High Accuracy Shock-Fitted Computation of Unsteady Detonation with Detailed Kinetics

Tariq D. Aslam (aslam@lanl.gov) Los Alamos National Laboratory; Los Alamos, NM Joseph M. Powers (powers@nd.edu) University of Notre Dame; Notre Dame, IN

10th US National Congress on Computational Mechanics

Columbus, Ohio

18 July 2009

Outline

- Gas phase detonation introduction
- Length scale requirements from steady traveling wave solutions for H_2 -air (review)
- Unsteady dynamics of ozone detonation

Length and Time Scale Discussion

Simplistic linear advection-reaction model:

Fast reaction (large k) induces small length and time scales.

Motivation

- Detailed kinetics models are widely used in detonation simulations.
- The finest length scale predicted by such models is usually not clarified and often not resolved.
- Tuning computational results to match experiments without first harmonizing with underlying mathematics renders predictions unreliable.
- See Powers and Paolucci, AIAA Journal, 2005.
- We explore the transient behavior of detonations with *fully re-solved* detailed kinetics.

Verification and Validation

- verification: solving the equations right (math).
- validation: solving the right equations (physics).
- Main focus here on verification
- Some limited validation possible, but detailed validation awaits more robust measurement techniques.
- Verification and validation always necessary but never sufficient: finite uncertainty must be tolerated.

Model: Steady 1D Reactive Euler Equations

$$\begin{split} \rho u &= \rho_o D, \\ \rho u^2 + p &= \rho_o D^2 + p_o, \\ e + \frac{u^2}{2} + \frac{p}{\rho} &= e_o + \frac{D^2}{2} + \frac{p_o}{\rho_o}, \\ p &= \rho \Re T \sum_{i=1}^N \frac{Y_i}{M_i}, \\ e &= \sum_{i=1}^N Y_i \left(h_{i,f}^o + \int_{T_o}^T c_{pi}(\hat{T}) \, d\hat{T} - \frac{\Re T}{M_i} \right), \\ \frac{dY_i}{dx} &= \frac{M_i}{\rho_o D} \sum_{j=1}^J \nu_{ij} A_j T^{\beta_j} e^{\left(\frac{-E_j}{\Re T}\right)} \left(\underbrace{\prod_{k=1}^N \left(\frac{\rho Y_k}{M_k}\right)^{\nu'_{kj}}}_{\text{forward}} - \underbrace{\frac{1}{K_j^c} \prod_{k=1}^N \left(\frac{\rho Y_k}{M_k}\right)^{\nu''_{kj}}}_{\text{reverse}} \right) \end{split}$$

Eigenvalue Analysis of Local Length Scales

Algebraic reduction yields

$$\frac{d\mathbf{Y}}{dx} = \mathbf{f}(\mathbf{Y}).$$

Local behavior is modeled by

$$\frac{d\mathbf{Y}}{dx} = \mathbf{J} \cdot (\mathbf{Y} - \mathbf{Y}^*) + \mathbf{b}, \qquad \mathbf{Y}(x^*) = \mathbf{Y}^*$$

whose solution is

$$\mathbf{Y}(x) = \mathbf{Y}^* + \left(\mathbf{P} \cdot e^{\mathbf{\Lambda}(x-x^*)} \cdot \mathbf{P}^{-1} - \mathbf{I}\right) \cdot \mathbf{J}^{-1} \cdot \mathbf{b}.$$

Here, Λ has eigenvalues λ_i of Jacobian J in its diagonal. Length scales given by

$$\ell_i(x) = \frac{1}{|\lambda_i(x)|}.$$

Computational Methods: Steady Detonation

- A standard ODE solver (DLSODE) was used to integrate the equations.
- Standard IMSL subroutines were used to evaluate the local Jacobians and eigenvalues at every step.
- The Chemkin software package was used to evaluate kinetic rates and thermodynamic properties.
- Computation time was typically one minute on a $1\,GHz$ HP Linux machine.

Physical System

- Hydrogen-air detonation: $2H_2 + O_2 + 3.76N_2$.
- N = 9 molecular species, L = 3 atomic elements,
 - J = 19 reversible reactions.
- $p_o = 1 atm$.
- $T_o = 298 K$.
- Identical to system studied by both Shepherd (1986) and Mikolaitis (1987).

j	Reaction	A_{j}	eta_j	E_{j}
1	$H_2 + O_2 \rightleftharpoons OH + OH$	1.70×10^{13}	0.00	47780
2	$OH + H_2 \rightleftharpoons H_2O + H$	1.17×10^9	1.30	3626
3	$H + O_2 \rightleftharpoons OH + O$	5.13×10^{16}	-0.82	16507
4	$O + H_2 \rightleftharpoons OH + H$	1.80×10^{10}	1.00	8826
5	$H + O_2 + M \rightleftharpoons HO_2 + M$	2.10×10^{18}	-1.00	0
6	$H + O_2 + O_2 \rightleftharpoons HO_2 + O_2$	6.70×10^{19}	-1.42	0
7	$H + O_2 + N_2 \rightleftharpoons HO_2 + N_2$	6.70×10^{19}	-1.42	0
8	$OH + HO_2 \rightleftharpoons H_2O + O_2$	5.00×10^{13}	0.00	1000
9	$H + HO_2 \rightleftharpoons OH + OH$	2.50×10^{14}	0.00	1900
10	$O + HO_2 \rightleftharpoons O_2 + OH$	4.80×10^{13}	0.00	1000
11	$OH + OH \rightleftharpoons O + H_2O$	6.00×10^{8}	1.30	0
12	$H_2 + M \rightleftharpoons H + H + M$	2.23×10^{12}	0.50	92600
13	$O_2 + M \rightleftharpoons O + O + M$	1.85×10^{11}	0.50	95560
14	$H + OH + M \rightleftharpoons H_2O + M$	7.50×10^{23}	-2.60	0
15	$H + HO_2 \rightleftharpoons H_2 + O_2$	2.50×10^{13}	0.00	700
16	$HO_2 + HO_2 \rightleftharpoons H_2O_2 + O_2$	2.00×10^{12}	0.00	0
17	$H_2O_2 + M \rightleftharpoons OH + OH + M$	1.30×10^{17}	0.00	45500
18	$H_2O_2 + H \rightleftharpoons HO_2 + H_2$	1.60×10^{12}	0.00	3800
19	$H_2O_2 + OH \rightleftharpoons H_2O + HO_2$	1.00×10^{13}	0.00	1800

Detailed Kinetics Model

Temperature Profile

- Temperature flat in the post-shock induction zone $0 < x < 2.6 \times 10^{-2} \ cm$.
- Thermal explosion followed by relaxation to equilibrium at $x \sim 10^0 \ cm.$

Mole Fractions versus Distance

• significant evolution at

fine length scales $x < 10^{-3} \ cm$.

results agree with those of Shepherd.

Eigenvalue Analysis: Length Scale Evolution

- Finest length scale: $2.3 \times 10^{-5} \ cm.$
- Coarsest length scale $3.0 \times 10^1 \ cm.$
- Finest length scale
 similar to that
 necessary for
 numerical stability of
 ODE solver.

Verification: Comparison with Mikolaitis

- Lagrangian calculation allows direct comparison with Mikolaitis' results.
- agreement very good.

- Grid Convergence
 - Finest length scale
 must be resolved to
 converge at proper
 order.
 - Results are
 converging at proper
 order for first and
 second order
 discretizations.

Numerical Stability

- Discretizations finer than finest physical length scale are numerically stable.
- Discretizations coarser
 than finest physical
 length scale are
 numerically unstable.

Unsteady Model: Reactive Euler Equations

- one-dimensional,
- inviscid,
- detailed mass action kinetics with Arrhenius temperature dependency,
- ideal mixture of calorically imperfect ideal gases

Computational Method

- Shock fitting coupled with a fifth order method for continuous regions
 - Fifth order WENO5M for spatial discretization
 - Fifth order Runge-Kutta for temporal discretization
- see Henrick, Aslam, Powers, J. Comp. Phys., 2006, for full details on shock fitting

Outline of Shock Fitting Method

• Transform from lab frame to shock-attached frame, $(x,t) \rightarrow (\xi,\tau)$

example mass equation becomes

$$\frac{\partial \rho}{\partial \tau} + \frac{\partial}{\partial \xi} \left(\rho \left(u - D \right) \right) = 0$$

- In interior
 - fifth order WENO5M for spatial discretization
 - fifth order Runge-Kutta for temporal discretization

Outline of Shock Fitting Method, cont.

- At shock boundary, one-sided high order differences are utilized
- Note that some form of an approximate Riemann solver must be used to determine the shock speed,
 D, and thus set a valid shock state
- At downstream boundary, a zero gradient (constant extrapolation) approximation is utilized

Summary of Shock-Fitting Method

Difficulties in Unsteady Calculations

- Note that H_2 -air steady detonation had length scales spanning six orders of magnitude
- This is feasible for steady calculations but extremely challenging in a transient calculation.
- To cleanly illustrate the challenges of coupled length and time scales, we choose a realistic problem with less stiffness that we can verify and validate: ozone detonation.

Ozone Reaction Kinetics

Reaction	A_j^f , A_j^r	eta_j^f , eta_j^r	E_{j}^{f} , E_{j}^{r}
$O_3 + M \leftrightarrows O_2 + O + M$	6.76×10^{6}	2.50	1.01×10^{12}
	1.18×10^2	3.50	0.00
$O + O_3 \leftrightarrows 2O_2$	4.58×10^6	2.50	2.51×10^{11}
	1.18×10^6	2.50	4.15×10^{12}
$O_2 + M \leftrightarrows 2O + M$	5.71×10^6	2.50	4.91×10^{12}
	2.47×10^2	3.50	0.00

see Margolis, *J. Comp. Phys.*, 1978, or Hirschfelder, *et al.*, *J. Chem. Phys.*, 1953.

Validation: Comparison with Observation

• Streng, et al., J. Chem. Phys., 1958.

•
$$p_o = 1.01325 \times 10^6 \, dyne/cm^2$$
, $T_o = 298.15 \, K$,
 $Y_{O_3} = 1, Y_{O_2} = 0, Y_O = 0.$

Value	Streng, <i>et al.</i>	this study
D_{CJ}	$1.863 \times 10^5 \ cm/s$	$1.936555 \times 10^5 \ cm/s$
T_{CJ}	3340~K	3571.4~K
p_{CJ}	$3.1188 \times 10^7 \ dyne/cm^2$	$3.4111 \times 10^7 \ dyne/cm^2$

Slight overdrive to preclude interior sonic points.

Stable Strongly Overdriven Case: Length Scales

 $D_o = 2.5 \times 10^5 \ cm/s.$

Mean-Free-Path Estimate

• The mixture mean-free-path scale is the cutoff *minimum* length scale associated with continuum theories.

• A simple estimate for this scale is given by *Vincenti* and *Kruger, '65*:

$$\ell_{mfp} = \frac{M}{\sqrt{2}\mathcal{N}\pi d^2\rho} \sim 10^{-7} \, cm.$$

Stable Strongly Overdriven Case: Mass Fractions

 $D_o = 2.5 \times 10^5 \ cm/s.$

Slightly Unstable Case: Transient Behavior

Initialized with steady structure, $D_o = 2.4 \times 10^5 \ cm/s$.

Case After Bifurcation: Transient Behavior

Initialized with steady structure of $D_o = 2.1 \times 10^5 \ cm/s$.

Effect of Resolution on Unstable Moderately

Overdriven Case

Δx	Numerical Result		
$1 \times 10^{-7} \ cm$	Unstable Pulsation		
$2 \times 10^{-7} \ cm$	Unstable Pulsation		
$4 \times 10^{-7} \ cm$	Unstable Pulsation		
$8 \times 10^{-7} \ cm$	O_2 mass fraction > 1		
$1.6 \times 10^{-6} \ cm$	O_2 mass fraction > 1		

- Algorithm failure for insufficient resolution
- At low resolution, one misses critical dynamics

Examination of H_2 -Air Results					
Reference	$\ell_{ind} \left(cm ight)$	$\ell_f(cm)$	$\Delta x \ (cm)$	Under-resolution	
Oran, <i>et al.</i> , 1998	2×10^{-1}	2×10^{-4}	4×10^{-3}	2×10^1	
Jameson, <i>et al.</i> , 1998	2×10^{-2}	5×10^{-5}	3×10^{-3}	$6 imes 10^1$	
Hayashi, <i>et al.</i> , 2002	2×10^{-2}	1×10^{-5}	5×10^{-4}	$5 imes 10^1$	
Hu, <i>et al.</i> , 2004	2×10^{-1}	2×10^{-4}	3×10^{-3}	2×10^1	
Powers, <i>et al.</i> , 2001	2×10^{-2}	3×10^{-5}	8×10^{-5}	$3 imes 10^{0}$	
Osher, <i>et al.</i> , 1997	2×10^{-2}	3×10^{-5}	3×10^{-2}	1×10^3	
Merkle, <i>et al.</i> , 2002	5×10^{-3}	8×10^{-6}	1×10^{-2}	1×10^3	
Sislian, <i>et al.</i> , 1998	1×10^{-1}	2×10^{-4}	1×10^0	$5 imes 10^3$	
Jeung, <i>et al.</i> , 1998	2×10^{-2}	6×10^{-7}	6×10^{-2}	$1 imes 10^5$	

All are under-resolved, some severely.

Conclusions

- Unsteady detonation dynamics can be accurately simulated when sub-micron scale structures admitted by detailed kinetics are captured with ultra-fine grids.
- Shock fitting coupled with high order spatial discretization assures numerical corruption is minimal.
- Predicted detonation dynamics consistent with results from one-step kinetic models.
- At these length scales, diffusion will play a role and should be included in future work.

