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Motivation

• Severe stiffness in reactive fluid mechanical systems with

detailed gas phase chemical kinetics renders fully resolved

simulations of many systems to be impractical.

• ILDM method of Maas and Pope, 1992, offers a systematic

robust method to equilibrate fast time scale phenomenon

for spatially homogeneous premixed reactive systems with

widely disparate reaction time scales.

• ILDM method can reduce computational time while retain-

ing essential fidelity to full detailed kinetics.

• ILDM method effectively reduces large n species reactive

systems to user-defined low order m-dimensional systems

by replacing differential equations with algebraic constraints.

• The ILDM is only an approximation of the SIM, and con-

tains a small intrinsic error for large stiffness.

• Using ILDM in systems with convection and diffusion can

lead to large errors when convection and diffusion time

scales are comparable to those of reactions.

• The ILDM method is extended to systems where reaction

couples with convection and diffusion. An improvement

over the MPP method is realized through a formulation of

an elliptic system of equations via the ECDC method.



Chemical Kinetics Modeled as a Dynamical

System

• ILDM developed for spatially homogeneous premixed reac-

tor:

dy

dt
= f(y), y(0) = y◦, f(0) = 0, y ∈ Rn,

y = (T, P, Y1, Y2, ..., Yn)
T .

• f(y) from Arrhenius kinetics.



Eigenvalues and Eigenvectors from Decomposition

of Jacobian

J = VΛṼ, V−1 = Ṽ,

V =


 | | | |

v1 · · · vm vm+1 · · · vn
| | | |


 =

(
Vs Vf

)
,

Λ =




λ(1) 0
. . .

0 λ(m)

0

0
λ(m+1) 0

. . .
0 λ(n)




=

(
Λ(s) 0

0 Λ(f)

)
,

Ṽ =




− ṽ1 −
...

− ṽm −
− ṽm+1 −

...

− ṽn −




=

(
Ṽs

Ṽf

)
.

The time scales associated with the dynamical system are the

inverse of the eigenvalues:

τi =
1

λ(i)
.



Mathematical Model for ILDM

• With z = V−1y

1

λ(i)


dzi
dt

+ ṽi

n∑
j=1

dvj
dt
zj


 = zi +

ṽig

λ(i)
, for i = 1, . . . , n,

where g = f − fyy.

• 1
λ(m+1)

, . . . , 1
λ(n)

are the small parameters.

• Equilibrating the fast dynamics

zi +
ṽig

λ(i)
= 0︸ ︷︷ ︸

ILDM

, for i = m + 1, . . . , n.

⇒ Ṽf f = 0︸ ︷︷ ︸
ILDM

.

• Slow dynamics approximated from differential algebraic equa-

tions on the ILDM

Ṽs
dy

dt
= Ṽsf ,

0 = Ṽf f .



SIM vs. ILDM

• An invariant manifold is defined as a subspace S ⊂ Rn

if for any solution y(t), y(0) ∈ S, implies that for some

T > 0, y(t) ∈ S for all t ∈ [0, T ].

• Slow Invariant Manifold (SIM) is also a trajectory in phase

space and the vector f must be tangent to it.

• ILDM is an approximation of the SIM and is not a

phase space trajectory.
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• ILDM approximation gives rise to an intrinsic error which

decreases as stiffness increases.



Demonstration that ILDM is not a trajectory in

phase space.

• Normal vector to the ILDM is given by

∇(Ṽff︸︷︷︸
ILDM

) = ṼfJ + (∇Ṽf)f

= λ(f)Ṽf + (∇Ṽf)f ,

where in two dimensions λ(f) = λ(2).

• If f is linear, ∇Ṽf = 0. Normal to the ILDM is parallel

to Ṽf and orthogonal to f in two dimensions. ILDM is a

trajectory.

• If f is non-linear, ∇Ṽf 6= 0. Normal to the ILDM is not

parallel to Ṽf and not orthogonal to f in two dimensions.

ILDM is not a trajectory.

• In the limit of large λ(f) the deviation of the ILDM from a

phase space trajectory, and the SIM is small.



Comparison of the SIM with the ILDM

• Example from Davis and Skodje, 1999:

dy

dt
=
d

dt

(
y1

y2

)
=

( −y1

−γy2 +
(γ−1)y1+γy

2
1

(1+y1)2

)
= f(y),

•

fy =

(
−1 0

γ−1+(γ+1)y1
(1+y1)3

−γ

)
, Jacobian

ṽ1 = Ṽs =
(

1 0
)
, λ(1) = λ(s) = −1, slow

ṽ2 = Ṽf =
(
−γ−1+(γ+1)y1

(γ−1)(1+y1)3
1
)
, λ(2) = λ(f) = −γ, fast

• The ILDM for this system is given by

Ṽf f = 0 ⇒ y2 =
y1

1 + y1
+

2y2
1

γ(γ − 1)(1 + y1)3
.



Comparison of the SIM with the ILDM

• SIM assumed to be a polynomial

y2 =
∞∑
k=0

cky
k
1 .

• Substituting the polynomial in the following equation

−γy2 +
(γ − 1)y1 + γy2

1

(1 + y1)2
= −y1

dy2

dy1
.

• SIM is given by

y2 = y1(1 − y1 + y2
1 − y3

1 + y4
1 + . . . ) =

y1

1 + y1
.

• ILDM

Ṽf f = 0 ⇒ y2 =
y1

1 + y1
+

2y2
1

γ(γ − 1)(1 + y1)3
.

• For large γ or stiffness, the ILDM approaches the SIM.

• For even a slightly more complicated systems we have to

resort to a numerical computation of the SIM using the

Roussel and Fraser method, 1992.



Comparison of the SIM with the ILDM

• Projection of the system on the slow and fast basis.

Slow: Ṽs
dy

dt
= Ṽsf ⇒ dy1

dt
= −y1

Fast: Ṽf
dy

dt
= Ṽff ⇒

1

γ

(
−γ − 1 + (γ + 1)y1

(γ − 1)(1 + y1)3

dy1

dt
+
dy2

dt

)
= −y2 +

y1

1 + y1
+

2y2
1

γ(γ − 1)(1 + y1)3

Order of terms in the fast equation:

O
(

1

γ

)
+ O

(
1

γ2

)
+ . . . = O(1) + O

(
1

γ

)
+ . . .

• The ILDM approximation neglects all terms on the LHS

while retaining all terms on RHS of the fast equation.

• Systematic matching of terms of all orders in a singular

perturbation scheme correctly leads to the SIM

y2 =
y1

1 + y1
.

• The ILDM approximates the SIM well for large γ or stiffness

and is a more practical method for complicated systems

such as chemical kinetics.



Reaction Convection Diffusion Equations

• In one spatial dimension

∂y

∂t
= f(y)︸︷︷︸

reaction

− ∂

∂x
h(y)︸ ︷︷ ︸

convection−diffusion

.

• Substituting z = V−1y

1

λ(i)

(
dzi

dt
+ ṽi

n∑
j=1

dvj

dt
zj

)
︸ ︷︷ ︸

=0 for i=m+1,...,n

= zi +
ṽig

λ(i)
− 1

λ(i)

(
ṽi
∂h

∂x

)
for i = 1, . . . , n.

• Equilibrating the fast dynamics, we get the elliptic equations

zi +
ṽig

λ(i)
− 1

λ(i)

(
ṽi
∂h

∂x

)
= 0, for i = m+ 1, . . . , n.

• For diffusion time scales which are of the order of the chemical
time scales

zi +
ṽig

λ(i)
− 1

λ(i)

(
ṽi
∂h

∂x

)
= 0, for i = m+ 1, . . . , p.

• For fast chemical time scales we obtain the ILDM

zi +
ṽig

λ(i)
= 0, for i = p+ 1, . . . , n.



Elliptic Convection Diffusion Corrector (ECDC)

• Slow dynamics can be approximated by the ECDC method

Ṽs
∂y

∂t
= Ṽsf − Ṽs

∂h

∂x
,

0 = Ṽfsf − Ṽfs
∂h

∂x
,

0 = Ṽfff .

where Ṽfs =


 − ṽm+1 −

...

− ṽp −


 and Ṽff =


 − ṽp+1 −

...

− ṽn −




• The diffusion term can be neglected only if the following

term is small

1

λ(i)

(
ṽi
∂h

∂x

)
.

• Difficult to determine appropriate p, which is spatially de-

pendent!

• It is difficult to a priori determine the the diffusion length

scales and hence the diffusion time scales.

• A cautious approach, which we adopt, is to require p =

n and solve elliptic PDEs instead of the algebraic ILDM

equations.



Davis Skodje Example Extended to Reaction

Diffusion

∂y

∂t
=

∂

∂t

(
y1

y2

)
=

(
−y1

−γy2 + (γ−1)y1+γy2
1

(1+y1)2

)
− ∂

∂x

( −D∂y1

∂x

−D∂y2

∂x

)
= f(y) − ∂

∂x
h(y)

• Boundary conditions are chosen on the ILDM

y1(t, 0) = 0, y1(t, 1) = 1,

y2(t, 0) = 0, y2(t, 1) = 1
2

+ 1
4γ(γ−1)

.

• Initial conditions

y1(0, x) = x, y2(0, x) =

(
1

2
+

1

4γ(γ − 1)

)
x



Reaction Diffusion Example Results: Low Stiffness
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• Solution at t = 5, for γ = 10 with varying D.

• PDE solution fully resolved; no ILDM or convection-diffusion

correction.

• Forcing the solution onto the ILDM will induce large errors.



Reaction Diffusion Example Results: Low Stiffness

• Modification of D alone for fixed γ does not significantly

change the error.
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Reaction Diffusion Example Results: High

Stiffness
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• Solution at t = 5, for γ = 100 and D = 0.1.

• Increasing γ moves solution closer to the ILDM.
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Comparison of the ECDC method and the MPP method

• The slow dynamics for the simple system obtained using the ECDC
method by taking n = 2, m = 1, p = n

∂y1

∂t
= −y1 + D∂

2y1

∂x2

y2 − 1

γ

∂2y2

∂x2 =
y1

1 + y1
+

2y2
1

γ(γ − 1)(1 + y1)3 −
(
γ − 1 + (γ + 1)y1

γ(γ − 1)(1 + y1)3

)
∂2y1

∂x2

• The Maas and Pope projection (MPP) method is given by project-

ing the convection diffusion term along the local slow subspace on
the reaction ILDM, hence, ensuring that the slow dynamics occurs

on the ILDM

∂y

∂t
= f(y) − VsṼs

∂

∂x
(h(y)) .

• For the simple system the corresponding equations are given by

∂y1

∂t
= −y1 + D∂

2y1

∂x2 ,

∂y2

∂t
= −γy2 +

(γ − 1)y1 + γy2
1

(1 + y1)2 −
(
γ − 1 + (γ + 1)y1

γ(γ − 1)(1 + y1)3

)
D∂

2y1

∂x2 .

• The slow dynamics for the simple system obtained using the MPP

method by taking n = 2 and m = p = 1.

∂y1

∂t
= −y1 + D∂

2y1

∂x2 ,

y2 =
y1

1 + y1
+

2y2
1

γ(γ − 1)(1 + y1)3 .



Comparison of the ECDC method and the MPP method

• Solutions obtained by the MPP method, the ECDC method, and
full equations, all calculated on a fixed grid with 100 points.

• All results compared to solution of full equations at high spatial
resolution of 10000 grid points.

• γ = 10 and D = 0.1.

• Forcing the solution onto the ILDM leads to large errors in the
MPP method.

• Overall the error in the ECDC method is lower than the MPP
method, and is similar to that incurred by the full equations near

steady state.
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1D Premixed Laminar Flame for Ozone

Decomposition

• Governing equations of one-dimensional, isobaric, premixed

laminar flame for ozone decomposition in Lagrangian coor-

dinates for low Mach number flows, Margolis, 1978.

∂T

∂t
= − 1

ρcp

3∑
k=1

ω̇kMkhk +
1

cp

∂

∂ψ

(
ρλ
∂T

∂ψ

)
,

∂Yk
∂t

=
1

ρ
ω̇kMk +

∂

∂ψ

(
ρD2

k

∂Yk
∂ψ

)
, for k = 1, 2, 3,

• Equation of state

p0 = ρ<T
3∑

k=1

Yk
Mk

,

• Le = 1.

• cp = 1.056 × 106 erg/(g-K).

• ρλ = 4.579 × 10−2 g2/(cm2-s3-K).

• D1 = D2 = D3 = D.

• ρ2D = 4.336 × 10−7 g2/(cm4-s).

• Y1 = YO, Y2 = YO2, Y3 = YO3.

• p0 = 8.32 × 105 dynes/cm2.



Comparison of the ILDM with the PDE solution for ozone

decomposition flame

For unreacted mixture of YO2
= 0.85, YO3

= 0.15 at T = 300K
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Profiles for 1D Premixed Laminar Flame for Ozone

Decomposition

For unreacted mixture of YO2
= 0.85, YO3

= 0.15 at T = 300K
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Comparison of phase errors incurred by the MPP method,

the ECDC method and full integration.

• For unreacted mixture of YO2
= 0.85, YO3

= 0.15 at T = 300K.

• The phase error δ is measured as the Lagrangian distance between
the location within the flame front where the mass fraction of O3

is 0.075, for the solution obtained by the three methods, for 1000

grid points, and the full integration solution at 10000 grid points.
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Conclusions

• ILDM approaches SIM in the limit of large stiffness for

spatially homogeneous systems.

• Difficult to use SIM in practical combustion calculations

while ILDM works well.

• No robust analysis currently exists to determine convection

and diffusion time scales a priori.

• For systems in which convection and diffusion have time

scales comparable to those of reaction, MPP method can

lead to a large transient and steady state error.

• In the ECDC method and elliptic PDE is developed and

solved to better couple reaction, convection and diffusion

while systematically equilibrating fast time scales.

• At this point the fast and slow subspace decomposition is

dependent only on reaction and should itself be modified

to include fast and slow convection-diffusion time scales.

• The error incurred in approximating the slow dynamics by

the ECDC method is smaller than that incurred by the

MPP method.


