
The Dynamics of Unsteady Detonation with

Diffusion
Christopher M. Romick,

University of Notre Dame; Notre Dame, IN
Tariq D. Aslam,

Los Alamos National Laboratory; Los Alamos, NM
and Joseph M. Powers

University of Notre Dame; Notre Dame,IN

63rd Annual Meeting of the American Physical Society’s

Division of Fluid Dynamics

Long Beach, California
23 November 2010



Introduction

• Standard result from non-linear dynamics: small scale

phenomena can influence large scale phenomena and vice

versa

• What are the risks of using reactive Euler instead of reactive

Navier-Stokes?

• Might there be risks in using numerical viscosity and turbulence

modeling which filter small scale physical dynamics?



Introduction

• A common practice is to model detonations as inviscid; the

stability and non-linear dynamics are well understood for

one-dimensional, one-step kinetics (Bourlioux et. al., SIAM

JAM, 1991; Kasimov & Stewart, Phys. Fluids, 2004; Henrick

et. al., J. Comp. Phys., 2006).

• It is often argued that viscous forces & diffusion are small

effects which do not affect detonation dynamics.

• However, numerical viscosity plays the role of physical viscosity

in a way that is grid-dependent.



Introduction-Continued

• An alternative approach is to use the reactive Navier-Stokes

equations.

– Singh et. al. (CTM, 2001) studied NS with detailed kinetics

and a wavelet method capturing all the fine length scales,

with finite viscous shock thickness.

– Powers & Paolucci (AIAA J, 2005) studied the reaction length

scales of H2-O2 detonations and found the finest length

scales on the order of sub-microns to microns.



Introduction-Continued

• Let us examine a simplier version which links one-step kinetics

loosely to detailed kinetics.

– Fix reaction length, L1/2, to 10−6 m, which is similar to

finest H2-O2 length scale.

– Fix the diffusion length, Lµ, to 10−7 m.

– have mass, momentum, and energy diffuse at the same rate

• All other parameters identical to widely studied classical inviscid

one-step model



One-Dimensional Unsteady Compressible Reactive
Navier-Stokes Equations
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Equations were transformed to a moving reference frame.



Constitutive Relations
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with D = 104 m2

s
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,

Le = Sc = Pr = 1.



Numerical Method

• Finite difference, uniform grid
(

∆x = 2.50 × 10−8m,N = 8001, L = 0.2 mm
)

.

• Computation time = 192 hours for 10 µs on an AMD 2.4 GHz

with 512 kB cache.

• Advective terms were calculated using a combination of fifth

order WENO and Lax-Friedrichs.

• Sixth order central differences were used for the diffusive terms.

• Temporal integration was accomplished using a third order

Runge-Kutta scheme.

• Method of Manufactured Solutions confirms convergence at 5th

& 3rd order in space and time.



Method
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• Initialized with inviscid

ZND solution.

• Moving frame travels

at approximately CJ-

velocity.

• Integrated in time for

long time behavior.



Results



Period Doubling Phenomena



Chaos & Period 3



Bifurication Diagram

Feigenbaum’s constant,

δ =
Ea3

−Ea4

Ea4
−Ea5

=
29.8840−30.0074
30.0074−30.0339 = 4.656



Comparsion with Inviscid
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Effect of Diminshed Viscosity ( Ea = 27.6339)

The amplitude increases, the frequency decreases, and period 2 is

realized instead of period 1.



Conclusions

• Dynamics of one-dimensional detonations are influenced

significantly by diffusion in the region of instability.

• In general, the effect of diffusion is stabilizing, but it can also be

destabilizing.

• In order to capture the dynamics correctly, physical viscosity

must dominate numerical viscosity.

• Results will likely carry forward to detailed kinetic systems.

• Likely that detonation cell pattern formation will be influenced by

the magnitude of the physical diffusion (Powers, JPP, 2006).


