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Outline

e Gas phase detonation introduction

e Length scale requirements from steady traveling wave

solutions for Hy-air (review)

e Unsteady dynamics of ozone detonation




Fundamentals of Detonation

e Detonation: shock-

Induced combustion
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process
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Length and Time Scale Discussion

Simplistic linear advection-reaction model:
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Fast reaction (large k) induces small length and time scales.

= —ki : length scale




Motivation

e Detailed kinetics models are widely used in detonation simula-

tions.

e The finest length scale predicted by such models is usually not

clarified and often not resolved.

e Tuning computational results to match experiments without first
harmonizing with underlying mathematics renders predictions

unreliable.

® See Powers and Paolucci, AIAA Journal, 2005.

e We explore the transient behavior of detonations with fully re-

solved detailed kinetics.




Verification and Validation
e verification: solving the equations right (math).
e validation: solving the right equations (physics).

e Main focus here on verification

e Some limited validation possible, but detailed valida-

tion awaits more robust measurement techniques.

e Verification and validation always necessary but never

sufficient: finite uncertainty must be tolerated.




Model: Steady 1D Reactive Euler Equations
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Eigenvalue Analysis of Local Length Scales

Algebraic reduction yields

£(Y).

de
Local behavior is modeled by

dY
d_:J.(Y_Y*)+b7 Y(2*)=Y"
X

whose solution is
Y(z)=Y* + (P A=) p-1_ I) J b

Here, A has eigenvalues \; of Jacobian J in its diagonal. Length
scales given by




Computational Methods: Steady Detonation

e A standard ODE solver (DLSODE) was used to inte-

grate the equations.

e Standard IMSL subroutines were used to evaluate the

local Jacobians and eigenvalues at every step.

e The Chemkin software package was used to evaluate

Kinetic rates and thermodynamic properties.

e Computation time was typically one minuteonal GH z

HP Linux machine.




Physical System

e Hydrogen-air detonation: 2Hs + Oy + 3.76Ns.

e N = 9 molecular species, L. = 3 atomic elements,

J = 19 reversible reactions.
e p, = 1 atm.
o[, =298 K.

e |dentical to system studied by both Shepherd (1986)
and Mikolaitis (1987).




Detailed Kinetics Model

hS

Reaction

109

Ho + Og9 = OH + OH
OH 4+ Hg = HoO + H

H+ Og = OH + O

O+ Hy = OH + H

H+ O3+ M= HOy + M

H + Og + Og = HOg + Og
H + Og + Ny = HOg + No
OH + HO9 = H30 + Oy
H+ HOg9 = OH + OH

O+ HOg = Og + OH
OH + OH = O + HyO
Ho+M = H+ H+ M

Oy +M=0+0+M
H+OH+ M = HoO + M

H + HO9 = Ho + Oo
HOg9 + HOg = H9Oo + Og
H909 + M = OH + OH + M
HoOo + H = HO5 + Hy
H90O9 + OH = HoO + HOq
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Temperature Profile

e Temperature flat in the

post-shock induction

zone ) < x <
2.6 x 1072 em.

e Thermal explosion

followed by relaxation

to equilibrium at

x ~ 10Y em.




Mole Fractions versus Distance

e significant evolution at

fine length scales r <

1073 em.

® results agree with

those of Shepherd.




Eigenvalue Analysis: Length Scale Evolution

e Finest length scale:
2.3 x 107° cm.

e Coarsest length scale
3.0 x 10 em.

e Finest length scale

similar to that

necessary for
numerical stability of

ODE solver.




Verification: Comparison with Mikolaitis

e Lagrangian calculation

allows direct
comparison with

Mikolaitis’ results.

® agreement very good.




Grid Convergence

e Finest length scale

must be resolved to

converge at proper

order.

® Results are

converging at proper

order for first and

second order

discretizations.




Numerical Stability

® Discretizations finer than

finest physical length

scale are numerically

stable.

[ peregmene | @ Discretizations coarser

s -5
J ¢ - Ax=1.00 x 10 cm (stable)

Jom ’ than finest physical

length scale are

numerically unstable.




Unsteady Model: Reactive Euler Equations

e one-dimensional,
® Inviscid,

e detailed mass action kinetics with Arrhenius tempera-

ture dependency,

e ideal mixture of calorically imperfect ideal gases




Model: Unsteady Reactive Euler PDEs
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Computational Method
e Shock fitting coupled with a fifth order method for
continuous regions
— Fifth order WENOSM for spatial discretization

— Fifth order Runge-Kutta for temporal discretization

e see Henrick, Aslam, Powers, J. Comp. Phys., 2006, for

full details on shock fitting




Outline of Shock Fitting Method

e Transform from lab frame to shock-attached frame,
(z,8) — (&, 7)
— example mass equation becomes

op 0

o+ 5 (p(u= D)) =0

® |n interior

— fifth order WENOSM for spatial discretization

— fifth order Runge-Kutta for temporal discretization




Outline of Shock Fitting Method, cont.

e At shock boundary, one-sided high order differences

are utilized

e Note that some form of an approximate Riemann

solver must be used to determine the shock speed,

D, and thus set a valid shock state

e At downstream boundary, a zero gradient (constant

extrapolation) approximation is utilized




Summary of Shock-Fitting Method

boundary interior




Difficulties in Unsteady Calculations

e Note that fH5-air steady detonation had length scales

spanning six orders of magnitude

e This Is feasible for steady calculations but extremely

challenging in a transient calculation.

e To cleanly illustrate the challenges of coupled length
and time scales, we choose a realistic problem with
less stiffness that we can verify and validate: ozone

detonation.




Ozone Reaction Kinetics

: f f f
Reaction As AL ey B, EY

O3+ MS 0Oy +0+M | 6.76 x10° | 2.50 | 1.01 x 10*2
1.18 x 10% | 3.50 0.00
O + O3 = 20, 458 x 10° | 2.50 | 2.51 x 10!
1.18 x 10 | 2.50 | 4.15 x 10*?
Oy +M<=20+ M 5.71 x 10° | 2.50 | 4.91 x 102
2.47 x 102 | 3.50 0.00

see Margolis, J. Comp. Phys., 1978, or Hirschfelder, et al.,
J. Chem. Phys., 1953.




Validation: Comparison with Observation

e Streng, et al., J. Chem. Phys., 1958.

e p, = 1.01325 x 10° dyne/cm?*, T, = 298.15 K,
Yo, = 1, Yo, = 0, Yo = 0.

Value Streng, et al. this study

1.863 x 10° ¢m/s 1.936555 x 10° ¢m/s
3340 K 3571.4 K
3.1188 x 107 dyne/cm? | 3.4111 x 107 dyne/cm?

Slight overdrive to preclude interior sonic points.




Stable Strongly Overdriven Case: Length Scales

D, = 2.5 x 10° em/s.
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Mean-Free-Path Estimate

e The mixture mean-free-path scale is the cutoff mini-

mum length scale associated with continuum theories.

e A simple estimate for this scale is given by Vincenti

and Kruger, '65:

M 1077
V2N Td?p

Cnfp = cm.




Stable Strongly Overdriven Case: Mass Fractions

D, = 2.5 x 10° em/s.




Stable Strongly Overdriven Case: Temperature

D, = 2.5 x 10° cm/s.




Stable Strongly Overdriven Case: Pressure

D, = 2.5 x 10° cm/s.
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Stable Strongly Overdriven Case: Transient

Behavior for Various Resolutions

Initialize with steady structure of D, = 2.5 x 10° cm/s.

2.505x 10°

2.500 x 10° k.

2495x10° Ax=2.5x10" cm
. — — “Ax=5x10%cm
Ax=1x10"7" cm

2490x10° -

2.485x10° -

2480x10° — — —
4x107° 6x10° 8x10"° 1x10”

t(s)




3 Cases Near Neutral Stability: Transient Behavior

2.55x10° , ,

—— Dy=2. 5x1055 cm/s
_—— -D 245x10 cm/s
Do =2.4x10° cm/s
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Slightly Unstable Case: Transient Behavior

Initialized with steady structure, D, = 2.4 x 10° cm/s.

2.7 x10° | |

Do=2.4x10> cm/s




Case After Bifurcation: Transient Behavior

Initialized with steady structure of D, = 2.1x10° cm/s.

s
DO: 2.1x10 cm/s




Long Time D4/ Do versus D¢y /Dy
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Effect of Resolution on Unstable Moderately

Overdriven Case

Ax Numerical Result

1 x10~7" em Unstable Pulsation

2% 10~ 7 em Unstable Pulsation

4 x 10~ em Unstable Pulsation

8 x 107" em | Oy mass fraction > 1

1.6 x 1079 em | O5 mass fraction > 1

e Algorithm failure for insufficient resolution

e At low resolution, one misses critical dynamics




Examination of Hy-Air Results

Reference : ly (em) Ax (¢cm) | Under-resolution

Oran, et al., 1998 2x107* | 4x1072 | 2 x 10
Jameson, et al., 1998 5x107° | 3x 1072 | 6 x 10!
Hayashi, et al., 2002 1x107° | 5x107* | 5 x 10!

Hu, et al., 2004 2x107* | 3x1072 | 2 x 10
Powers, et al., 2001 3x107° | 8 x107° | 3 x 10°

Osher, et al., 1997 3x107° | 3x107% | 1x 10°

Merkle, et al., 2002 8x107°% | 1x1072% | 1x 10°

Sislian, et al., 1998 2x107% | 1 x10° 5 % 103

Jeung, et al., 1998 6x10"" | 6 x1072 | 1x10°

All are under-resolved, some severely.




Conclusions

e Unsteady detonation dynamics can be accurately sim-
ulated when sub-micron scale structures admitted by

detailed kinetics are captured with ultra-fine grids.

e Shock fitting coupled with high order spatial discretiza-

tion assures numerical corruption is minimal.

e Predicted detonation dynamics consistent with results

from one-step kinetic models.

e At these length scales, diffusion will play a role and

should be included in future work.




Moral

You either do detailed kinetics with the

proper resolution,

or

you are fooling yourself and others, In

which case you should stick with

reduced kinetics!




