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Introduction

e Standard result from non-linear dynamics: small scale
phenomena can influence large scale phenomena and vice

versa

e \What are the risks of using reactive Euler instead of reactive

Navier-Stokes?

e Might there be risks in using numerical viscosity and turbulence

modeling which filter small scale physical dynamics?




Introduction

e A common practice is to model detonations as inviscid; the
stability and non-linear dynamics are well understood for
one-dimensional, one-step kinetics (Bourlioux et. al., SIAM
JAM, 1991; Kasimov & Stewart, Phys. Fluids, 2004; Henrick
et. al., J. Comp. Phys., 2006).

It is often argued that viscous forces & diffusion are small

effects which do not affect detonation dynamics.

However, numerical viscosity plays the role of physical viscosity

In a way that is grid-dependent.




Introduction-Continued

e An alternative approach is to use the reactive Navier-Stokes

equations.

— Singh et. al. (CTM, 2001) studied NS with detailed kinetics
and a wavelet method capturing all the fine length scales,

with finite viscous shock thickness.

— Powers & Paolucci (AIAA J, 2005) studied the reaction length

scales of Ho-O4 detonations and found the finest length

scales on the order of sub-microns to microns.




Introduction-Continued

® Let us examine a simplier version which links one-step kinetics

loosely to detailed kinetics.

— Fix reaction length, L /2, to 105 m, which is similar to

finest Ho-O5 length scale.
— Fix the diffusion length, L, to 107 m.

— have mass, momentum, and energy diffuse at the same rate

e All other parameters identical to widely studied classical inviscid

one-step model




One-Dimensional Unsteady Compressible Reactive
Navier-Stokes Equations
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Equations were transformed to a moving reference frame.




Constitutive Relations
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Numerical Method

Finite difference, uniform grid

(Az =2.50 x 107%m, N = 8001, L = 0.2 mm) .

Computation time = 192 hours for 10 s on an AMD 2.4 GH z
with 512 kB cache.

Advective terms were calculated using a combination of fifth
order WENO and Lax-Friedrichs.

Sixth order central differences were used for the diffusive terms.

Temporal integration was accomplished using a third order

Runge-Kutta scheme.

Method of Manufactured Solutions confirms convergence at 5th

& 3rd order in space and time.




e |nitialized with inviscid

ZND solution.

e Moving frame travels

at approximately CJ-

velocity.

e Integrated in time for

long time behavior.




Results
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Period Doubling Phenomena
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Chaos & Period 3
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Bifurication Diagram
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Comparsion with Inviscid
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Effect of Diminshed Viscosity ( £, = 27.6339)
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The amplitude increases, the frequency decreases, and period 2 is

realized instead of period 1.




Conclusions

e Dynamics of one-dimensional detonations are influenced

significantly by diffusion in the region of instability.

In general, the effect of diffusion is stabilizing, but it can also be

destabilizing.

In order to capture the dynamics correctly, physical viscosity

must dominate numerical viscosity.
Results will likely carry forward to detailed kinetic systems.

Likely that detonation cell pattern formation will be influenced by

the magnitude of the physical diffusion (Powers, JPP, 2006).




