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Introduction

Motivation and background

• Detailed kinetics are essential for accurate modeling of real

reactive systems.

• Reactive systems contain many scales and subsequently severe

stiffness arises.

• Computational cost for reactive flow simulations increases with

the spatio-temporal scales’ range, the number of species, and

the number of reactions.

• Manifold methods provide a potential for computational savings.



Slow Invariant Manifold (SIM)

• The composition phase space for closed spatially homogeneous

reactive system:

dz

dt
= f (z) , z ∈ R

N−L−C .

Phase space 

   trajectory

Phase space 

   trajectory1-D manifold

2-D manifold

       0-D manifold

(i.e. equilibrium point)

Fast modes

Slow modes



Method of Construction

• For isothermal reactive systems, reactions speeds depend on

combinations of polynomials of species concentrations.

• The set of equilibria of the full reaction network is complex:

{ze ∈ C
N−L−C |f (ze) = 0}; we focus on real equilibria.

• The set consists of several different dimensional components and

contains finite and infinite equilibria.

• A 1-D SIM has a maximum of two branches that connect the

unique 0-D physical critical point (a sink) to two saddles.

• These saddles are identified by their special dynamical character:

their eigenvalue spectrum contains only one unstable direction.



Sketch of SIM Construction
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Projective Space for Equilibria at Infinity

• One-to-one mapping of the composition space, R
N−L−C →

R
N−L−C ,

Zk =
1

zk

, k ∈ {1, . . . , N − L − C},

Zi =
zi

zk

, i 6= k, i = 1, . . . , N − L − C.

• This transformation maps equilibria located at infinity into a finite

domain.

• To address the time singularity, we add the following transforma-

tion
dt

dτ
= (Zk)

n−1 ,

where n is the highest polynomial degree of f(z).



Computational strategy

• We use the Bertini software (based on a homotopy continuation

numerical technique) to compute the system’s equilibria up to any

desired accuracy.

• Thermodynamic data is obtained from Chemkin-II.

• The SIM heteroclinic orbits are obtained by numerical integration

of the species evolution equations using a computationally inex-

pensive scheme.

• Computation time is typically less than 1 minute on a 2.16 GHz

Mac Pro machine.



Zel’dovich Mechanism for NO Formation

• The mechanism (see Baulch et al., 2005) consists of J =

2 reversible bimolecular reactions involving N = 5 species

{NO,N,O,N2, O2} and L = 2 elements {N,O}. In

addition, since the total number of moles is constant, C = 1.

Subsequently, z ∈ R
2.

• Spatially homogenous with isothermal and isochoric conditions,

T = 4000 K, p0 = 1.65 atm.

• We find three 0-D finite equilibria (R1: source, R2: saddle, R3:

sink, physical) and three 0-D infinite equilibria (I1: saddle-node,

I2: source, I3: source)



The system’s 1-D SIM
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Equilibrium Thermodynamics and SIM

Within the physically accessible domain,

σ = −
1

T
(∇G · f) ≥ 0,

at equilibrium

Hσ = −
2

T
(HG · Jf ) .
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• The major/minor axes are aligned

with the Hessian eigenvectors.

• Eigenvectors of equilibrium thermo-

dynamic potentials do not coincide

with system’s SIM, even at the

physical equilibrium point!



Hydrogen-Air System

• The mechanism (Miller et al., 1982) consists of J = 19 reversible

reactions involving N = 9 species, L = 3 elements, and C =

0, so that z ∈ R
6.

• Closed and spatially homogenous system of 2H2 + (O2 +

3.76N2) with isothermal and isochoric conditions at T = 1500 K ,

and p0 = 107 dyne/cm2.

• The system has 284 finite (90 0-D real) and 42 infinite (18 0-D

real) equilibria.

• Only 14 critical points have an eigenvalue spectrum that contains

only one unstable direction.

• There is a unique physical equilibrium, R19.



3-D Projection of the system’s SIM
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Summary

• Constructing the actual SIM is computationally efficient and algo-

rithmically easy, thus there is no need to identify it only approxi-

mately.

• Identifying all critical points, finite and infinite, plays a major role

in the construction of the SIM.

• Irreversibility production rate and equilibrium thermodynamic po-

tentials do not provide information on the dynamics towards

physical equilibrium.
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Idealized Hydrogen-Oxygen

• Kinetic model adopted from Ren et al.a

• Model consists of J = 6 reversible reactions involving N =

6 species {H2, O,H2O,H,OH,N2} and L = 3 elements

{H,O,N}, with C = 0, so that z ∈ R
3.

• Spatially homogenous with isothermal and isobaric conditions

with T = 3000 K, p0 = 1 atm.

• Major species are i = {1, 2, 3} = {H2, O,H2O},

• Initial conditions satisfying the element conservation constraints

are identical to those presented by Ren et al.

aZ. Ren, S. Pope, A. Vladimirsky, J. Guckenheimer, 2006, J. Chem. Phys. 124, 114111.



The system’s 1-D SIM
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The system’s 1-D SIM
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1-D SIM vs. 2-D ICE manifold
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Outline

• Introduction

• Slow Invariant Manifold (SIM)

• Method of Construction

• Illustration Using Model Problem

• Application to Hydrogen-Air Reactive System

• Summary



Long-term objective

Create an efficient algorithm that reduces the computational cost for

simulating reactive flows based on a reduction in the stiffness and

dimension of the composition phase space.

Immediate objective

The construction of 1-D Slow Invariant Manifolds (SIMs) for dynam-

ical system arising from modeling unsteady spatially homogenous

closed reactive systems.



Partial review of manifold construction in reactive system s

• ILDM, CSP, and ICE-PIC are approximations of the reaction slow

invariant manifold.

• MEPT and similar methods are based on minimizing a thermody-

namics potential function.

• Iterative methods require “reasonable” initial conditions.

• Davis and Skodje, 1999, present a technique to construct the 1-D

SIM based on global phase analysis,

• Creta et al. and Giona et al., 2006, extend the technique to

slightly higher dimensional reactive systems.



• An invariant manifold is defined as an open subsetS ⊂ RN−L−C

if for any solution z(t), z(t0) ∈ S , implies that for any tf > t0,

z(t) ∈ S for all t ∈ [t0, tf ].

• Not all invariant manifolds are attracting.

• SIMs describe the asymptotic structure of the invariant attracting

trajectories.

• Attractiveness of a SIM increases as the system’s stiffness in-

creases.

• On a SIM, only slow modes are active.

• SIMs can be constructed by identifying all critical points, finite and

infinite, and connecting relevant ones via heteroclinic orbits.



Reactive system evolution
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Reactive system evolution
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Finite equilibria

dz1

dt
= 2.51 × 102 + 1.16 × 107

z2 + 6.99 × 108
z
2

2

−9.98 × 104
z1 − 3.22 × 109

z2z1,

dz2

dt
= 2.51 × 102

− 1.17 × 107
z2 − 6.98 × 108

z
2

2

+8.47 × 104
z1 − 1.84 × 109

z2z1,























≡ f(z).

R1 ≡ (ze

1, z
e

2) =
`

−1.78 × 10−5
,−1.67 × 10−2

´

,

(λ1, λ2) = (4.18 × 107
, 2.35 × 107) source,

R2 ≡ (ze

1, z
e

2) =
`

−4.20 × 10−3
,−2.66 × 10−5

´

,

(λ1, λ2) = (−4.64 × 106
, 7.11 × 105) saddle,

R3 ≡ (ze

1, z
e

2) =
`

3.05 × 10−3
, 2.94 × 10−5

´

,

(λ1, λ2) =
`

−1.73 × 107
,−1.91 × 105

´

sink.

R3 is the physical equilibrium. Stiffness = |λ1/λ2| = 90.5



Infinite equilibria

• Employ the projective space mapping with n = 2 and k = 1:

dZ

dτ
=

d

dτ

0

B

B

@

t

Z1

Z2

1

C

C

A

= Z
2

1

0

B

B

@

Z−1

1

−Z1 f1 (Z1, Z2)

f2 (Z1, Z2) − Z2 f1 (Z1, Z2)

1

C

C

A

≡ F(Z),

I1 ≡ (Ze

1 , Z
e

2) = (0, 0) ,

(λ1, λ2) =
`

−1.53 × 1013
, 0

´

saddle − node,

I2 ≡ (Ze

1 , Z
e

2) = (0, 1.01) ,

(λ1, λ2) =
`

2.12 × 1013
, 9.36 × 1012

´

source,

I3 ≡ (Ze

1 , Z
e

2) = (0, 2.60) ,

(λ1, λ2) =
`

3.04 × 1013
, 2.41 × 1013

´

source.



Simple Reactive System

A + A ⇋ B kf = 1, kb = 10−5.

B ⇋ C kf = 10, kb = 10−5.

• A reactive system adopted from D. Lebiedz, 2004, J. Chem. Phys. 120 (15),

p. 6890.

• Model consists of J = 2 reversible reactions involving N = 3 species

{cA, cB, cC}

• Conservation of mass, cA + cB + cC = 1, so that z ∈ R
2.

• Major species are i = {1, 2} = {A, B},



The system’s global phase space
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The 1-D SIM and MEPT
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