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ABSTRACT

We discuss one-dimensional steady laminar premixed
flames in a mixture of calorically imperfect ideal gases dbsd
by detailed kinetics and multi-componenttransport. Tlgied
spatial discretization to capture all detailed continudmygics in
the reaction zone is determined through use of a robust metho
developed to rigorously calculate the finest length scalestep
riori. This is accomplished by reformulating the governauya-
tions as a nonlinear system of differential algebraic equat
Then, the solution of the steady reaction zone structuréis o
tained, and the generalized eigenvalues of the locallyatined
system are calculated at each point in the reaction zoneir The
reciprocals provide all local length scales. Applicatidntioe
method to laminar flames reveals that the finest length scale i
the order of 10 cm. Independent estimates from grid conver-
gence studies on the continuum equations as well as frommthe u
derlying molecular collision theory verify the result. EHinest
length scale is orders of magnitude smaller than common engi
neering geometric scales, the discretization scales graglm
nearly all multi-dimensional and/or unsteady laminar pired
flame simulations in the literature, and the flame thickness.

1 Introduction

In recent years, there have been orders of magnitude en-
hancements in computational capabilities, enabled by dngsr
ment in both hardware and software, which have spurred the
scientific and engineering community to employ mathemhtica

models to solve challenging physical problems. Some of the
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most difficult of these are of multi-scale nature; such peofs

are characterized by physics which evolve over a wide rafige o
spatial and temporal scales. To have confidence in the sesult
and to guarantee that they can be repeated by other researche
with their own particular algorithms, predictions shoulel #&c-
companied by evidence that all physical scales inherentén t
mathematical model have been captured.

It is well recognized that most detailed kinetic systems-con
tain a broad range of scales, and the ratio between the targes
and smallest scale is a measure of the system’s stiffnessicin
problems, proper numerical resolution of all scales carritieal
to drawing the correct conclusions. The most effective meaan
determine the necessary spatial resolution for an unsteandy
lem is to focus attention on a highly resolved baseline stead
problem from which future unsteadiness develops.

There is some ambiguity in the combustion literature about
what constitutes a resolved solution. Most consider a talcu
tion to be resolved if certain global or derived quantitissch
as steady flame speed, are insensitive to grid size. Indeesk t
are necessary conditions. However, as discussed by Roahe |
convergence of global quantities only is not a sufficienidgad
tor of a fully resolved solution, and taken alone can leachto i
correct conclusions. While a derived quantity may be a func-
tion of the dependent variables, it may be insensitive torsrin
some of them. Which variables they are insensitive to isleraob
dependent, and impossible to determér@iori.

Here then, we follow Roache [1] and adopt the more rigor-
ous characterization of a resolved solution as one in whith
dependent variables throughout the spatio-temporal domain are
insensitive to changes in spatio-temporal discretizadipe. This
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characterization is fully consistent with standard nagifound in 2 Mathematical model
the broader mathematical and scientific computing liteeatcf. We describe here, in truncated form, the mathematical
Stoer and Bulirsch [2]. model. Full details are given in Ref. [4].

It is well understood that in any mathematically based sci-
entific theory, associated computations should have fydeith 2.1 Governing equations
the underlying mathematics, and the underlying mathewiatic We study a standard model for stationary laminar premixed
model has to represent the observed physics. The first issue i flames evolvingin = 1,...,N molecular species, cf. Smoole,
demonstrated by comparing computational results withterot g [6], Keeet al. [7], Miller et al. [8]:
known solution and/or performing a formal grid convergence
study, while the second issue is demonstrated by compdreg t
computational predictions with experimental data. Adslires E(pu) -0 1)
these two issues, in this order, is a necessity in any computa dx ’

tional study to build confidence in both the simulation &gt daT mdhi

and the underlying mathematical model. PUC 3 + dx + Z (J o oMb (2)
The exercise of demonstrating the harmony of the discrete pu d_Y + E = M. (3)

solution with the foundational mathematics is known asfigeri dx = dx

tion [3]. Neglecting this issue can give rise to solutionsoad

behavior depends on the size of the grid and the algorithin tha The independent spatial variablexs The dependent variables
has been used to solve the mathematical model. For mulg-sca are densityp, velocity u, mixture specific heat at constant pres-
problems, verification is difficult due to the range of thet&pa sure,cp, temperaturd, diffusive heat fluxg, and for specieg
temporal scales present, which may span many orders of magni diffusive mass fluxJ™, specific enthalpyy, molar species pro-
tude. In this type of problem, usually modeled by highly non- duction rateis, and mass fractio. Here,M; is the molecular

linear equations, significant coupling across scales canrpc  mass of specieis An appropriate set of boundary conditions is
so that errors at small scales can rapidly cascade to therlarg

scales. Moreover, the strength of the coupling across thiesc

is not knowna priori. So, all physical scales of the mathematical Xx=0" T=To, Y il = Yo, (4)
model, temporal and spatial, have to be captured in ordeate h PoS

full confldenc_e_that predictions are repeatable, grld-_pmmient, X oo d_T ~0 ﬁ —0, (5)
and thus verifiable. Subsequently, in the validation step on dx dx

can choose what physical phenomena and to what accuracy one X = Xf : T =Tz, (6)

wants to reproduce experiments.

In this paper, we summarize results presented in detail by Wherex; is a specified spatial point ard is the specified tem-
the authors [4]. The main aim of this paper is to discuss the perature at that location [7]. These are commonly used tdystu
required spatial resolution to capture all physical scil@sstan- deflagration, though other formulations are possible. Tdunhbl-
dard multi-scale problem: the steady one-dimensionaldami  ary conditions are sufficient for freely propagating flanveisere
premixed flame propagating freely at atmospheric pressuee i the mass flow rate is unknown [8], so that the temperature at an

stoichiometric mixture of hydrogen—air described by dethki- interior spatial point has to be specified. The pe&inand temper-
netics and multi-component transport. atureTs have to be selected such that all the gradients approach
zero at the cold boundary. A solution for this boundary value

In a complementary study, we have developed a robust problem, equations (1)—(3), with boundary conditions aipns

method to provide an accurate determination of the finegften (4)—(6), can be obtained by discretizing the spatial dornaing

scale in the reaction zone of a Chapman-Jouguet deton&lion [ finite differences, and the resulting algebraic system aféigns

Here, the method of Ref. [5] is implemented with modification  are solved iteratively using a damped modified Newton’s meth

for deflagration. The method is robust in that it has litti@eie- where the solution iterate is brought into the convergenoedin

dence on the details of the underlying numerical method tsed by using pseudo time-step integration [9].

calculate the laminar flame. It simply requires a local datea-

tion of the state of the system, which is followed by a Jacobia

formulation, and a generalized eigenvalue analysis. A, stiis 2.2 A posteriori length scale analysis
able to estimate with great accuracy the length scales ondafu The governing equations can be conveniently posed as a set
mental mathematicahon-numerical, basis. of 2N + 2 Differential-Algebraic Equations (DAES) in terms of
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2N + 2 state variables [4] of the form:

dz
A —=T1.
dx

(7)
To accurately determine the length scales over which thtesys
evolves, an eigenvalue analysis can be applied to equatjon (
SinceA is singular, the standard eigenvalue analysis is not ap-
plicable. Instead, the generalized eigenvalues of thisdyecal
system are calculated [10].

Linearization yields the generalized eigenvalue problem

AA*.v =B"v, (8)

whereA is in general a complex number denoting the generalized
eigenvalue, and is the corresponding generalized eigenvector
[4]. Solving forA;, i =1,...,2N—L, it is easily seen that the
length scales over which the dependent variables evolgaer

by the reciprocal of the real part of the eigenvalues,

fizil

Re(y) b

2N L. (9)

)

By evaluating the eigenvalues at each spatial point, thgtlten
scales over which the system evolves through the reactioa zo
are determined. As a result, the minimum size of discretinat

to capture the finest scale of the system can be determined. In
general, the eigenvalues are complex. In this work, thenee

ues are purely real, except for limited regions.

3 Computational method

The resolved structure is obtained by solving equations (1)
(3), and the eigenvalues are calculated by using the dym@&mic
system equation (7). A double precision code has been deselo
and linked with theCHEMKI N package to obtain kinetic rates,
thermodynamic properties, and multi-component tran sgpmet-
ficients [11-13]. Thé®REM X algorithm has been used to obtain
the steady structure of adiabatic laminar premixed flamgs [9
Except for systematic grid convergence studies discussieavb
all results are obtained on a grid that is adaptively refioezhp-
ture regions of steep gradient. A second order centralrdifiee
scheme is employed to discretize all spatial derivativée mass
and heat fluxes are estimated at intermediate grid point&to-m
tain second order accuracy.

4 Results
A stoichiometric hydrogen—air mixture g = 1 atm has
been considered, where the initial molar ratio is given bly 2

02+ 3.76N,. Kinetics identical to those of Smoolet al. [6],
with L = 3 elementsN = 9 species, and = 19 reactions is used.
The reactant species atlg, 02,H, 0, OH,HO,, H,05, andH,0.
The inert diluent isN,.

4.1 Mathematical verification and experimental vali-
dation

We first verify our algorithm by reproducing the temperature
and species profiles of the stoichiometric, atmospherissune
hydrogen—air flame found in Smookeal. [6], under the condi-
tions they specify. Visual inspection of the results (haglhere,
but see [4]) shows that the stationary flame structure istiicin
to that of Ref. [6]. For a more rigorous verification, the istat
ary structures of the laminar premixed flamepgt= 1 atm and
To = 800 K is obtained using a wide range of uniform grid sizes:
3x102< Ax< 6.25x% 10-°cm. The finest discretization level
is close to the smallest grid size used by the adaptive method
6 x 10° cm. The somewhat high value @ = 800 K is em-
ployed to avoid corruption of numerical roundoff errors arlg
portions of the flame structure.

The spatial distribution in the flame zone reveals the nature
of the computational error shown in Fig. 1. Hexey is plotted

X OH

——Ax=3x10"2cm
——Ax=1x10"2cm
——Ax=5x10"2cm
-~ Ax=1x10"cm
~--Ax=25x10"cm
——Ax=1.25x10" cm
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Figure 1. XoH Vs. X for the hydrogen—air flame simulation with To =
800K and po = 1 atm for various grid resolutions.

on a semi-log scale versudor variousAx. Certainly, the solu-
tion is converging aéx — 0. In the early stages of the flame,
the relative errors ilyoy can span many orders of magnitude un-
lessAx is brought down to the micron-scale. This is not obvious
when viewed on a linear scale.

For all dependentvariablesi =1,...,N+ 3, the maximum
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Figure 2. Relative error of XoH Vvs. the discretization size for the Figure 3. Species mass fraction vs. distance for a stoichiometric
hydrogen—air flame simulation with T, = 800K and pp = 1 atm. hydrogen-air flame, To = 800K, po = 1 atm.
relative errorE.;, is calculated by using the following formula: 10° : : : : :
10° b ﬁ
7% (x) —z (x)
Ewi = mMax |—pag—|- (10)
Xo <X<X 2% (x) 10°
E
. . . . . = 10" |
Fig. 2 shows the relative maximum error as a function of grid 5
size. To obtain a desirable, < 0.1, a resolution ofAx < w0l ﬁ
2 x 10~* cm has to be utilized. Larger values can induce unac-
ceptably large relative errors; e.g. #x = 102 cm the relative 107}
error inxoy is 40. %
Next, comparison with experiment addresses the question as it 0 100 107, 100 1010 a0

to whether the model represents the observable physicskozll X femi

validation purposes, a series of calculations is perfororedn
atmospheric pressure hydrogen—air laminar premixed flaime i
tially at T, = 298 K. For different equivalence ratids the flame
speed is determined. A comparison between the calculated fla
speeds and experimental data [14] reveals that the conqnaht
predictions lie within the scatter of the experimental datad

they are as good as have been found by others [6, 14] (not shown
here, but see [4]).

Figure 4. Predicted length scales over which stoichiometric hydrogen—
air flame evolve vs. distance, To = 800K, pp = 1 atm.

adopt the simple estimate for the reaction length scalefiame
thickness) given by Williams [15], pp. 130-136,

lreaction = LS’ (11)
4.2 Stoichiometric hydrogen—air premixed laminar PoCp
flame

Next, thePREM X code [9] is used to determine the sta- where for this casé eagion = 1.60x 102 cm. In the above ex-
tionary structure of the stoichiometric premixed laminanfe at pressionk is the mixture thermal conductivity argis the flame
atmospheric pressure. The specified temperaturg4s 900 K, speed.
the specified temperature location is assignexk at 2.30 cm, Having the resolved structure, the local Jacobian and the
and the mixture temperature at the cold boundafiy is 800 K. eigenvalues, and thus the local length scalgsare obtained

Fully resolved steady species mass fraction profiles are from the cold boundary to near equilibrium, as shown in Fig. 4
shown in Fig. 3. Although linear scales are usually used én th  The multi-scale nature of the problem and the length scales o
literature, a log—log scale has been employed to bettestiite which the species evolve are clearly shown. The length séate
the disparate scales. The figure shows the spatial distibut  this system vary from B0 x 104 cm and 162 x 10’ cm in the
of species mass fractions throughout the entire flame zoe. W preheat zone t0.21x 104 cm and 262 x 10° cm in the reaction
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zone, respectively. Finally, it is noted that analagous results have been obddior
The evolution of a particular species is not associated with a wide variety of hydrocarbon laminar flames as well as detona

a particular length scale, since the species mass fractiens  tions [4].

pend on local linear combinations of all eigenmodes. Thss, t

species mass fractions vary on these scales through the enti

domain. The important finest scalefignes = 2.41x 10~% cm, 6 Comparison with previous results

which occurs at equilibrium. The predicted finest lengthesca Though this work focuses on one-dimensional steady lami-

. . ) ; A .
and the smallest scale over which the species wagy10™" cm, nar premixed flames, the estimates provide bounds for preble
are nearly identical. Moreover, the finest length scaleceffe \ynere multi-dimensional and unsteady effects are simailate

in the preheat zone can be observed in the variation of the ¢omparison between the predicted finest length scale andithe
minor species mass fractions, which ensures the consstenc |izeq discretization in some of the best calculations ofitem

between the eigenvalue-determined finest length scalef@nd t  remixed flames in hydrogen—air mixtures has been donel In al
smallest scale over which the species vary. As the system ap-cases, the predicted finest length scales are at the mievedh-|
proaches equilibrium, all of the eigenvalues are real. foldi and they are well correlated with the associated cutoff teng
ally, the analogous finest length scale in an inviscid Chapma  gcajes admitted by the continuum theory. In literature exam
Jouguet detonation in a comparable hydrogen-air mixtuse ha jneq [17—19], the minimum grid size wass 102 cm.

been found using the algorithm of Ref. [5] to be close in magni Thus, the main result of this exercise is that none of these

5
tude, 592> 10°> cm. _ studies have utilized a grid resolutiam that is less than or equal
Following the same procedure, a comparison between the y, 6 finest length scalirines Which is required to have unam-

predicted finest length scalésines and the flame thickness o, sly resolved results for a steady one-dimensionainar
{reaction OVer a range of pressures is presented in Fig. 5. It reveals premixed flame in a comparable mixture under the same condi-

that/fines is well correlated witreaction and that both decrease  ions  Moreover, the utilized grid resolutiaix is at least two

as pressure is increased. On the other hdRees is at least orders of magnitude greater théfines. In each study, different
one order of magnitude smaller thégaion, Which indicates the o,y gica phenomena are simulated, and the mathematicallsod
presence of scales smaller than the flame thickness. vary, but the commonality in all studies is the usage of aifdeta
kinetics model to simulates flame in a premixed mixture.
o ) B Lastly, our results are in agreement with independent es-
5 A Priori Estimates from Collision Theory timates found in direct numerical simulations (DNS) of b
Next, we explore the possibility that there may be a fun- |ent reacting flows. Recently, Chehal. [20], presented a two-
damental explanation for the finest length scales reveayed b gimensional DNS of hydrogen—air combustion described by de

the eigenvalue analysis. We thus reportaghhoc, but plausi- tailed kinetics. The domain size wasl4 4.1 mn¥, and the
ble, analysis based on straightforward estimates fromdar@h  cg|culations required a grid resolution &% = 4.30 x 104 cm
molecular collision theory. We find that a remarkably sinfple to resolve the ignition fronts. We note that this grid sizefishe

mula is able to accurately predict the length scales obddiye
the preceding eigenvalue analysis. In a totally indepencizn
culation, the mean free path, for the mixture studied above
is estimated based on the simple relation given by Vincerdi a
Kruger [16]:

107

° greaction
m ;
émfp - - (12) o
2
vand?p . tinest
107} Kmfp

Length scales [cm]

Here, the parameters atlehe molecular collision cross-section
diameterm = M/a( the mass of a molecule, and = 6.0225x
10?3 mole1 Avogadro’s number. For the calculation/s p, the )
estimate ofl = 3.70x 108 cm for air is adopted from Ref. [16]; T 1 w0

M = 28.00 g mole'! andp = 1.11557x 104 g cm 2 were ob- Pressue faml

tained for the mixture fronPREM X calculations. The estimate  Figure5. The flame thickness, the finest length scale predicted by eigen-
(12) reveals thatmt p = 5.87x 10> cm, which is roughly one or- iy analysis, and the mean free path estimate vs. pressure for stoichio-
der of magnitude smaller than the continuum-ba&gds. The metric hydrogen—air flame with T, = 800K.

variation of /m¢p with initial pressure is also shown in Fig. 5.
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same order as the finest length scale predicted here!

7 Conclusion

The present one-dimensional steady calculations revagl th
for an adiabatic laminar premixed flame freely propagatmg i
stoichiometric mixtures described by detailed kineticd amulti-
component transport, the grid resolution to formally reedhe
flow structures is at the micron-level. This length scaleris-p
dicted by utilizing a rigorous eigenvalue analysis. Moregv
a formal grid convergence study has been performed indepen-
dently, and the same length scale requirement is obtainkd. T
length scale predictions are fully reflective of the undedy
physics andhot the particular numerical method chosen. This
has been verified by showing that the finest length scale is wel
correlated with the mean free path cutoff length scale egéoh
from kinetic theory. Thus, it is possible to use a simple mean
free path calculation as anpriori estimate of the lower bound
for grid discretization. This finest length scale for defttgm is
nearly identical to the finest length scale for detonatioglaked
calculations of unsteady and multi-dimensional laminaméa
in the literature typically employ much larger discretinat than
suggested by the present analysis. The full consequentleis of
under-resolution await rigorous linear and non-lineabidity
analysis as well as DNS in order to be determined.
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