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Abstract— A reactive system’s slow dynamic behavior
is approximated well by its evolution on manifolds of
dimension lower than the dimensionality of the full com-
position space. This work addresses the relation between
the isothermal reactive systems’ slow dynamics, described
by the actual slow invariant manifolds, and notions from
thermodynamics. In addition to mathematical proof, a
realistic reactive system is utilized to show that other than
identifying the actual equilibrium point, traditional ther-
modynamic potentials provide no guidance in determining
a system’s actual slow invariant manifold. A comparison
between several published thermodynamics-based manifolds
and the actual slow invariant manifolds is presented.

I. INTRODUCTION

Dimension reduction can significantly reduce the com-
putational cost of modeling detailed kinetics reactive
systems. The technique is based on representing the
chemistry of a reactive system’s variables in terms of the
chemistry of a reduced number of variables. Thus, several
methods to describe the multi-scale kinetics that employ a
geometrical approach have been developed to reduce the
dimensionality of reactive systems.

A number of these methods employ classical thermo-
dynamics to construct the attractive manifolds. Examples
include the method of rate-controlled constrained equi-
librium (RCCE) [1], the method of invariant manifold
(MIM) [2], the minimal entropy production trajectory
(MEPT) method [3], the invariant constrained equilibrium
edge preimage curve method (ICE-PIC) [4], and other
methods which are based on them [5]-[7]. The MEPT ap-
proach relies on the principle of entropy production. Uti-
lizing such a principle allows classical thermodynamics
quantities to be used away from equilibrium, although the
validity of doing this is debatable [8]. The RCCE, MIM
and ICE-PIC approaches rely on employing equilibrium
thermodynamics potentials away from the equilibrium
state. By minimizing the appropriate classical thermody-
namics quantities, at some point in the procedure, their
low-dimensional manifolds are constructed.

Ref. [9] provides a procedure to construct reactive
systems’ actual slow invariant manifolds (SIMs). Such
manifolds describe the asymptotic structures of the invari-
ant attracting reactive systems’ trajectories during their
relaxation toward equilibrium. Utilizing this procedure to
construct reactive systems’ actual one-dimensional (1-D)
SIMs makes it possible to examine the relation between
thermodynamics and reactive systems’ slow dynamics.

II. ANALYSIS

We consider a closed, spatially homogenous, premixed
reactive mixture of calorically imperfect ideal gases de-
scribed by detailed mass-action kinetics. The mixture is
confined to a volume V at temperature T and pressure p.
This mixture consists of N species composed of L atomic
elements which undergo J reversible reactions.

Here, we confine our attention to isothermal reactive
systems. For such a reactive system, the evolution of the
species specific moles z with time t is described by [9]

dz
dt

= ẇ(z), {z, ẇ} ∈ RR, (1)

where RR ⊂ RN is the reduced composition space,
and ẇ is the molar production rate of species in the
reduced composition space. The dimensionality of the
composition space is reduced to R as a consequence of the
conservation of elements, and any additional constraints
that can possibly arise. The system’s actual 1-D SIM can
be constructed by using the procedure described in [9].

A. Thermodynamic conditions

For a mixture of ideal gases, the Gibbs free energy G
is given by the following relation [10],

G =
N∑
i=1

niµ̄i, (2)

where ni is the number of moles of species i, and µ̄i is
the chemical potential of species i. This thermodynamic
property is of special interest; the global minimum of G
corresponds to the reactive system’s equilibrium state ze

which satisfies ẇ(ze) = 0 [10]. This state is unique [11]
within the physical region of composition space and is
identified by the following relation,

N∑
i=1

νijµ̄i = 0, j = 1, . . . , J, (3)

where νij is net stoichiometric matrix.
Similarly, the entropy S of such mixture is given

by [10],

S =
N∑
i=1

ni

(
s̄oi − <̄ ln

(
p ni
po n

))
, (4)

where <̄ is the universal gas constant, po is the reference
pressure, s̄oi is the partial molar entropy evaluated at po,
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and n =
∑N
i=1 ni is the total number of moles. The

differential change of this scalar quantity is postulated
by the second law of thermodynamics [10], though it
is stated differently in non-equilibrium thermodynamics
and classical thermodynamics [12]. In non-equilibrium
thermodynamics, the differential change of S for such
system is given by

dS = deS + diS, (5)

where deS is the change in S due to the system’s
exchange of matter and energy with its surroundings, and

diS = − 1
T

N∑
i=1

µ̄idni, (6)

is the change in entropy due to irreversible processes
within the system boundary [13]. Thus, an expression
for the irreversibility production rate σ, (i.e. entropy
production rate), can be introduced as [14]

σ ≡ diS

dt
= − 1

T

N∑
i=1

µ̄i
dni
dt
. (7)

Similar to G, σ is a convex function in the composition
space with a global minimum at ze.

B. Thermodynamics and SIM

In a 2-D composition space, the scalar fields G and
σ can be represented by iso-contours. Near equilibrium
these contours approach ellipses. For each of these func-
tions, the major axes of these ellipses are aligned with the
eigenvector associated with the largest eigenvalue of that
function’s local Hessian matrix He. Similarly, the minor
axes are aligned with the eigenvector associated with the
smallest eigenvalue of He. The deviations from these two
functions’ equilibrium values are described by,

G− G|z=ze =
1
2
zT ·He

G · z + . . . , (8)

σ − σ|z=ze =
1
2
zT ·He

σ · z + . . . . (9)

In general, all the system’s trajectories within the
physically accessible domain S approach ze in infinite
time. Near equilibrium, the system’s dynamics relax onto
the eigenvector associated with the slowest time scale.
At ze, the eigenvector associated with the least negative
eigenvalue of the local Jacobian Je defines the direction
of the system’s slowest mode. At ze there is a relation
between He

G and He
σ; one can show that

He
σ = − 1

T

(
He
G · Je + (He

G · Je)
T
)
, (10)

where the two terms on the right hand side of (10)
are transposes of one another, and their summation is a
symmetric matrix.

In the highly unusual case in which He
G is diagonal

with identical eigenvalues, the SIM can be identified by
consideration of the eigenvectors of He

σ . In general, this
is not the case for reactive systems. Thus, He

G operates
on Je in a non-uniform way, such that the eigenvalues

and the eigenvectors of He
σ are not the same as those

of Je. Thus, the system’s dynamics cannot be deduced
by σ or G. We can state that employing equilibrium
thermodynamic potentials to obtain a reactive system’s
dynamic behavior is incorrect. Full details are given by
Al-Khateeb, et al. [9].

III. MODEL PROBLEM

Here, the Zeldovich mechanism will be employed as
a model problem to examine the relation between slow
dynamics and thermodynamics. The system’s actual 1-D
SIM constructed using the procedure described in [9] is
shown in Fig. 1.

After calculating G and σ for this system, their iso-
contours, along with the system’s actual 1-D SIM, are
shown in Fig. 2. The top panel of Fig. 2 shows the
contours of G and σ far away from the system’s physical
equilibrium point, R3. The bottom panel of Fig. 2 is
an expansion in its vicinity, where stretching has been
employed to expose the difference between the contours’
major/minor axes and the 1-D SIM. Even within the close
neighborhood of R3, the contours’ axes are not aligned
with the 1-D SIM! Here equilibrium thermodynamics
quantities cannot elucidate the 1-D SIM, which describes
the system’s preferred path towards equilibrium. Sub-
sequently, the gradients of these thermodynamic scalar
functions do not drive the system’s dynamics.

Explicitly, the eigenvalues and the associated eigenvec-
tors of He

σ and He
G for the Zel’dovich model are

He
σ : (λ,υ) = (8.17× 1023, 1.01× 1020),

([1.78× 10−3,−1.00]T , [−1.00,−1.78× 10−3]T ),
He
G : (λ,υ) = (9.44× 1019, 1.06× 1018),

([5.97× 10−4,−1.00]T , [−1.00,−5.97× 10−4]T ).

However, the direction of the slow mode is assigned
by the eigenvector associated with the least negative
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Fig. 1. A region of the finite phase space for the Zel’dovich mechanism.
The solid dots represent finite critical points, the open circle represents
an infinite critical point, the arrows indicate the flow direction, and the
dashed simplex represents S. The SIM is illustrated as a thick line, the
thin lines represent trajectories, and R3 represents the system’s physical
equilibrium state.
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Fig. 2. The 1- D SIM for the Zel’dovich mechanism near the physical
equilibrium state, R3. The dashed lines and the solid lines represent
different levels of the system’s irreversibility production rate and Gibbs
free energy, respectively. R2 is a finite critical point, and I1 is an infinite
critical point.

eigenvalue of Je, where

Je : (λ,υ) = (−1.73× 107,−1.91× 105),
([−1.07× 10−1, 9.94× 10−1]T , [1.00, 1.79× 10−3]T ).

Here, the eigenvalues’ and eigenvectors’ units are 1/s and
g/mol, respectively. It is clear that the second eigenvector
of Je is not aligned with any eigenvector of He

G or He
σ .

Indeed, at R3 the difference with σ is small. But, as shown
in the first panel of Fig. 2, this error grows as we move
away from R3.

IV. THERMODYNAMICS-BASED MANIFOLDS

Here, a comparison between previously published re-
active systems’ low dimensional manifolds and the actual
SIMs for these reactive systems is performed.

A. SIM and MEPT

A simple closed reactive system containing three
species given by the following kinetics model, A+A 

B 
 C, is considered. This system is identical to the
example employed in [3] to present the MEPT method. To
construct the system’s actual 1-D SIM, the methodology
presented in [9] is employed. In Fig. 3, the system’s actual
1-D SIM is shown. We note that the system’s 1-D SIM
contains only one branch.

The MEPT method is based on minimizing a classical
thermodynamic potential, S. Given by the dashed line
in the first panel of Fig. 4, the MEPT path shown is
identical to the one presented in Fig. 4 of [3]. A closer
look at the system’s dynamical behavior near the physical
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Fig. 3. A small region of the actual finite phase space. The thick line is
the SIM, the thin lines represent trajectories, the dashed lines represent
the fast invariant manifolds, R2 is a non-physical finite critical point,
and R1 represents the system’s physical equilibrium state.
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Fig. 4. The dashed line represents the calculated MEPT and the thin
lines represent trajectories. The top panel is identical to Fig. (4) in [3],
while the bottom panel is a closer look with a different set of trajectories
is illustrated. R1 represent the physical equilibrium state of the system.

equilibrium shows that the MEPT is not an attractive
manifold; see the second panel of Fig. 4. Consequently,
it does not correspond to the actual SIM of the system.

From Figs. 3-4, we note that none of the trajectories
other than the SIM are attractive. Furthermore, due to the
fact that all trajectories will approach R1, this possibly
led to the incorrect conclusion in [3] that the MEPT
corresponds to the SIM.

B. SIM and ICE-PIC

Here, the simple hydrogen-oxygen reactive system em-
ployed in [4] to illustrate the idea of constructing the
ICE-PIC manifold is adopted. To construct the system’s
actual 1-D SIM, the methodology presented in [9] is used,
and the system’s 1-D SIM is shown in Fig. 5. The right



branch of the SIM is not presented completely due to
scaling effects. Some of the trajectories in Fig. 5 have
been generated from inside the physical domain, while
others have been initiated from the boundaries of the
physical domain. The attractiveness of the SIM is revealed
by visually examining the relaxation of several trajectories
rapidly onto it.

Generating the ICE manifold is based on minimizing a
classical thermodynamics potential. First, the constrained
equilibrium manifold (CEM) is developed by minimizing
G. The intersection between the CEM and S defines a
closed curve. Then, starting from several points located
on this closed curve, trajectories are generated. The col-
lection of all these trajectories defines the ICE manifold.
Fig. 6 shows the constructed 1-D SIM and the 2-D ICE
manifold. The ICE manifold shown is identical to the
manifold illustrated in Fig. 4 of [4].

From Fig. 6, it is clear that there are trajectories within
S which are not attracted to the 2-D ICE manifold.
However, all of the system’s trajectories are attracted to
the actual 1-D SIM. Moreover, the 1-D SIM is not a
subset of the 2-D ICE manifold. Consequently, the 2-
D ICE manifold cannot fully identify the system’s SIM.
Although it is difficult to visualize in Fig. 6, the 2-D ICE
manifold is not aligned with the system’s 1-D SIM. The
error in the ICE manifold grows as we move away from
R7.

V. CONCLUSION

The relationship between thermodynamics and a reac-
tive system’s SIM is investigated. It has been illustrated
that the 1-D SIM for a realistic reactive system does not
coincide with the path identified by minimizing a classical
thermodynamic function, such as σ, S, or G, even at the
equilibrium state! This point has been confirmed by math-
ematical proof which shows that classical equilibrium
thermodynamic potentials do not provide information
about reactive systems’ dynamics during their approach
towards the physical equilibrium.
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