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ABSTRACT
We discuss one-dimensional steady laminar premixed

flames in a mixture of calorically imperfect ideal gases described
by detailed kinetics and multi-component transport. The required
spatial discretization to capture all detailed continuum physics in
the reaction zone is determined through use of a robust method
developed to rigorously calculate the finest length scale a poste-
riori. This is accomplished by reformulating the governingequa-
tions as a nonlinear system of differential algebraic equations.
Then, the solution of the steady reaction zone structure is ob-
tained, and the generalized eigenvalues of the locally linearized
system are calculated at each point in the reaction zone. Their
reciprocals provide all local length scales. Application of the
method to laminar flames reveals that the finest length scale is on
the order of 10−4 cm. Independent estimates from grid conver-
gence studies on the continuum equations as well as from the un-
derlying molecular collision theory verify the result. This finest
length scale is orders of magnitude smaller than common engi-
neering geometric scales, the discretization scales employed in
nearly all multi-dimensional and/or unsteady laminar premixed
flame simulations in the literature, and the flame thickness.

1 Introduction
In recent years, there have been orders of magnitude en-

hancements in computational capabilities, enabled by improve-
ment in both hardware and software, which have spurred the
scientific and engineering community to employ mathematical
models to solve challenging physical problems. Some of the
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most difficult of these are of multi-scale nature; such problems
are characterized by physics which evolve over a wide range of
spatial and temporal scales. To have confidence in the results,
and to guarantee that they can be repeated by other researchers
with their own particular algorithms, predictions should be ac-
companied by evidence that all physical scales inherent in the
mathematical model have been captured.

It is well recognized that most detailed kinetic systems con-
tain a broad range of scales, and the ratio between the largest
and smallest scale is a measure of the system’s stiffness. Insuch
problems, proper numerical resolution of all scales can be critical
to drawing the correct conclusions. The most effective means to
determine the necessary spatial resolution for an unsteadyprob-
lem is to focus attention on a highly resolved baseline steady
problem from which future unsteadiness develops.

There is some ambiguity in the combustion literature about
what constitutes a resolved solution. Most consider a calcula-
tion to be resolved if certain global or derived quantities,such
as steady flame speed, are insensitive to grid size. Indeed, these
are necessary conditions. However, as discussed by Roache [1],
convergence of global quantities only is not a sufficient indica-
tor of a fully resolved solution, and taken alone can lead to in-
correct conclusions. While a derived quantity may be a func-
tion of the dependent variables, it may be insensitive to errors in
some of them. Which variables they are insensitive to is problem-
dependent, and impossible to determinea priori.

Here then, we follow Roache [1] and adopt the more rigor-
ous characterization of a resolved solution as one in whichall
dependent variables throughout the spatio-temporal domain are
insensitive to changes in spatio-temporal discretizationsize. This
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characterization is fully consistent with standard notions found in
the broader mathematical and scientific computing literature, cf.
Stoer and Bulirsch [2].

It is well understood that in any mathematically based sci-
entific theory, associated computations should have fidelity with
the underlying mathematics, and the underlying mathematical
model has to represent the observed physics. The first issue is
demonstrated by comparing computational results with another
known solution and/or performing a formal grid convergence
study, while the second issue is demonstrated by comparing the
computational predictions with experimental data. Addressing
these two issues, in this order, is a necessity in any computa-
tional study to build confidence in both the simulation strategy
and the underlying mathematical model.

The exercise of demonstrating the harmony of the discrete
solution with the foundational mathematics is known as verifica-
tion [3]. Neglecting this issue can give rise to solutions whose
behavior depends on the size of the grid and the algorithm that
has been used to solve the mathematical model. For multi-scale
problems, verification is difficult due to the range of the spatio-
temporal scales present, which may span many orders of magni-
tude. In this type of problem, usually modeled by highly non-
linear equations, significant coupling across scales can occur,
so that errors at small scales can rapidly cascade to the larger
scales. Moreover, the strength of the coupling across the scales
is not knowna priori. So, all physical scales of the mathematical
model, temporal and spatial, have to be captured in order to have
full confidence that predictions are repeatable, grid-independent,
and thus verifiable. Subsequently, in the validation step one
can choose what physical phenomena and to what accuracy one
wants to reproduce experiments.

In this paper, we summarize results presented in detail by
the authors [4]. The main aim of this paper is to discuss the
required spatial resolution to capture all physical scalesin a stan-
dard multi-scale problem: the steady one-dimensional laminar
premixed flame propagating freely at atmospheric pressure in a
stoichiometric mixture of hydrogen–air described by detailed ki-
netics and multi-component transport.

In a complementary study, we have developed a robust
method to provide an accurate determination of the finest length
scale in the reaction zone of a Chapman–Jouguet detonation [5].
Here, the method of Ref. [5] is implemented with modification
for deflagration. The method is robust in that it has little depen-
dence on the details of the underlying numerical method usedto
calculate the laminar flame. It simply requires a local determina-
tion of the state of the system, which is followed by a Jacobian
formulation, and a generalized eigenvalue analysis. As such, it is
able to estimate with great accuracy the length scales on a funda-
mental mathematical,non-numerical, basis.

2 Mathematical model
We describe here, in truncated form, the mathematical

model. Full details are given in Ref. [4].

2.1 Governing equations
We study a standard model for stationary laminar premixed

flames evolving ini = 1, . . . ,N molecular species, cf. Smooke,et
al [6], Keeet al. [7], Miller et al. [8]:

d
dx

(ρu) = 0, (1)

ρucp
dT
dx

+
dq
dx

+
N

∑
i=1

(

Jm
i

dhi

dx
+ ω̇iMihi

)

= 0, (2)

ρu
dYi

dx
+

dJm
i

dx
= ω̇iMi. (3)

The independent spatial variable isx. The dependent variables
are densityρ, velocity u, mixture specific heat at constant pres-
sure,cp, temperatureT , diffusive heat fluxq, and for speciesi,
diffusive mass fluxJm

i , specific enthalpyhi, molar species pro-
duction rateω̇i, and mass fractionYi. Here,Mi is the molecular
mass of speciesi. An appropriate set of boundary conditions is

x = 0 : T = To, Yi +
Jm

i

ρoS
= Yio, (4)

x → ∞ :
dT
dx

→ 0,
dYi

dx
→ 0, (5)

x = x f : T = Tf , (6)

wherex f is a specified spatial point andTf is the specified tem-
perature at that location [7]. These are commonly used to study
deflagration, though other formulations are possible. The bound-
ary conditions are sufficient for freely propagating flames,where
the mass flow rate is unknown [8], so that the temperature at an
interior spatial point has to be specified. The pointx f and temper-
atureTf have to be selected such that all the gradients approach
zero at the cold boundary. A solution for this boundary value
problem, equations (1)–(3), with boundary conditions, equations
(4)–(6), can be obtained by discretizing the spatial domainusing
finite differences, and the resulting algebraic system of equations
are solved iteratively using a damped modified Newton’s method,
where the solution iterate is brought into the convergence domain
by using pseudo time-step integration [9].

2.2 A posteriori length scale analysis
The governing equations can be conveniently posed as a set

of 2N + 2 Differential-Algebraic Equations (DAEs) in terms of
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2N +2 state variables [4] of the form:

A · dz
dx

= f. (7)

To accurately determine the length scales over which the system
evolves, an eigenvalue analysis can be applied to equation (7).
SinceA is singular, the standard eigenvalue analysis is not ap-
plicable. Instead, the generalized eigenvalues of this dynamical
system are calculated [10].

Linearization yields the generalized eigenvalue problem

λA∗ ·v = B∗ ·v, (8)

whereλ is in general a complex number denoting the generalized
eigenvalue, andv is the corresponding generalized eigenvector
[4]. Solving for λi, i = 1, . . . ,2N − L, it is easily seen that the
length scales over which the dependent variables evolve aregiven
by the reciprocal of the real part of the eigenvalues,

ℓi =
1

|Re(λi)|
, i = 1, . . . ,2N −L. (9)

By evaluating the eigenvalues at each spatial point, the length
scales over which the system evolves through the reaction zone
are determined. As a result, the minimum size of discretization
to capture the finest scale of the system can be determined. In
general, the eigenvalues are complex. In this work, the eigenval-
ues are purely real, except for limited regions.

3 Computational method
The resolved structure is obtained by solving equations (1)–

(3), and the eigenvalues are calculated by using the dynamical
system equation (7). A double precision code has been developed
and linked with theCHEMKIN package to obtain kinetic rates,
thermodynamic properties, and multi-component transportcoef-
ficients [11–13]. ThePREMIX algorithm has been used to obtain
the steady structure of adiabatic laminar premixed flames [9].
Except for systematic grid convergence studies discussed below,
all results are obtained on a grid that is adaptively refined to cap-
ture regions of steep gradient. A second order central difference
scheme is employed to discretize all spatial derivatives. The mass
and heat fluxes are estimated at intermediate grid points to main-
tain second order accuracy.

4 Results
A stoichiometric hydrogen–air mixture atpo = 1 atm has

been considered, where the initial molar ratio is given by 2H2 +

O2 + 3.76N2. Kinetics identical to those of Smookeet al. [6],
with L = 3 elements,N = 9 species, andJ = 19 reactions is used.
The reactant species areH2,O2,H,O,OH,HO2,H2O2, andH2O.
The inert diluent isN2.

4.1 Mathematical verification and experimental vali-
dation

We first verify our algorithm by reproducing the temperature
and species profiles of the stoichiometric, atmospheric pressure
hydrogen–air flame found in Smookeet al. [6], under the condi-
tions they specify. Visual inspection of the results (not show here,
but see [4]) shows that the stationary flame structure is identical
to that of Ref. [6]. For a more rigorous verification, the station-
ary structures of the laminar premixed flame atpo = 1 atm and
To = 800 K is obtained using a wide range of uniform grid sizes:
3×10−2 ≤ ∆x ≤ 6.25×10−5 cm. The finest discretization level
is close to the smallest grid size used by the adaptive method,
6× 10−5 cm. The somewhat high value ofTo = 800 K is em-
ployed to avoid corruption of numerical roundoff errors in early
portions of the flame structure.

The spatial distribution in the flame zone reveals the nature
of the computational error shown in Fig. 1. Here,χOH is plotted
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Figure 1. χOH vs. x for the hydrogen–air flame simulation with To =
800K and po = 1 atm for various grid resolutions.

on a semi-log scale versusx for various∆x. Certainly, the solu-
tion is converging as∆x → 0. In the early stages of the flame,
the relative errors inχOH can span many orders of magnitude un-
less∆x is brought down to the micron-scale. This is not obvious
when viewed on a linear scale.

For all dependent variableszi, i = 1, . . . ,N +3, the maximum
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Figure 2. Relative error of χOH vs. the discretization size for the

hydrogen–air flame simulation with To = 800K and po = 1 atm.

relative error,E∞i, is calculated by using the following formula:

E∞i = max
xo≤x≤xeq

∣

∣

∣

∣

zexact
i (x)− zi (x)

zexact
i (x)

∣

∣

∣

∣

. (10)

Fig. 2 shows the relative maximum error as a function of grid
size. To obtain a desirableE∞ < 0.1, a resolution of∆x ≤
2×10−4 cm has to be utilized. Larger values can induce unac-
ceptably large relative errors; e.g. for∆x = 10−2 cm the relative
error inχOH is 40.

Next, comparison with experiment addresses the question as
to whether the model represents the observable physics well. For
validation purposes, a series of calculations is performedon an
atmospheric pressure hydrogen–air laminar premixed flame ini-
tially at To = 298 K. For different equivalence ratiosΦ, the flame
speed is determined. A comparison between the calculated flame
speeds and experimental data [14] reveals that the computational
predictions lie within the scatter of the experimental data, and
they are as good as have been found by others [6,14] (not shown
here, but see [4]).

4.2 Stoichiometric hydrogen–air premixed laminar
flame

Next, thePREMIX code [9] is used to determine the sta-
tionary structure of the stoichiometric premixed laminar flame at
atmospheric pressure. The specified temperature isTf = 900 K,
the specified temperature location is assigned atx f = 2.30 cm,
and the mixture temperature at the cold boundary isTo = 800 K.

Fully resolved steady species mass fraction profiles are
shown in Fig. 3. Although linear scales are usually used in the
literature, a log–log scale has been employed to better illustrate
the disparate scales. The figure shows the spatial distribution
of species mass fractions throughout the entire flame zone. We
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Figure 3. Species mass fraction vs. distance for a stoichiometric

hydrogen–air flame, To = 800K, po = 1 atm.
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Figure 4. Predicted length scales over which stoichiometric hydrogen–

air flame evolve vs. distance, To = 800K, po = 1 atm.

adopt the simple estimate for the reaction length scale (i.e. flame
thickness) given by Williams [15], pp. 130–136,

ℓreaction =
k

ρocpS
, (11)

where for this caseℓreaction = 1.60×10−2 cm. In the above ex-
pression,k is the mixture thermal conductivity andS is the flame
speed.

Having the resolved structure, the local Jacobian and the
eigenvalues, and thus the local length scales,ℓi, are obtained
from the cold boundary to near equilibrium, as shown in Fig. 4.
The multi-scale nature of the problem and the length scales over
which the species evolve are clearly shown. The length scales for
this system vary from 7.60×10−4 cm and 1.62×107 cm in the
preheat zone to 2.41×10−4 cm and 2.62×100 cm in the reaction

4



zone, respectively.
The evolution of a particular species is not associated with

a particular length scale, since the species mass fractionsde-
pend on local linear combinations of all eigenmodes. Thus, the
species mass fractions vary on these scales through the entire
domain. The important finest scale isℓ f inest = 2.41×10−4 cm,
which occurs at equilibrium. The predicted finest length scale
and the smallest scale over which the species vary,x ≈ 10−4 cm,
are nearly identical. Moreover, the finest length scale effect
in the preheat zone can be observed in the variation of the
minor species mass fractions, which ensures the consistency
between the eigenvalue-determined finest length scale and the
smallest scale over which the species vary. As the system ap-
proaches equilibrium, all of the eigenvalues are real. Addition-
ally, the analogous finest length scale in an inviscid Chapman–
Jouguet detonation in a comparable hydrogen–air mixture has
been found using the algorithm of Ref. [5] to be close in magni-
tude, 5.92×10−5 cm.

Following the same procedure, a comparison between the
predicted finest length scaleℓ f inest and the flame thickness
ℓreaction over a range of pressures is presented in Fig. 5. It reveals
thatℓ f inest is well correlated withℓreaction and that both decrease
as pressure is increased. On the other hand,ℓ f inest is at least
one order of magnitude smaller thanℓreaction, which indicates the
presence of scales smaller than the flame thickness.

5 A Priori Estimates from Collision Theory
Next, we explore the possibility that there may be a fun-

damental explanation for the finest length scales revealed by
the eigenvalue analysis. We thus report anad hoc, but plausi-
ble, analysis based on straightforward estimates from standard
molecular collision theory. We find that a remarkably simplefor-
mula is able to accurately predict the length scales obtained by
the preceding eigenvalue analysis. In a totally independent cal-
culation, the mean free pathℓm f p for the mixture studied above
is estimated based on the simple relation given by Vincenti and
Kruger [16]:

ℓm f p =
m√

2πd2ρ
. (12)

Here, the parameters ared the molecular collision cross-section
diameter,m = M/N the mass of a molecule, andN = 6.0225×
1023 mole−1 Avogadro’s number. For the calculation ofℓm f p, the
estimate ofd = 3.70×10−8 cm for air is adopted from Ref. [16];
M = 28.00 g mole−1 andρ = 1.11557×10−4 g cm−3 were ob-
tained for the mixture fromPREMIX calculations. The estimate
(12) reveals thatℓm f p = 5.87×10−5 cm, which is roughly one or-
der of magnitude smaller than the continuum-basedℓ f inest . The
variation of ℓm f p with initial pressure is also shown in Fig. 5.

Finally, it is noted that analagous results have been obtained for
a wide variety of hydrocarbon laminar flames as well as detona-
tions [4].

6 Comparison with previous results
Though this work focuses on one-dimensional steady lami-

nar premixed flames, the estimates provide bounds for problems
where multi-dimensional and unsteady effects are simulated. A
comparison between the predicted finest length scale and theuti-
lized discretization in some of the best calculations of laminar
premixed flames in hydrogen–air mixtures has been done. In all
cases, the predicted finest length scales are at the micron-level,
and they are well correlated with the associated cutoff length
scales admitted by the continuum theory. In literature exam-
ined, [17–19], the minimum grid size was 2.5×10−2 cm.

Thus, the main result of this exercise is that none of these
studies have utilized a grid resolution∆x that is less than or equal
to the finest length scaleℓ f inest which is required to have unam-
biguously resolved results for a steady one-dimensional laminar
premixed flame in a comparable mixture under the same condi-
tions. Moreover, the utilized grid resolution∆x is at least two
orders of magnitude greater thanℓ f inest . In each study, different
physical phenomena are simulated, and the mathematical models
vary, but the commonality in all studies is the usage of a detailed
kinetics model to simulates flame in a premixed mixture.

Lastly, our results are in agreement with independent es-
timates found in direct numerical simulations (DNS) of turbu-
lent reacting flows. Recently, Chenet al. [20], presented a two-
dimensional DNS of hydrogen–air combustion described by de-
tailed kinetics. The domain size was 4.1× 4.1 mm2, and the
calculations required a grid resolution of∆x = 4.30×10−4 cm
to resolve the ignition fronts. We note that this grid size isof the

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Pressure  [atm]

Le
ng

th
 s

ca
le

s 
  [

cm
]

ℓreaction

ℓ f inest
ℓm f p

Figure 5. The flame thickness, the finest length scale predicted by eigen-

value analysis, and the mean free path estimate vs. pressure for stoichio-

metric hydrogen–air flame with To = 800K.

5



same order as the finest length scale predicted here!

7 Conclusion
The present one-dimensional steady calculations reveal that,

for an adiabatic laminar premixed flame freely propagating in
stoichiometric mixtures described by detailed kinetics and multi-
component transport, the grid resolution to formally resolve the
flow structures is at the micron-level. This length scale is pre-
dicted by utilizing a rigorous eigenvalue analysis. Moreover,
a formal grid convergence study has been performed indepen-
dently, and the same length scale requirement is obtained. The
length scale predictions are fully reflective of the underlying
physics andnot the particular numerical method chosen. This
has been verified by showing that the finest length scale is well-
correlated with the mean free path cutoff length scale estimated
from kinetic theory. Thus, it is possible to use a simple mean
free path calculation as ana priori estimate of the lower bound
for grid discretization. This finest length scale for deflagration is
nearly identical to the finest length scale for detonation. Related
calculations of unsteady and multi-dimensional laminar flames
in the literature typically employ much larger discretizations than
suggested by the present analysis. The full consequences ofthis
under-resolution await rigorous linear and non-linear stability
analysis as well as DNS in order to be determined.
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