Physical Diffusion Suppresses the Carbuncle Instability

K. Shi, J. M. Powers, A. Jemcov

Department of Aerospace and Mechanical Engineering University of Notre Dame, USA

APS Sixty-Eighth Annual DFD Meeting Boston, Massachusetts 24 November 2015

Support from the University of Notre Dame FlowPAC

APS 68th DFD Meeting

Viscous Cure to Carbuncle

24 November 2015

Carbuncle Phenomenon I

Anomalous solutions in shock-capturing methods in Euler equations:

• High amplitude incongruity in the neighbourhood of the shock's axis of symmetry

$M_{\infty} = 20$	$M_{\infty} = 10$	$M_{\infty} = 10$	$M_{\infty} = 6$
Chandrashekar	Dumbser	Li et al.	Srinivasan et al.
<i>CCP</i> , 2013	<i>JCP</i> , 2004	JCP, 2011	IJNMF, 2012

APS 68th DFD Meeting

Viscous Cure to Carbuncle

24 November 2015

2 / 13

• Not observed in nature, a spurious solution of numerical origin

- Either, an anomaly of the chosen numerical method
- Or, an inadequacy of the underlying mathematical model
- "Unconditional instability with exponential error growth"
 - Dumbser, et al. JCP, 2004
 - Robust matrix stability analysis
 - Carbuncle phenomenon is sensitive to M_{∞} , high order scheme, Euler equation, time advancement scheme, CFL number
- "Incurable"
 - Elling, Acta Mathematica Scientia, 2009

Remedies

• Physical diffusion

- "Even for unpractically low Re", still...
 - Underresolved viscous shock
 - Pandolfi and D'Ambrosio, JCP, 2001
- "Disappears only at very low Reynolds number"
 - Viscous cure
 - Discounted it
 - Ismail et al. ICCFD4, 2009
- Kinetic theory
 - Ohwada et al. JCP, 2013, Li et al. JCP, 2011
- Hybrid method, intricate numerical algorithm in NS equations
 - Chandrashekar, CCP, 2013, Nishikawa and Kitamura, JCP, 2008
- Spectral Solution
 - Kopriva, AIAA J, 1993, Hejranfar et al. JCP, 2009

We are investigating the supersonic flow of a calorically perfect ideal gas past a two-dimensional blunt body:

- This study will predict the supersonic flow around a cylinder by improving upon prior methods of computation.
- Strategies for computing such flows with Euler equations lead to the "carbuncle phenomenon".
- We find a simple viscous antidote that will avoid numerical anomalies through a damping mechanism to suppress instabilities.
- This physically based approach can also insure fidelity with what is observed in nature.

Governing Equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0, \\ \frac{\partial}{\partial t} (\rho \mathbf{u}) + \nabla \cdot \left(\rho \mathbf{u} \mathbf{u}^T \right) &= -\nabla p + \nabla \cdot \boldsymbol{\tau}, \\ \frac{\partial}{\partial t} \left(e + \frac{1}{2} \mathbf{u} \cdot \mathbf{u} \right) + \nabla \cdot \left(\rho \mathbf{u} \left(e + \frac{1}{2} \mathbf{u} \cdot \mathbf{u} \right) \right) &= -\nabla \cdot \mathbf{q} - \nabla \cdot (p \mathbf{u}) + \nabla \cdot (\boldsymbol{\tau} \cdot \mathbf{u}), \\ \boldsymbol{\tau} &= 2\mu \left(\frac{\nabla \mathbf{u} + (\nabla \mathbf{u})^T}{2} - \frac{1}{3} \left(\nabla \cdot \mathbf{u} \right) \mathbf{I} \right), \\ p &= \rho RT, \\ e &= c_v T. \end{aligned}$$

APS 68th DFD Meeting

24 November 2015

6 / 13

- The same grid was used for viscous and inviscid simulations.
- Mesh refinement study was done to examine grid convergence.
- For state variables of the finite-volume cells to the "left" and "right" of the cell face, constant interpolation is used and will result in a spatially 1st order flux. No limiters are used.
- For flux at cell faces:
 - Inviscid flux: Roe flux splitting without entropy fix is used.
 - Viscous flux: Central differencing is used.
- 4^{th} order explicit Runge-Kutta method is used for time marching.
- Global time step is used in the whole computational domain to meet the requirement of dissipation time scale.
 - Dissipation time scale (finest grid): $\Delta t = \Delta x^2 / \nu \approx 4.5 \times 10^{-10}$ s.

Physical Parameters

parameter	value	units
M_{∞}	5.73	
Re	2050	
Pr	0.77	
γ	7/5	
R_s	287.058	J/kg/K
c_v	717.645	J/kg/K
c_p	1004.703	J/kg/K
p_{∞}	12.7408	Pa
T_{∞}	39.6667	Κ
$ ho_\infty$	0.001119	$ m kg/m^3$
U_{∞}	723.4630	m/s
c_{∞}	126.2588	m/s
μ	2.4272×10^{-6}	Pa s
k	0.003167	W/m/K
α	0.002817	m^2/s

* Parameters were the same as Kopriva, AIAA J, 1993, and Tewkit and Giedt, JAS, 1960.

Carbuncle versus Non-carbuncle

Inviscid

Viscous Shock Structure

Moretti, Salas, The blunt body problem for a viscous rarefied gas flow, AIAA Paper 69-139, 1969.

$$\begin{split} \delta_s &= \text{ shock thickness}/R \\ &\approx \quad \frac{8}{3Re} \frac{\gamma}{\gamma+1} \frac{M_\infty^2 - 1}{1 + \gamma M_\infty^2 - M_\infty \sqrt{2(\gamma+1)(1+M_\infty^2(\gamma-1)/2)}} \end{split}$$

shock thickness \approx 11.9413 μm

pressure distribution along centerline in front of the circular cylinder

APS 68th DFD Meeting

Grid Convergence

Grid $\#$	Dimension	Cell Size (μm)	mpi-n	minutes per $3 \times 10^{-4} s$
1	200×200	45.4160	16	623.7
2	400×400	15.1388	16	1238.1
3	800×800	6.2920	32	11480.0
4	1600×1600	1.8444	64	24091.0
5	3200×3200	0.9922	160	40265.0^{*}
		shock thickness : 11.9413 μm		*27 days 23 hours 5 minutes

Solutions in the asymptotic convergence regime in space.

APS 68th DFD Meeting

Shock Stand-off Distance

- For $M_{\infty} = 5.73$, the shock stand-off distance prediction is verified mathematically, but it is not validated against experiment.
- Ambrosio and Wortman, "Stagnation point shock detachment distance for flow around spheres and cylinders". *ARSJ*. 32:281, 1962.

Wedge - cylinders :
$$\Delta/R = 0.386 \exp(4.67/M_{\infty}^2)$$

= 0.444999318
 $\Delta = 2735.322 \ \mu m$

- $\Delta_{CFD} = 1599.36 \ \mu m$
- Simulation is converged. Shock distance between the experiment and this simulation is 1136 μ m, which is 41.53% off.
- This is likely due to neglected physics such as temperature-dependent properties (specific heat, especially).

APS 68th DFD Meeting

- A simple physical diffusion model on a sufficiently fine mesh can remove the carbuncle phenomenon;
- Viscous shock structure can be predicted well using a sufficiently fine mesh with Navier-Stokes equations;
- Carbuncle may arise due to what amount to "anti-diffusion" effect;
- Solution is verified;
- Model is not validated yet:
 - Additional physical effects likely need to be included for validation at M_{∞} =5.73.