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Motivation

• Standard result from non-linear dynamics: small scale phenomena can

influence large scale phenomena and vice versa.

• What are the risks of using reactive Euler instead of reactive

Navier-Stokes?

• Might there be risks in using numerical viscosity, LES, and turbulence

modeling, all of which filter small scale physical dynamics?

– For one-step kinetics, yes: there are clear and quantifiable risks.

– For detailed kinetics, definitive calculations await, but probably yes.



Motivation
• It is often argued that viscous forces and diffusive effects are small, do not affect detonation

dynamics, and thus can be neglected.

• Tsuboi et al., (Comb. & Flame, 2005) report, even when using micron grid sizes, that some

structures cannot be resolved.

• Powers, (JPP, 2006) showed that two-dimensional detonation patterns are grid-dependent

for the reactive Euler equations, but relax to a grid-independent structure for comparable

Navier-Stokes calculations.

• Using a one-step kinetics model, we (49th AIAA ASM, 2011) showed that when the viscous

length scale is similar to that of the finest reaction scale, viscous effects play a critical role in

determining the long time behavior of the detonation

• This suggests grid-dependent numerical viscosity may be problematic and one may want to

consider the introduction of physical diffusion.
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Review of hydrogen detonation

• Powers & Paolucci (AIAA J., 2005) studied the reaction length scales of

a steady, inviscid hydrogen detonation and found the finest length

scales on the order of sub-microns to microns and the largest on the

order of centimeters with ambient conditions of 1 atm and 298 K.

• These small scales are continuum manifestations of molecular

collisions.

• This range of scales must be resolved to capture the dynamics.



Review of hydrogen detonation

• Sussman (Ph.D. Thesis, 1995) performed one-dimensional simulations

using only 20 points in the induction zone.

• Using a massively parallel computing environment, Oran et al. (Comb.

& Flame, 1998 ) studied the development of detonation cells in a

low-pressure hydrogen mixture in two dimensions.

• Eckett (Ph.D. Thesis, 2001) found that 150 points in the induction zone

were necessary capture the dynamics of an overdriven, inviscid

detonation at an ambient pressure of 1 atm.

• Singh et al. (Comb. Theory & Mod., 2001) simulated a

one-dimensional, unsteady, viscous, detonation in a

hydrogen-oxygen-argon mixture using an adaptive mesh.



Review of hydrogen detonation

• Yungster and Radhakrishan (Comb. Theory & Mod., 2004) found that a

minimum resolution of near one micron was necessary to capture the

dynamics in the inviscid limit at ambient pressure of 0.197 atm.

• Daimon and Matsuo (Phys. Fluids, 2007) found that as the overdrive is

lowered, the long time behavior of the detonation became more

complex.

• Using an adaptive mesh in a parallel computing environment, Ziegler et

al. (J. Comp. Phys., 2011) examined a viscous double-Mach reflection

detonation and found that even with a resolution near a micron only

qualitative convergence was achieved.



Model: Reactive Navier-Stokes Equations

• unsteady,

• detailed mass action kinetics with Arrhenius temperature dependency,

• ideal mixture of calorically imperfect ideal gases,

• physical viscosity and thermal conductivity,

• multicomponent mass diffusion with Soret and DuFour effects



Unsteady, Compressible, Reactive Navier-Stokes
Equations
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Computational Methods

• Inviscid Dynamics

– High-order shock-fitting algorithm adapted from Henrick et al. (J.

Comp. Phys., 2006).

– Equations transformed to a shock-attached frame, jump conditions

enforced at shock boundary, and fifth order Runge-Kutta used for

time integration.

• Viscous Dynamics

– Wavelet Adaptive Multiresolution Representation (WAMR) method

first developed by Vasilyev and Paolucci (J. Comp. Phys.,

1996,1997) employed.

– An adaptive mesh refinement technique using wavelet functions

which have compact support in both space and time enables the

use of many less points to accurately represent a flow field.



Case Examined

• Overdriven detonations with ambient conditions of 0.421 atm and

293.15 K

• Initial stoichiometric mixture of 2H2 + O2 + 3.76N2

• DCJ ∼ 1961 m/s

• Overdrive is defined as f = D2

o/D2

CJ

• Overdrives of 1.025 < f < 1.150 were examined



Continuum Scales

• The mean-free path scale is the cut-off minimum length scale

associated with continuum theories.

• A simple estimate for this scale is given by Vincenti and Kruger (1967):
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`

10
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´

. (1)
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• λ < Lµ < Lr



Inviscid Steady-State: Mass Fractions
f = 1.15
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Inviscid Steady-State: Pressure
f = 1.15
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Inviscid Transient Behavior: Stable Detonation
f = 1.15
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Near Neutral Stability
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Inviscid Transient Behavior: Unstable Detonation
f = 1.10
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• Frequency of 0.97 MHz agrees well with both the frequency,

1.04 MHz, observed by Lehr (Astro. Acta, 1972) in experiments and

the frequency, 1.06 MHz, predicted by Yungster and Radhakrishan.

• The maximum detonation front pressure predicted, 13.5 atm, is

similar to the value of 14.0 atm found by Daimon and Matsuo.



Lehr’s High Frequency Instability

• Experiment of shock-induced

combustion in flow around a

projectile in an ambient stoichio-

metric mixture of 2H2 + O2 +

3.76N2 at 0.421 atm.

• Projectile velocity yields an

equivalent overdrive of f ≈

1.1

• The observed frequency was

approximately 1.04 MHz



Unstable, Inviscid Detonation: x-t Diagram
f = 1.10
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Inviscid Transient Behavior: Various Overdrives
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Inviscid Phase Portraits: Various Overdrives
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Stable, Viscous Detonation: Long Time Structure
f = 1.15
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Stable, Viscous Detonation: Transient Behavior
f = 1.15
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Unstable, Viscous Detonation: Long Time Structure
f = 1.10
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Unstable, Viscous Detonation: Transient Behavior
f = 1.10
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The addition of viscous effects have a stabilizing effect, decreasing the

amplitude of the oscillations by ∼ 25%.



Unstable, Viscous Detonation: x-t Diagram
f = 1.10
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Conclusions

• Unsteady, inviscid detonation dynamics can be accurately simulated

when all reaction length scales admitted by detailed kinetics are fully

resolved using a fine grid; the shock-fitting technique used assures

numerical viscosity is minimal.

• At high overdrives, the detonations are stable.

• As the overdrive is decreased, the long time behavior becomes

progressively more complex.

• In the inviscid limit a critical overdrive, f = 1.130, is found below

which oscillations at a single frequency appear.

• As the overdrive is lowered, the amplitude of these oscillations

increases.



Conclusions

• Lowering the overdrive yet further gives rise to oscillations at multiple

frequencies.

• The predicted 0.97 MHz frequency for a f = 1.10 overdriven

detonation agrees well with the frequency of 1.04 MHz observed by

Lehr in his experiments of shock-induced combustion flow around

spherical projectiles.

• The structure of the overdriven detonation relative to the inviscid limit is

modulated by the addition of mass, momentum, and energy diffusion.

• The addition of viscous effects has a stabilizing effect on the long time

behavior of a detonation; the amplitude of the oscillations is

significantly reduced.


