frequency, 1.06 MHz, predicted by Yungster and Radhakrishan.
- The maximum detonation front pressure predicted, 13.5 atm, is similar to the value of 14.0 atm found by Daimon and Matsuo.

Validation: Recovering Lehr's High Frequency Instability



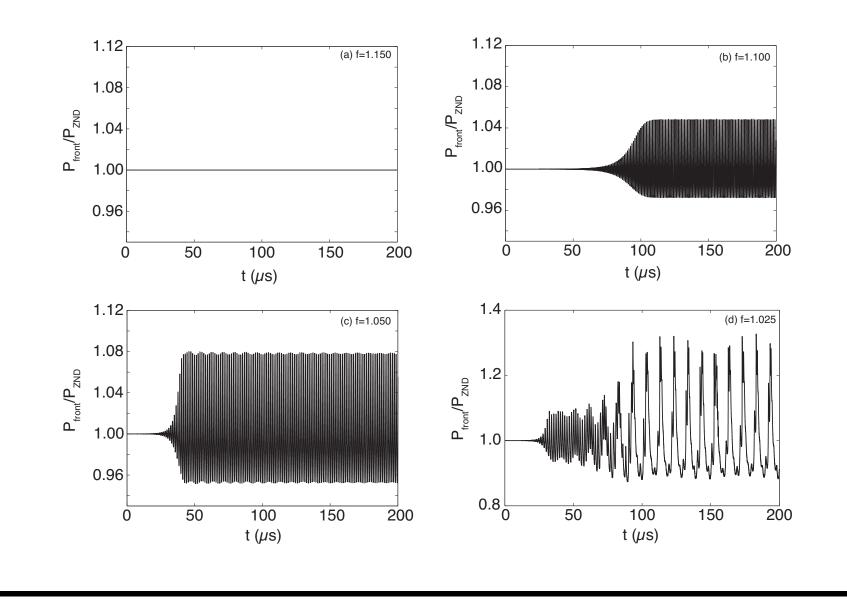
Lehr, Astro. Acta, 1972

- Experiment of shock-induced combustion in flow around a projectile in an ambient stoichiometric mixture of $2H_2 + O_2 + 3.76N_2$ at 0.421 atm.
- Projectile velocity yields an equivalent overdrive of $f\approx 1.1$
- The observed frequency was approximately $1.04 \; MHz$
- Compare to 1D computation' prediction: $0.97 \ MHz$

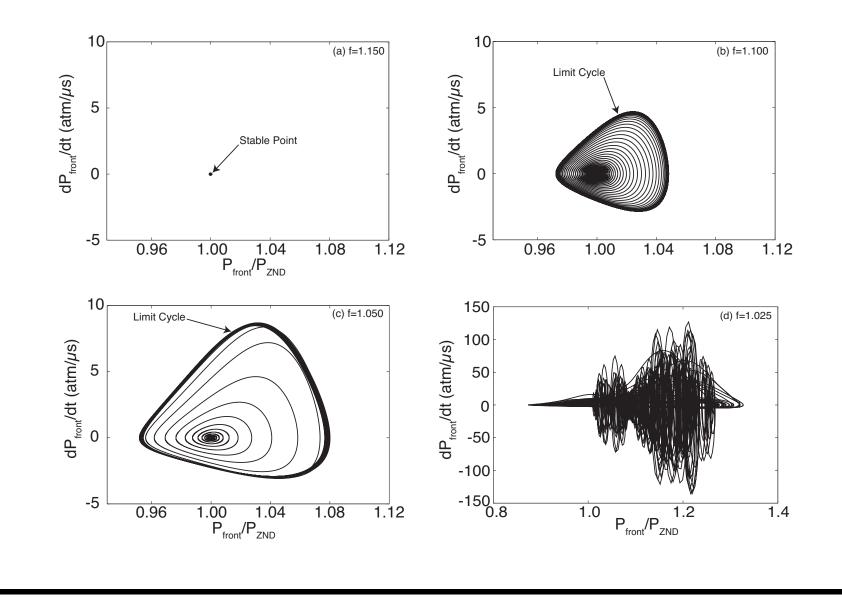


A x-t diagram of density in a Galilean reference frame traveling at $2057 \ m/s$.

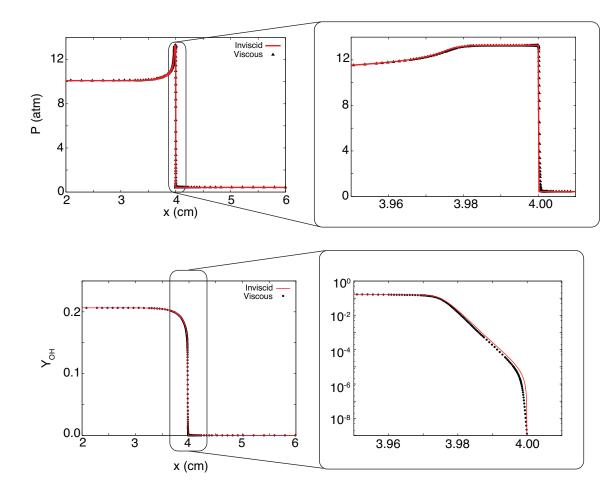
Inviscid Transient Behavior: Various Overdrives

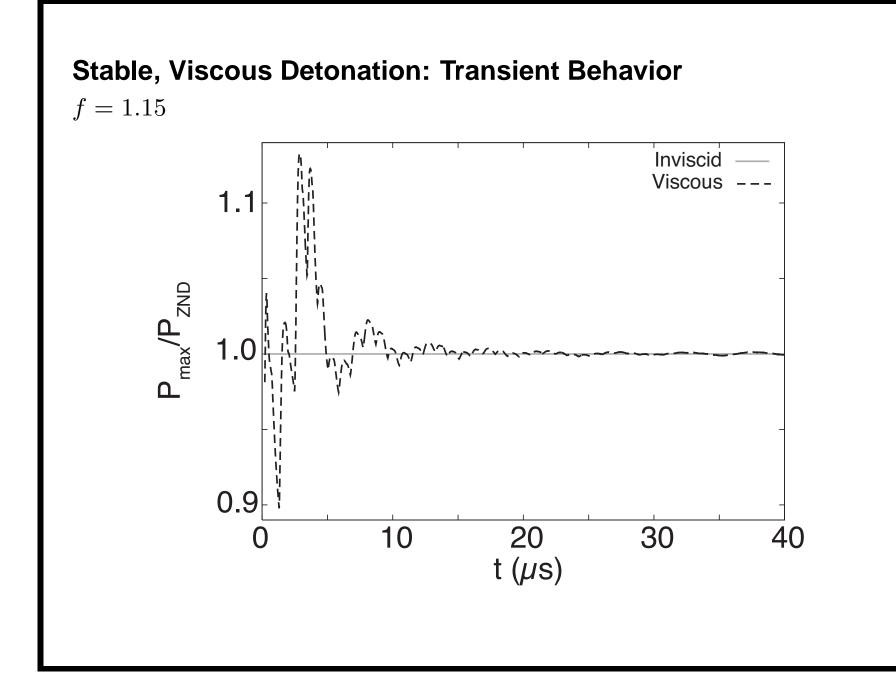


Inviscid Phase Portraits: Various Overdrives

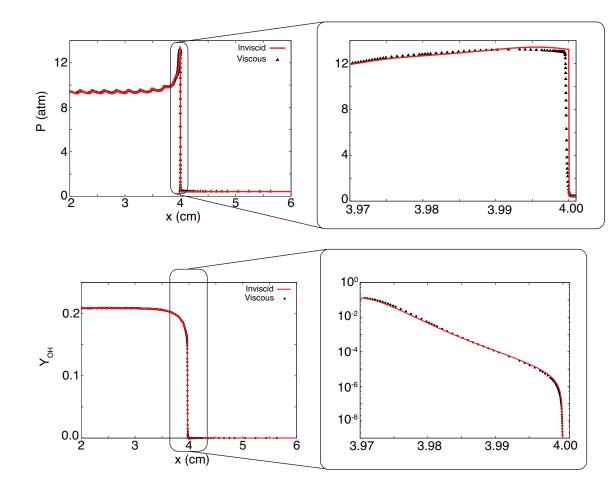


Stable, Viscous Detonation: Long Time Structure f = 1.15



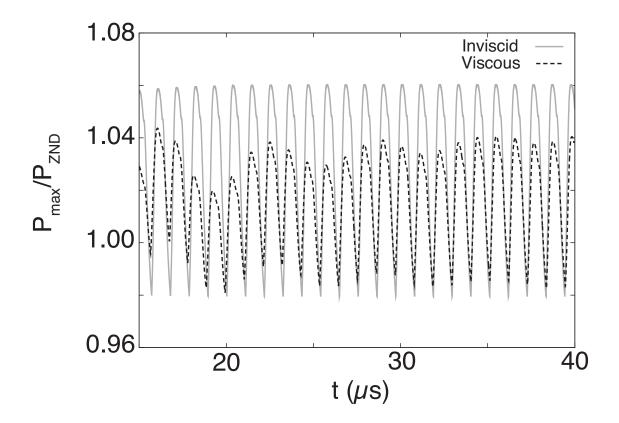


Unstable, Viscous Detonation: Long Time Structure f = 1.10

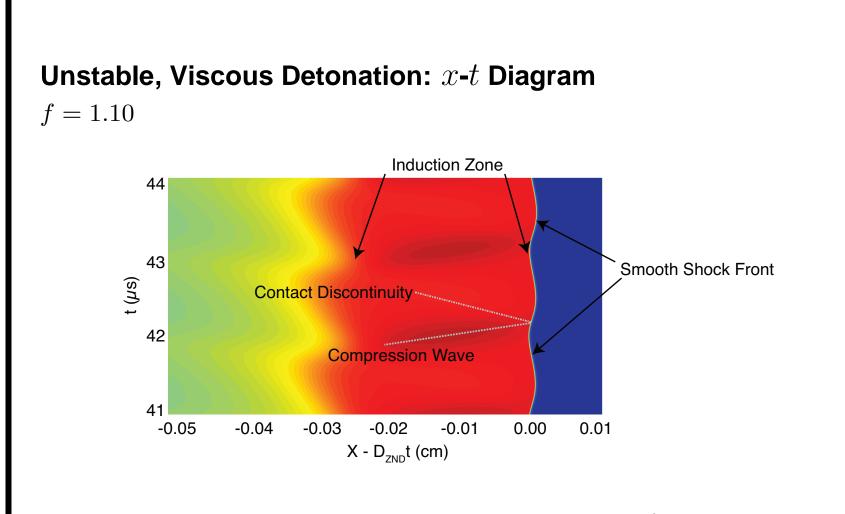


Unstable, Viscous Detonation: Transient Behavior

f = 1.10



The addition of viscous effects have a stabilizing effect, decreasing the amplitude of the oscillations by $\sim 25\%$.

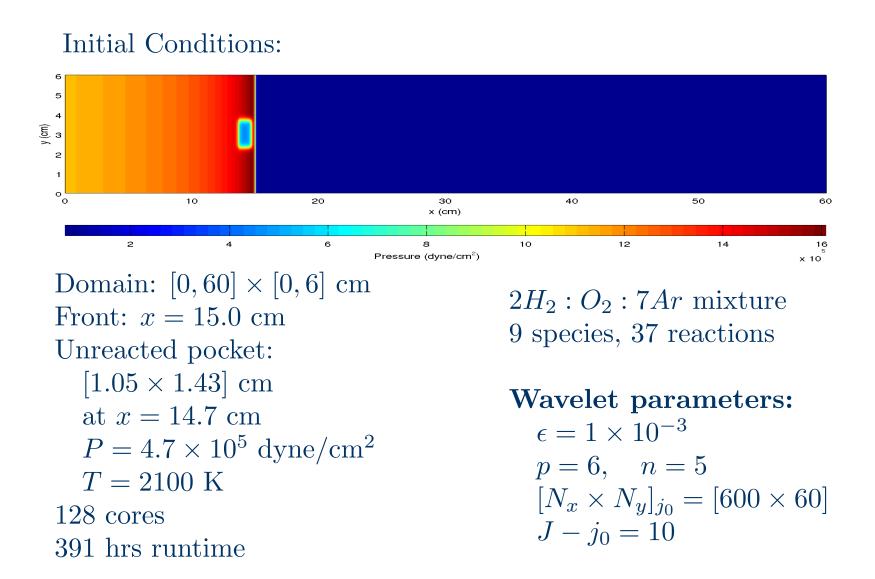


A *x*-*t* diagram of density in a Galilean reference frame traveling at $2057 \ m/s$.

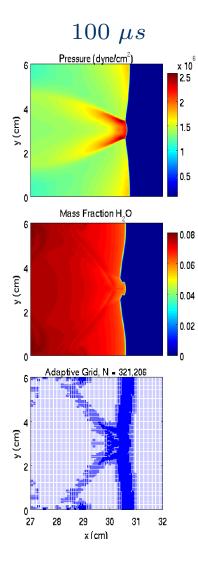
2D Viscous Detonation in Hydrogen-Air

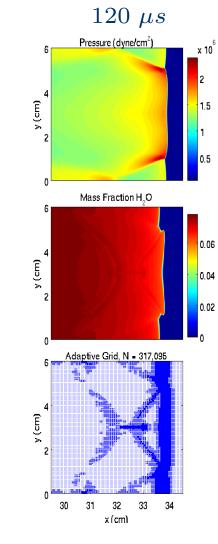
- Wavelet Adaptive Multilevel Representation (WAMR, Zikoski and Paolucci), resolves multi-scale solutions in an adaptive fashion.
- User-defined error control guarantees a verified solution.
- The algorithm has been implemented with an MPI-based domain decomposition in a massively parallel computational architecture with linear scaling to at least 10^3 processors.

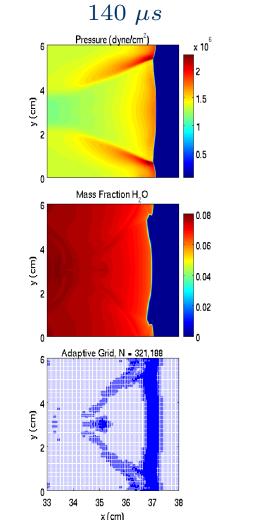
2-D VISCOUS DETONATION

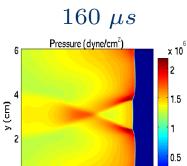


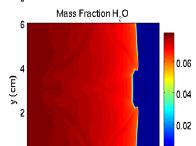
2-D VISCOUS DETONATION (CONT.)

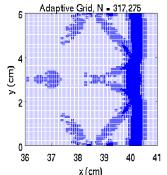




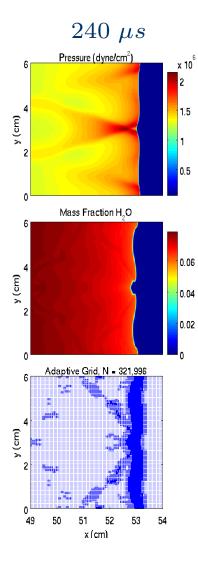


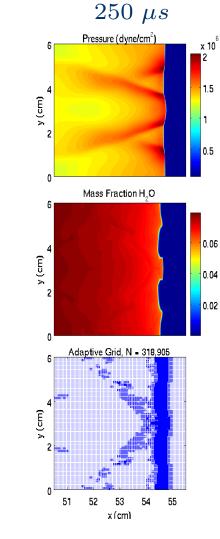


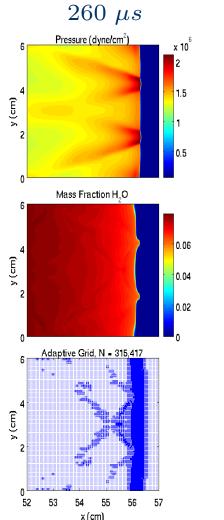




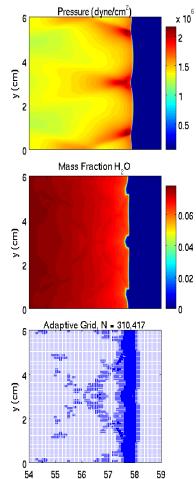
2-D VISCOUS DETONATION (CONT.)







 $270 \ \mu s$



x (cm)

Inert Viscous Cylindrical Implosion

- WAMR algorithm employed
- $100 \ \mu m \times 100 \ \mu m$ square domain,
- Pure argon,
- Initial uniform temperature, T = 300 K,
- Initial pressure ratio is 4 atm : 0.2 atm between argon on either side of an octagonal diaphragm,

•
$$T_{max}(r=0, t \sim 40 \ ns) \sim 2400 \ K.$$

Conclusions

- Verified 1D and 2D combustion physics spanning over five orders of magnitude– from near mean-free path scales $(10^{-4} cm)$ to small scale device scales (10 cm)–can be calculated today with modern adaptive algorithms working within a massively parallel computing architecture.
- Micro-scale viscous shock dynamics can influence oscillatory detonation dynamics on the macro-scale.
- Some 1D detonations can be validated; others await 3D extension.
- Realization of verified and validated DNS would remove the need for common, but problematic, modeling assumptions (shock-capturing, turbulence modeling, implicit chemistry with operator splitting, reduced kinetics/flamelets).
- Such 3D V&V could be viable in an exascale environment; however, routine desktop DNS calculations remain difficult to envision at macro-device scales.