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The dynamics of one-dimensional, overdriven, hydrogen-air detonations predicted in the

inviscid limit as well as with the inclusion of mass, momentum, and energy diffusion were

investigated. A series of shock-fitted calculations was performed in which the overdrive

was varied in the inviscid limit. The 0.97 MHz frequency of oscillation predicted for a

f = 1.1 overdriven detonation agrees well with the value of1.04 MHz observed by Lehr in

the equivalent shock-induced combustion experiment around a spherical projectile. As the

initial overdrive is lowered, the long time behavior of the system becomes more complex,

causing the amplitude of pulsations to increase and oscillations at multiple frequencies

to appear. When the viscous analog of these detonations was simulated, it was found

that viscous effects slightly alter the structure of a stable detonation and can significantly

decrease the amplitude of pulsations in an unstable detonation.

I. Introduction

A detonation is shock-induced combustion wave in which exothermic energy release contributes to driving
the shock. This exothermic energy release is a consequence of chemical reactions, and these reactions occur on
various scales. As demonstrated by Powers and Paolucci1 using a spatial eigenvalue analysis on a hydrogen-
air model, for a steadily traveling Chapman-Jouguet (CJ) detonation with an ambient state at standard
atmospheric conditions, these scales range from 10−5 cm to 100 cm at equilibrium; away from equilibrium
the breadth of scales can be even larger. These fine reaction scales are a manifestation of an averaged
representation of the molecular collision model in which the fundamental length scale is the mean free path,
Al-Khateeb et al.2 In order to have a mathematically verified prediction, this wide range of scales must be
resolved; as such, studies of detonations using detailed kinetics models have been limited.

As Shepherd3 stated in his review, much of the modeling of detonations has been done with simplified
kinetics in the inviscid limit. However, there have been some studies done with detailed kinetics. One of the
first was by Sussman,4 who performed one-dimensional, unsteady simulations of hydrogen-air detonations in
the inviscid limit using only 20 points in the induction zone with an ambient pressure of 0.421 atm. Using
a massively parallel computing environment, Oran et al.5 performed an inviscid study of the development
of detonation cells in two dimensions at an ambient pressure of 6.58 × 10−2 atm in a hydrogen-oxygen-
argon mixture. While studying a hydrogen-oxygen mixture diluted by argon in the inviscid limit, Eckett6

found that a minimum of 150 points in the induction zone was necessary to capture the dynamics of an
overdriven, inviscid detonation for a mixture at an ambient atmospheric pressure. Using an adaptive method,
Singh et al.7 simulated a one-dimensional, unsteady, viscous detonation in a hydrogen-oxygen-argon mixture.
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Yungster and Radhakrishan8 performed a convergence study and found that for a hydrogen-air mixture with
an ambient pressure of 0.197 atm a minimum resolution of near one micron was necessary to capture the
dynamics of the detonation in the inviscid limit with shock-capturing. Studying the same highly dilute
mixture as Oran et al., Hu et al.9, 10 suggested that in order to accurately capture the dynamics of the two-
dimensional, inviscid, unsteady detonation, a minimum resolution of 25 microns or 440 points in the induction
zone was necessary. Daimon and Matsuo11 examined various one-dimensional, inviscid, overdriven, hydrogen-
air detonations and found that as the overdrive was decreased, the long time behavior of the detonation
became more complex, similar to the results found by Sussman, Eckett, and Yungster and Radhakrishan for
other hydrogen-based mixtures. While employing an adaptive mesh in a parallel computing environment,
Ziegler et al.12 examined a viscous, double Mach reflection detonation in a hydrogen-air mixture and found
that even with a finest resolution near a micron that their results only exhibited qualitative convergence.

It is clear that the majority of the work performed modeling detonations has been done in the inviscid
limit, as it is sometimes thought that viscous effects are small in detonations or other high-speed flows.
However, this assumption of neglecting viscous effects may be problematic. In detonations propagating into
atmospheric ambient mixtures there are reaction dynamics and steep gradients near a micron scale suggesting
that physical diffusion could play an important role. In fact, while using resolutions near a micron in a
three-dimensional inviscid simulation to predict the behavior of spinning detonations, Tsuboi et al.13 report
that while some structures appear to converge, “The present results cannot resolve such cross-hatchings in
the ribbon because of a lack of grid resolution.” Deiterding14 also reported that the interactions between
chemistry and hydrodynamic flow in inviscid detonations “in general exhibit a strong dependency on the mesh
spacing.” In a two-dimensional study of detonation patterns, Powers15 found that patterns were strongly
grid-dependent for the reactive Euler equations, but for the reactive Navier-Stokes equations relaxed to a
grid-independent dissipative structure. This suggests that numerical diffusion is playing a significant role.
Therefore, one should consider the introduction of grid-independent physical diffusion. We have previously
investigated detonations with the addition of mass, momentum, and energy diffusion to the model in the one-
step model.16 It was shown that when the viscous length scale is similar to that of the finest reaction scale,
viscous effects play a critical role in determining the long time behavior of the detonation. In particular,
viscous effects delay the transition to instability, and can play a dramatic role for detonations in the highly
nonlinear regime characterized by oscillations at multiple frequencies.

The goal of this paper is to explore the long time dynamics of a hydrogen-air detonation using detailed
kinetics in the inviscid limit and to demonstrate how the addition of physical mass, momentum, and energy
diffusion affects the system. The plan of this paper is as follows. The mathematical model is presented
followed by a description of the computational methods. This model is used to predict the dynamics of
several overdriven hydrogen-air detonations. It will be shown that as the initial overdrive is decreased,
the long time behavior becomes more complex, in agreement with similar previous studies performed in the
inviscid limit. As seen in the one-step model, the addition of viscous terms will be shown to have a stabilizing
effect.

II. Model

A. Mathematical model

The governing equations are the reactive, compressible Navier-Stokes equations and are expressed as

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂

∂t
(ρu) + ∇ · (ρuu + pI− τ ) = 0, (2)
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”

= 0, (3)

∂

∂t
(ρYi) + ∇ · (ρuYi + ji) = Miω̇i, (4)

where Eqs. (1)-(4) represent the conservation of mass, linear momenta, energy and the evolution of species.
The independent variables are t, the temporal coordinate, and x the spatial coordinates. The dependent
variables are the mixture mass density, ρ, the mixture velocity components, u, the mixture pressure, p, the
viscous stress tensor, τ , the specific internal energy of the mixture, e, the total heat flux vector, q, the
mass fraction, Yi, the diffusive mass flux, ji, the molecular mass, Mi, and the molar production rate per
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unit volume, ω̇i, for the ith specie. The ∇ symbol is the gradient operator, and I is the identity matrix.
Equations (1) and (3) are scalar equations, and Eqs. (2) and (4) vector equations of lengths d and N − 1,
respectively, where d is the dimension of the problem, and N is the number of species. To close the system,
constitutive relations must be specified; the following constitutive relations have been chosen for a mixture
of N species composed of L elements interacting in J reactions:
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where M is the mixture molecular mass, Dik the multi-component diffusion coefficient between the ith and
kth species, yi the mole fraction of the ith specie, DT

i the thermal diffusion coefficient of the ith specie,
T the temperature, µ the dynamic viscosity of the mixture, k the thermal conductivity of the mixture,
R the mixture gas constant, cP,i the specific heat at constant pressure, hi the specific enthalpy, and href

i

the specific enthalpy evaluated at the reference pressure of the ith specie, R the universal gas constant
which is 8.314 × 107 erg/(mole K), pref the reference pressure which is 1.01325× 106 dyne/cm2, T ref the
reference temperature which is 298.15 K, νij the net stoichiometric coefficient, ν

′

ij the forward stoichiometric

coefficient, and ν
′′

ij the reverse stoichiometric coefficient of the ith specie in the jth reaction, rj the reaction
rate, kj the Arrhenius model for the reactions’ temperature sensitivity, aj the collision frequency factor, βj
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the temperature exponent, Ej the activation energy, and Kc
j the equilibrium constant for the jth reaction, go

i

the ith species’ chemical potential at the reference pressure, and φli the number of atoms of element l in the
ith species. Equations (5)-(7) give constitutive relations for mass, momentum, and energy diffusion, which
are an extended Fick’s law, a Newtonian stress-strain rate relation, and an extended Fourier’s law. The form
of both Fourier’s and Fick’s law are appropriate for a mixture of ideal gases, as detailed in a derivation by
Merk18 and summarized by Kee et al.19 and account for multicomponent mass diffusion as well as Soret and
DuFour effects. Equation (6) has used Stokes’ assumption. The mixture properties and reaction properties
are evaluated using the Transport19 and CHEMKIN20 packages, respectively. Note for inviscid calculations,
all diffusion coefficients, viscosity, and thermal conductivity are taken to be zero.

B. Computational method

For inviscid calculations, the shock-fitting strategy of Henrick et al.17was adapted to allow for an arbitrary
number of chemical species as well as equations of state for ideal mixtures of calorically imperfect ideal
gases, suitable for evaluation with the CHEMKIN package and enforces the shock state at the boundary. The
underlying numerical scheme is a pointwise method of lines with fifth order spatial and fifth order Runge-
Kutta temporal discretization. A central spatial scheme was used with special one-sided differences utilized
near the shock. For the viscous calculations, the Wavelet Adaptive Multiresolution Representation (WAMR)
method, first developed by Vasilyev and Paolucci,21, 22 was used. WAMR is an adaptive mesh refinement
technique using wavelets. These functions have compact support in both space and scale. This compact
support allows for a large compression of data, enabling the use of many less points to accurately represent
a flow field relative to a wide variety of other approaches. The WAMR method has been applied successfully
to number problems in a serial computational environment.7, 23–27 For a detailed description of the method
in its current form, see Zikoski.28 Typical simulation times for the inviscid calculations were ∼ 2.5 µs/per
day and for viscous calculations ∼ 1 µs/per day on an AMD 2.4 GHz processor with 512 kB cache. In the
inviscid calculations a total of 75 days was necessary to simulate 200 µs. In the viscous calculations a total
of 45 days was necessary to simulate 50 µs.

III. Results

A series of inviscid and viscous calculations for one-dimensional, overdriven, hydrogen-air detonations
was performed at ambient conditions of 293.15 K and 0.421 atm with the initial stoichiometric mixture of
2H2 + O2 + 3.76N2. This choice of ambient conditions was made to enable direct comparison with previous
calculations done by Daimon and Matsuo as well as the experiments of Lehr.29 It is also very close to
conditions examined by Yungster and Radhakrishan. We employ the detailed kinetic mechanism used by
Powers and Paolucci, drawn from Miller et al.30 shown in Table 1, which is composed of 19 reversible
reactions, contains 9 species and 3 elements. Using this mechanism and these ambient conditions yields a
CJ velocity of DCJ ∼ 1961 m/s, which is similar to that found by Sussman, DCJ ∼ 1958 m/s.

The use of continuum models like the Euler or Navier-Stokes equations is sometimes called into question
at the fine scales needed in detonation modeling. The mean-free path is the cut-off minimum length scale
associated with continuum theories. Using the simple definition given by Vincenti and Kruger,31 the mean-
free path in a f = 1.150 overdriven detonation is λ = M/

(√
2πNAρd2

)

≈ 3 × 10−6 cm, where M ≈
20.911 g/mole, NA = 6.022× 1023 molecules/mole is Avogadro’s constant, ρ ≈ 2.00× 10−3 g/cm3, and d ≈
3.621×10−8 cm is the molecular collision diameter. The overdrive of a detonation is defined as f = D2

o/D2
CJ ,

where Do is the initial detonation velocity, and DCJ is the Chapman-Jouguet velocity. Using an approximate
kinematic viscosity in the burned gases of ν = 6× 10−1 cm2/s and a frozen sound speed in the reacted zone
of c ≈ 9 × 104 cm/s, an approximate viscous length scale is ν/c = 6.67 × 10−6 cm ≈ O(10−5 cm). The
finest reaction length scale was calculated by the spatial eigenvalue analysis method of Powers and Paolucci
and was found to be near 10−4 cm. The finest reaction length scales are near those of the viscous scales,
and the viscous terms in the Navier-Stokes equations may become important. The necessary discretizations
to capture the inherent physics in the inviscid and viscous models are within the continuum regime. The
Knudsen number, Kn = λ/L, where L is a representative length scale of the problem, is an indicator of
how well continuum model captures the physics. Application of continuum models requires Kn . O(100).
The respective Knudsen numbers are Kn = 3× 10−2 and Kn = 4× 10−1 for the inviscid and viscous model
physics.
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Table 1. Hydrogen-air reaction mechanism
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βj Ej
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cal
mole

”

1 H2 + O2 ⇋ 2OH 1.70 × 1013 0.00 47780

2 OH + H2 ⇋ H2O + H 1.17 × 109 1.30 3626

3 H + O2 ⇋ OH + O 5.13 × 1016 −0.816 16507

4 O + H2 ⇋ OH + H 1.80 × 1010 1.00 8826

5 H + O2 + M ⇋ HO2 + Ma 2.10 × 1018 −1.00 0

6 H + O2 + O2 ⇋ HO2 + O2 6.70 × 1019 −1.42 0

7 H + O2 + N2 ⇋ HO2 + N2 6.70 × 1019 −1.42 0

8 OH + HO2 ⇋ H2O + O2 5.00 × 1013 0.00 1000

9 H + HO2 ⇋ 2OH 2.50 × 1014 0.00 1900

10 O + HO2 ⇋ O2 + OH 4.80 × 1013 0.00 100

11 2OH ⇋ O + H2O 6.00 × 108 1.30 0

12 H2 + M ⇋ H + H + Mb 2.23 × 1012 0.50 92600

13 O2 + M ⇋ O + O + M 1.85 × 1011 0.50 95560

14 H + OH + M ⇋ H2O + Mc 7.50 × 1023 −2.60 0

15 H + HO2 ⇋ H2 + O2 2.50 × 1013 0.00 700

16 HO2 + HO2 ⇋ H2O2 + O2 2.00 × 1012 0.00 0

17 H2O2 + M ⇋ OH + OH + M 1.30 × 1017 0.00 45500

18 H2O2 + H ⇋ HO2 + H2 1.60 × 1012 0.00 3800

19 H2O2 + OH ⇋ H2O + HO2 1.00 × 1013 0.00 1800

Enhanced third-body efficiencies with M :

Ma: fH2O = 21.0, fH2
= 3.30, fN2

= 0.00, fO2
= 0.00

Mb: fH2O = 6.00, fH = 2.00, fH2
= 3.00

Mc: fH2O = 20.0

A. Inviscid overdriven detonations

Time-dependent inviscid calculations were performed using a highly accurate shock-fitting technique to avoid
issues associated with shock-capturing techniques when solving the Euler equations, e.g. spurious oscillations
as seen by Quirk.32 These calculations were performed using a uniform spatial discretization of one micron
in a shock-attached frame.

1. Steady-structure of an overdriven detonation

The steady-state structure was calculated in the manner of Powers and Paolucci, integrating only spatial or-
dinary differential equations using a fifth-order Runge-Kutta scheme with a spatial discretization of 10−8 cm.
The pressure profile occurring behind a f = 1.150, overdriven hydrogen-air detonation is shown in Fig. 1(a).
The pressure begins to decrease near x = 10−2 cm, indicating the end of the induction zone. The evolu-
tion of species behind this same overdriven detonation front is shown in Fig. 1(b). The disparity in the
reaction length scales is clearly depicted. The first minor specie, OH, departs from power law growth near
x = 4 × 10−4 cm. This indicates the beginning of the induction zone. Final relaxation of the species to
equilibrium occurs near x = 100 cm. Thus, to accurately capture the true dynamics of the detonation, the
minimum spatial discretization necessary is on the order of a micron, and the macroscale must be on the
order of centimeters or longer.

2. Stable detonation

A prediction of the time-dependent behavior of the same f = 1.150 overdriven detonation was initialized
using a highly-resolved steady-state solution of the type presented in the previous section using a domain
of 10 cm. Figure 2 shows the computed detonation front pressure of the time-dependent prediction as well
as the steady ZND detonation pressure. It is clear that the time-dependent prediction relaxes to the steady
solution. The minute differences at long times between the time-dependent and steady-state predictions
result from using a slightly more coarse spatial resolution in the time-dependent calculation.
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3. Unstable detonations

Using the shock-fitting technique, various overdrives were examined, and the neutral stability boundary was
found at an overdrive of f ≈ 1.130. Several of these overdriven inviscid detonation predictions are shown in
Fig. 3. For overdrives of 1.025 < f < 1.130 pulsations at times long relative to the oscillation period were
predicted. As an example, for a f = 1.125 overdriven detonation, oscillations with a frequency of 1.00 MHz
developed. For f < 1.025, the pulsation amplitudes become large enough to cause the curve fits used for
thermodynamic properties to be invalid.

In shock-induced combustion flow around spherical projectiles in hydrogen-air mixtures Lehr observed
longitudinal oscillations. At an inflow condition corresponding to an overdrive of f ≈ 1.10, Lehr observed
a frequency of 1.04 MHz. For this same overdrive, we predict a frequency of 0.97 MHz. Similar results
were reported by Yungster and Radhakrishan. As an example for an overdrive of f = 1.09 with an ambient
temperature of 298 K they found a frequency of 1.06 MHz. Thus, it seems that the instability observed
by Lehr in multiple dimensions is captured well by a one-dimensional model. As the initial overdrive is
lowered, the long time behavior of the inviscid detonations becomes more complex with the amplitude of the
oscillations increasing and oscillations appearing at different frequencies. Daimon and Matsuo also found
similar results. As example they found for a f = 1.10 overdriven detonation a maximum detonation pressure
of 14.0 atm. For this same overdrive, we found the maximum detonation front pressure of 13.5 atm. They
do not report frequencies explicitly, but visual inspection suggests that the frequencies are in the 1 MHz
range. The neutral stability boundary found here is slightly lower than that found by Daimon and Matsuo.
Though they do not explicitly state it, it can be inferred that their neutral stability boundary is closer to
f = 1.20. This discrepancy may be due to difference in chemical mechanisms used. We also speculate that
the numerical diffusion and other issues associated shock capturing have an effect on the calculation of the
stability boundary. Also, the initial numerical perturbations which incite the physical instability are many
orders of magnitude smaller with this shock-fitting scheme compared with a shock-capturing scheme; thus,
the closer to the neutral stability boundary, the longer the instability takes to reach a limit cycle.

B. Viscous effects

Using the WAMR, as described in Section II.B with an error tolerance of ǫ = 5 × 10−4, several simulations
of viscous detonations were performed. These simulations were initialized using the ZND profile with a
superimposed smooth transition from the shocked state to the ambient state over 10−3 cm. The finest
resolution utilized in these viscous simulations was 7 × 10−6 cm.

Examining a viscous detonation with an overdrive above the inviscid neutral stability point, it was found
that a stable detonation was predicted in viscous case as well. This is shown in Fig. 4, which depicts the
pressure versus time in both the viscous and inviscid cases. The early time perturbations present in the
viscous case are due to the use of the ZND profile for initialization. However, by about 40 µs, the initial
perturbations of the detonation front have nearly relaxed to zero. Even though both cases exhibit stability,
Figs. 5 and 6 show that, while small, viscous effects still affect the shape of the detonation front. Figure 5
shows the long time structure of the OH mass fraction, and it is clear that the viscous effects cause a slight
lengthening of the induction zone. It can be discerned from Fig. 6 that in the stable case viscous processes
only have a slight effect on the structure of pressure, smoothing the detonation front.

Examining a lower overdrive, f = 1.100, an unstable detonation is predicted in the inviscid limit. Figure 7
shows that the viscous equivalent is also unstable; however, with the addition of viscous effects, the amplitude
of the oscillations is damped by ∼ 25%. Moreover, we anticipate by analogy with our one-step results16 that
more extensive calculations will reveal that the stability boundary is delayed by the inclusion of viscous
effects, and in the highly unstable regime the effects of viscosity on the long time dynamics will be large.
Figure 8 shows the structure of the pressure wave at t = 40 µs for the viscous and t = 140 µs inviscid case.
In both cases, the pressure wave trailing the detonation front shows oscillations which are manifestations of
the detonation pressure oscillations. However, in the zoomed portion of Fig. 8 it is clear that the detonation
peak is spread by the addition of viscous effects.

IV. Conclusions

An investigation of one-dimensional, unsteady, overdriven, hydrogen-air detonations has shown, consis-
tent with previous studies by Sussman, Yungster and Radhakrishan, and Daimon and Matsuo, that as the
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initial overdrive is decreased, the long time behavior becomes progressively more complex. At high over-
drives, the detonations are stable. At a critical overdrive, f ≈ 1.130, for a detonation propagating into a
stoichiometric hydrogen-air mixture at 0.421 atm and 293.15 K, single frequency pulsations appear. The
amplitude of these pulsations increases as the overdrive is lowered further. As the overdrive is decreased
even more, a bifurcation process ensues in which modes at a variety of frequencies are excited. In addition,
the predicted 0.97 MHz frequency for a f = 1.10 overdriven detonation agrees well with the frequency of
1.04 MHz observed by Lehr in his experiments of shock-induced combustion flow around spherical projec-
tiles in a hydrogen-air mixture at a inflow corresponding to a similar overdrive. It has also been seen that
the inclusion of mass, momentum, and energy diffusion modulates the structure of the overdriven detonation
relative to the inviscid limit. Instead of a discrete jump, the detonation front becomes steep, yet smooth in
the presence of viscous effects. Moreover, the addition of physical diffusion has a stabilizing effect on the
long time behavior of a hydrogen-air overdriven detonation. Specifically, the amplitude of the oscillations is
significantly decreased, and we speculate that further calculation will reveal viscosity to delay the onset of
instability. This is the logical extension of the conclusions reached using the one-step kinetics model.16
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Figure 1: Structure of a steady inviscid, overdriven, hydrogen-air detonation, f = 1.150 for (a) pressure and
(b) mass fraction. The detonation front is traveling to the right.
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Figure 2: Time-dependent behavior for an inviscid, overdriven, f = 1.15, hydrogen-air detonation with an
ambient state of 0.421 atm and 293.15 K predicted using a shock-fitting technique.
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Figure 4: Time-dependent behavior for an overdriven, f = 1.150, hydrogen-air detonation with an ambient
state of 0.421 atm and 293.15 K for both the viscous and inviscid cases.
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Figure 7: Time-dependent behavior for an overdriven, f = 1.100, hydrogen-air detonation with an ambient
state of 0.421 atm and 293.15 K, for both the viscous and inviscid cases. The inviscid case has shifted in
time by a 100 µs.
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Figure 8: Structure of pressure in an overdriven, f = 1.100, hydrogen-air detonation with an ambient state
of 0.421 atm and 293.15 K. The viscous case is shown at t = 40 µs, and the inviscid case is shown at
t = 140 µs.
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