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The Dynamics of Unsteady Detonation with Diffusion
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The dynamics of one-dimensional detonations predicted by a one-step irreversible Ar-

rhenius kinetic model with the inclusion of mass, momentum, and energy diffusion were

investigated. A series of calculations in which activation energy is varied, holding the length

scales of diffusion and reaction constant, was performed. As in the inviscid case, as the

activation energy increases, the system goes through a period-doubling process and even-

tually undergoes a transition to chaos. Within the chaotic regime, there exist regions of

low frequency limit cycles. An approximation to Feigenbaum’s constant, the rate at which

bifurcation points converge, is obtained. The addition of diffusion significantly delays the

onset of instability and strongly influences the dynamics in the unstable regime. Because

the selected reaction and viscous length scales are representative of real physical systems,

the common use of reactive Euler equations to predict detonation dynamics in the unstable

and marginally stable regimes is called into question; reactive Navier-Stokes may be a more

appropriate model in such regimes.

I. Introduction

It is a common notion in detonation theory that the effects of diffusion can be neglected in comparison
to those of reaction and advection, cf. Fedkiw et al.,1 Oran et al.,2 Hu et al.,3 Wang et al.,4 Walter and
da Silva,5 He and Karagozian,6 Aslam and Powers,7 or Tsuboi et al.8 However, there are indications that
such an assumption can be problematic. For example, using grid sizes around 10−6 m for their three-
dimensional simulations of unsteady H2-air detonations, Tsuboi et al. report wave dynamics that show
strong sensitivity to the fineness of the grid. While apparent convergence of some structures was reported,
they also note with regard to some particulars of the detonation structure “The present results cannot resolve
such cross-hatchings in the ribbon because of a lack of grid resolution.” The presence of reaction dynamics
and steep gradients at micron length scales suggests that in fact physical diffusion has an important role
to play. Indeed, Powers9 showed that two-dimensional detonation patterns are strongly grid-dependent for
simulations of reactive Euler equations, but relax to a grid-independent dissipative structure for a comparable
reactive Navier-Stokes calculation. This suggests numerical diffusion is actually playing a significant role in
the inviscid calculations and that one should consider the introduction of grid-independent physical diffusion
to properly capture the dynamics.

Consideration of the reaction-advection length scales admitted by an inviscid detonation explains why
such fine scales are necessary. Powers and Paolucci10 performed a spatial eigenvalue analysis on a detailed
kinetic H2-air model and showed for inviscid detonations that the length scales for a steady Chapman-
Jouguet (CJ) detonation can span five orders of magnitude near equilibrium, with the smallest length scale
for an ambient mixture at atmospheric pressure being 10−7 m and the largest being 10−2 m; away from
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equilibrium the breadth of scales can be even larger. These fine reaction scales are a manifestation of an
averaged representation of the molecular collision model in which the fundamental length scale is the mean
free path.11 In order to have a mathematically verified prediction, this wide range of scales must be resolved,
which poses a daunting task.

The choice of a one-step kinetic model induces a single reaction scale, in contrast to the multiple reaction
scales of detailed kinetic models. This allows for the effects of the interplay between chemistry and transport
phenomena on detonations be more easily studied. Such a model has been studied extensively; the stability
and non-linear dynamics are well understood in the inviscid limit, cf. Erpenbeck,12 Lee and Stewart,13

Bourlioux et al.,14 Sharpe,15 Kasimov and Stewart,16 Ng et al.,17 or Henrick et al.18 Erpenbeck started
investigation into linear stability of detonations nearly fifty years ago. Lee and Stewart developed a normal-
mode approach to the linear stability of the idealized detonation to one-dimensional perturbations using a
shooting method to find the unstable modes. Bourlioux et al. study the nonlinear development of instability.
Kasimov and Stewart also applied a normal mode approach to the linear stability problem and performed
a numerical analysis using a first order shock-fitting technique. Ng et al. developed a coarse bifurcation
diagram showing how the oscillatory behavior became progressively more complex as activation energy
increased. Henrick et al. developed a more detailed bifurcation diagram using a true fifth order shock-fitting
method in combination with a mapped WENO scheme. In two dimensions, Watt and Sharpe19 used a one-
step inviscid model and concluded “resolved and accurate calculations of the cellular dynamics are currently
computationally prohibitive, even with a dynamically adaptive numerical scheme.”

The goal of this paper is to predict the effects of diffusion on the long-time dynamics of a detonation
described by one-step kinetics. The plan of the paper is as follows. First the mathematical model is
presented. This is followed by a description of the computational method. The model is used to predict
the viscous analog of the period-doubling phenomena predicted in the inviscid limit by Sharpe, Ng et al.,
and Henrick et al. The convergence of the period-doubling bifurcation points is shown to be in agreement
with the general theory of Feigenbaum,20, 21 and diffusion is seen to have a generally stabilizing effect on
detonation dynamics.

II. Mathematical Model

The model equations adopted here are the one-dimensional unsteady compressible reactive Navier-Stokes
equations with one-step kinetics:
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where the independent variables are time, t, and the spatial coordinate, x. In Eqs. (1-4), ρ is the mass
density, u the particle velocity, P the pressure, τ the diffusive viscous stress, e the specific internal energy,
jq the diffusive heat flux, λ the reaction progress variable, jm

λ the diffusive mass flux, and r the reaction
rate. The equations were transformed to a frame of reference moving at a constant velocity, D. Applying
this Galilean transformation, one recovers
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The particle velocity, u, is still measured in the laboratory frame in Eqs. (5-8). The constitutive relations
chosen for mass, momentum, and energy diffusion are

jm
λ = −ρD

∂λ

∂x
, (9)

τ =
4

3
µ

∂u

∂x
, (10)

jq = −k
∂T

∂x
+ ρDq

∂λ

∂x
, (11)

where Fick’s Law for binary diffusion has been adopted as the model for diffusive mass flux, D is the mass
diffusion coefficient, µ the dynamic viscosity, k the thermal conductivity, T the temperature, and q the heat
release. A calorically perfect ideal gas model is adopted:

P = ρRT, (12a)

e =
P

ρ (γ − 1)
− qλ, (12b)

where R is the gas constant, and γ is the ratio of specific heats. The simple irreversible one-step reaction
model was chosen to be A → B, where A and B are the reactant and product, respectively; both have
identical molecular masses and specific heats. In the undisturbed state, only A is present. The mass
fractions of A and B are given by 1− λ, and λ, respectively. The reaction rate r is taken to be given by the
law of mass action with an Arrhenius rate sensitivity:

r = H(P − Ps)a (1 − λ) e−
Ẽ

P/ρ . (13)

Here a is the collision frequency factor, Ẽ the activation energy, and H(P − Ps) is a Heaviside function
which suppresses reaction when P < Ps, where Ps is a selected pressure. Also note the ambient pressure
and density are taken to be Po and ρo, respectively.

III. Computational Method and Verification

A temporally explicit point-wise method of lines approach is used. This method allows separate temporal
and spatial discretizations and also allows for the inclusion of source terms. The advective terms were
calculated using a combination of a fifth order WENO scheme and Lax-Friedrichs discretization;22 the
diffusive terms are treated with sixth order central differences. As an aside, it is noted that a fifth order
central differencing of the advection terms would work as well as a fifth order WENO discretization because
the solutions contain no discontinuities. Temporal integration is accomplished using a third order Runge-
Kutta scheme.

The exercise of demonstrating the harmony of the discrete solution with the foundational mathematics
is known as verification.23 The method of manufactured solutions24 was used to verify the code. In this
method, a solution form is assumed, and special source terms are added to the governing equations in such
a fashion that the assumed solution satisfies the modified equations. A periodic form for the solution was
assumed

ρ (x, t) = a1 + b1 cos [π(x − t)] , (14)

u (x, t) = a2 + b2 cos [π(x − t)] , (15)

p (x, t) = a3 + b3 cos [π(x + t)] , (16)

λ (x, t) = a4 + b4 cos [π(x + t)] , (17)

with a domain x ∈ [−1, 1]. The coefficients are taken to be a1 = a2 = a3 = a4 = 1 and b2 = b3 = b4 =
1/10, b4 = 1. The initial conditions are those given by Eqs. (14-17) at t = 0. The source terms that this exact
solution generates are straightforwardly found by direct substitution into the governing equations. However,
they are lengthy and not presented here. Figure 1 shows fifth order asymptotic convergence of the error
of the discrete approximation as the spatial grid is refined. The ordinate is the sum of all variables’ L1

errors normalized by the maximum value of the variable. It is noted that for convergence of the reactive
Navier-Stokes equations, the presence of the Heaviside step function in the reaction rate term may preclude
a full fifth order convergence rate.
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IV. Results

Here simulations of the reactive Navier-Stokes equations are presented. All calculations were performed
in a single processor environment on an AMD 2.4 GHz processor with 512 kB cache. The simulation is
initialized with the inviscid Zel’dovich-von Neumann-Döring (ZND) solution in a moving frame traveling at
the CJ speed. Each simulation is integrated in time to determine the long time behavior. For a calculation
of 2.5 µs the computational time required was two days. Some calculations took as long as nine days for full
relaxation.

By selecting the diffusion coefficient, D = 10−4 m2/s, thermal conductivity, k = 10−1 W/m/K, and
viscosity, µ = 10−4 Ns/m2 the Lewis, Le, Prandtl, Pr, and Schmidt, Sc numbers evaluated at the ambient
density, ρo = 1 kg/m3, are unity. All of these parameters are within an order of magnitude of gases at
a slightly elevated temperature. In the inviscid detonation, the activation energy controls the stability of
the system; the rate constant merely introduces a length scale, the half reaction length, L1/2, (the distance
between the inviscid shock and the location at which λ = 1/2). If L1/2 is fixed, the effect of diffusion on
the system can be explored. Using simple dimensional analysis of advection and diffusion parameters (U =
1000 m/s was chosen as a typical velocity scale) gives rise to an approximate length scale of mass diffusion,
D/U = 10−7 m, and likewise for momentum and energy diffusion µ/ρo/U = 10−7 m, and k/ρ0/Cp/U =
10−7 m. Since all the diffusion length scales are the same, let that scale be denoted as Lµ = 10−7 m.
The chosen parameters in the governing equations are Po = 101325 Pa, Ps = 200000 Pa, ρo = 1 kg/m3,
q = 5066250 m2/s2, γ = 6/5, and Ẽ ∈ [2533125, 3232400] m2/s2. With this heat release, DCJ for the inviscid
problem is

DCJ =

√

γ
Po

ρo
+

q (γ2 − 1)

2
+

√

q (γ2 − 1)

2
= 2167.56

m

s
. (18)

To compare directly with previous work in the inviscid limit, the activation energies will be presented in
dimensionless form, E = Ẽ/

(

1.01325× 105 m2/s2
)

, thus E ∈ [25, 32]. Using these parameters allows for the
interaction of diffusion and reaction effects to be easily studied. Moreover, these parameters induce a set of
scales which are of similar orders of magnitude to those given in reactive Navier-Stokes models with detailed
chemical kinetics. Unless otherwise stated, the calculations presented are for a ratio of Lµ/L1/2 = 1/10.

A. Effect of diffusion on limit cycle behavior

In the inviscid case, linear stability analysis by Lee and Stewart revealed that for E < 25.26, the steady ZND
wave is linearly stable and is otherwise linearly unstable. The activation energy at this stability boundary
is labeled E0. For the same case Henrick et al. numerically found the stability limit at E0 = 25.265± 0.005,
which is in excellent agreement with the prediction of linear stability analysis. We examine a viscous case
well above the inviscid stability limit, E = 26.647, which Henrick et al. found to relax to a period-1 limit
cycle for an inviscid simulation. In our viscous simulation, it can be seen from Fig. 2 that there is no limit
cycle behavior, and the detonation predicted by viscous theory is in fact a stable steadily propagating wave.
The stability boundary for the viscous case is found at E0 ≈ 27.1404. A period-1 limit cycle may be realized
in the viscous case by increasing the activation energy above E0; we show an example for E = 27.6339 in
Fig. 3.

B. Effect of diffusion on transition to chaos

For higher values of E, more complicated dynamics are predicted. A period-doubling behavior and transition
to chaos for unstable detonations were found to be remarkably similar to that predicted by the simple logistic
map.25, 26 The activation energy at which the behavior switches from a period-2n−1 to a period-2n solution
is denoted as En, for n ≥ 1. As predicted by Sharpe and Ng et al. and shown in Henrick et al., transition
to a period-2 oscillation occurs at E1 ≈ 27.2 in the inviscid case. For the viscous case, we find instead
E1 ≈ 29.3116; Fig. 4(a) shows the time history of the detonation pressure for a slightly higher E = 29.6077,
which shows in the long time limit two distinct relative maxima, P ≈ 6.256 MPa and P ≈ 5.283 MPa. The
bifurcation points for the inviscid and viscous models are listed in Table 1 along with approximations for
Feigenbaum’s constant, δ∞ :

δ∞ = lim
n→∞

δn = lim
n→∞

En − En−1

En+1 − En
. (19)

Feigenbaum predicted δ∞ ≈ 4.669201. Both viscous and inviscid models predict δ∞ well.
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Table 1. Numerically determined bifurcation points for inviscid and viscous detonation, and approximations
to Feigenbaum’s constant

Inviscid Inviscid Viscous Viscous

n En δn En δn

0 25.2650 - 27.1404 -

1 27.1875 3.86 29.3116 3.793

2 27.6850 4.26 29.8840 4.639

3 27.8017 4.66 30.0074 4.657

4 27.82675 - 30.0339 -

C. Effect of diffusion in the chaotic regime

A bifurcation diagram was constructed by sampling over 400 points with E ∈ [25, 32], with the minimum
spacing ∆E ≈ 0.001 occurring around E ≈ E4 and a maximum spacing of ∆E ≈ 0.1 in the stable region.
For E > E3, the solutions were integrated to t = 10 µs, and relative maxima in P were recorded for t > 7 µs.
For E < E3, solutions were only integrated to 2.5 µs, and relative maxima were recorded for t > 1 µs. The
late time behavior of relative maxima in P versus E is shown in Fig. 5(b), which shows the period-doubling
bifurcations up to E∞ ≈ 30.0411. Also of note are the regions in which a limit cycle exists with an odd
number of periods. For example at E ≈ 30.4, a period-3 window exists; as E increases further, the period-3
behavior bifurcates to a period-6 behavior. It is likely that in the dense portions of the bifurcation diagram
that the system is in the chaotic regime.

Figure 4 gives several plots of P versus t as E is increased. Within the chaotic regime, there exist pockets
of order. Periods of 5, 6, and 3 are found and are shown in Fig. 4(c), (e), and (f), respectively. It is seen
from Fig. 5 that the whole bifurcation diagram obtained by Henrick et al., using a shock-fitting algorithm
in which the artificial viscosity is negligibly small, occurs below the first period-doubling bifurcation of the
diffusive case. Henrick et al. state that for E & 30, the secondary captured shocks may overtake the lead
shock, which would negate the accuracy of their shock-fitting technique. In the diffusive case, the system
is still in the period-doubling phase at E ≈ 30. Moreover, there is no true discontinuity; thus, the shock
speed cannot be predicted as in the inviscid limit. Table 2 summarizes some the types of long time behavior
realized for various values of E of viscous detonation with Lµ/L1/2 = 1/10. Note that the table is necessarily
incomplete due to the finite number of values of E sampled.

D. Effect of diminishing diffusion

By increasing the reaction length scale, L1/2, the relative effect of diffusion decreases. Figure 6 shows
solutions for E = 27.6339, for the ratios Lµ/L1/2 of (a) 1/5, (b) 1/10, and (c) 1/50. The system undergoes
transition from a stable detonation to a period-1 limit cycle, to a period-2 limit cycle. The figure shows an
amplitude increase in the pulsations with (a) relaxing to a P ≈ 4.213 MPa, (b) having a relative maximum
of Pmax ≈ 4.799 MPa and (c) having relative maxima of Pmax ≈ 5.578 MPa and Pmax ≈ 5.895 MPa. In
addition, the frequency of the pulsations also decreases with decreasing diffusion. In the Lµ/L1/2 = 1/50
case the period-2 behavior of the inviscid case has been recovered.

V. Conclusion

Investigation of the one-step kinetic model of one-dimensional unsteady detonation with mass, momen-
tum, and energy diffusion has shown that the dynamics are significantly influenced in the region of instability
or near instability relative to its inviscid counterpart. As in the inviscid limit, bifurcation and transition to
chaos is predicted and shows similarities to the logistic map. For physically motivated reaction and diffusion
length scales not unlike those for H2-air detonations, the addition of diffusion delays the onset of instability.
As physical diffusion is reduced, the behavior of the system trends towards the inviscid limit. If the dynamics
of unstable and marginally stable denotations are to be captured, physical diffusion needs to be included and
needs to dominate numerical diffusion. It is likely that these results will extend to detailed kinetic systems
and that detonation cell pattern formation will be influenced by the magnitude of the physical diffusion.9
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Table 2. Ranges of different periods for viscous detonation, Lµ/L1/2 = 1/10.

E Period

< 27.1404 stable

[27.1404, 29.3116] 1

[29.3116, 29.8840] 2

[29.8840, 30.0074] 4

[30.0074, 30.0339] 8

[30.0600, 30.2591] chaotic

[30.2591, 30.2788] 5

[30.2788, 30.3578] chaotic

[30.3578, 30.3775] 5

[30.3775, 30.4071] chaotic

[30.4071, 30.4565] 3

[30.4565, 30.4959] 6

[30.4959, 30.8512] chaotic

[30.8512, 30.8611] 3

[30.8611, 30.9203] 6

> 30.9203 chaotic
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Figure 1. The normalized L1 error versus ∆x for a manufactured solution.
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Figure 2. P versus t, E = 26.647, Lµ/L1/2 = 1/10, stable viscous detonation.
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Figure 3. P versus t, E = 27.6339, Lµ/L1/2 = 1/10, period-1 viscous detonation.
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Figure 4. P versus t for viscous detonation with Lµ/L1/2 = 1/10: (a) E = 29.6077, period-2, (b) E = 30.0025,
period-4, (c) E = 30.2689, period-5, (d) E = 30.3578, chaotic, (e) E = 30.4762, period-6, (f) E = 30.8512, period-3.
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Figure 6. P versus t for viscous detonation with E = 27.6339 and diminishing diffusion effects: (a) Lµ/L1/2 = 1/5,
stable, (b) Lµ/L1/2 = 1/10, period-1, (c) Lµ/L1/2 = 1/50, period-2.
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