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Analysis of the Reaction-Advection-Diffusion

Spectrum of Laminar Premixed Flames

Ashraf N. Al-Khateeb∗, Joseph M. Powers†

University of Notre Dame, Notre Dame, Indiana, 46556-5637, USA

The dynamics of one-dimensional laminar premixed combustion in reactive mixtures
described by a 1) simple one-species model, 2) simple two-species model, and 3) detailed
chemical kinetics model with multicomponent transport in hydrogen–air is investigated.
For each model 1) spatially homogeneous results are first obtained, followed by 2) time-
independent, spatially inhomogeneous results, and ended by 3) a generalized eigenvalue
analysis to calculate the spatially discretized systems’ time scale spectrum. The results
reveal that for spatially resolved structures, the systems’ short wavelength modes are dom-
inated by diffusion-based time scales, coarse wavelength modes are dominated by reaction-
based time scales, and modes near a cross-over wavelength have time scales dictated by a
combination of reaction and diffusion effects.

I. Introduction

S
imulating chemically reactive flow involves solving a large set of partial differential equations (PDEs)
which represents chemical species evolution coupled with the conservation of mass, momentum, and

energy. For combustion problems which are inherently unsteady and spatially inhomogeneous, the dynamics
are crucial. A common notion in combustion theory is that chemical dynamics are somehow segregated
from the dynamics of advection and diffusion; this notion is especially prevalent in discussion of so-called
operator splitting strategies for numerical simulation of combustion events. In reality, unsteady, spatially
inhomogeneous combustion is better viewed as an event in which reaction, advection, and diffusion time
scales are often fully coupled.

For accurate modeling, the interplay between chemistry and transport needs to be captured. One way to
gain a better understanding of the coupling between transport and chemistry can be achieved via conducting
a spectral analysis of a plane laminar flame structure. It is important in a spectral analysis to guarantee that
all length scales in the underlying steady structure problem have been brought into simultaneous focus. In
recent studies,1, 2 it has been shown that the finest length scale for an atmospheric-pressure laminar premixed
flame is typically on the order of 10−4 cm.

This work will consider linear analysis of three one-dimensional unsteady models of increasing complexity.
For each problem, we will identify 1) the time scales associated with the spatially homogeneous version of
the model, 2) the length scales associated with the steady state version of the model, and 3) the time scales
associated with each Fourier mode of varying wavelength for the full unsteady spatially inhomogeneous
model. In the first problem, we consider a simple model with one species subjected to reaction, advection,
and diffusion. In the second problem, we consider a slightly more complex model in which two uncoupled
species react at two disparate rates and diffuse at the same rate. In the third we consider a premixed mixture
of N calorically imperfect ideal gases that react and diffuse at N widely disparate rates. For this problem,
we specifically consider a N = 9 species model of hydrogen–air combustion.
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II. Simple one species problem

Consider a linear reaction-advection-diffusion PDE, initial, and boundary conditions,

∂ψ(x, t)

∂t
+ u

∂ψ(x, t)

∂x
= D

∂2ψ(x, t)

∂x2
− aψ(x, t), ψ(x, 0) = ψu, ψ(0, t) = ψu,

∂ψ

∂x

∣∣∣∣
x=L

= 0. (1)

where the independent variables t > 0 and x ∈ [0, L] represent the time and distance coordinates, respectively.
Here, ψ(x, t) is a general scaler; u > 0 is a constant wave speed for a right running wave; D > 0 is a diffusion
coefficient, and a > 0 is the consumption rate constant.

II.A. Time scale spectrum

The spatially homogenous version of Eq. (1) is

dψ(t)

dt
= −aψ(t), ψ(0) = ψu. (2)

This has solution
ψ(t) = ψu exp (−at) . (3)

The time scale τ over which ψ evolves is τ = 1/a; there is only one time scale in this spectrum. To capture
these dynamics in a numerical simulation, it is necessary to employ ∆t < 1/a. Since there is only one time
scale, this formulation of the system is not temporally stiff.

II.B. Length scale spectrum

A simple means to determine an upper bound for the required grid resolution is to solve for the steady
structure ψs(x), which is governed by

u
dψs(x)

dx
= D

d2ψs(x)

dx2
− aψs(x), ψs(0) = ψu,

dψs
dx

∣∣∣∣
x=L

= 0. (4)

The solution of Eq. (4) is

ψs(x) = ψu

(
exp(µ1x) − exp(µ2x)

1 − µ1

µ2

exp(L(µ1 − µ2))
+ exp(µ2x)

)
, (5)

where

µ1 =
u

2D

(
1 +

√
1 +

4aD

u2

)
, µ2 =

u

2D

(
1 −

√
1 +

4aD

u2

)
. (6)

Because of the imposed positivity of u, D, and a, we see that µ1 > 0 and µ2 < 0.
There are two length scales in this discrete spatial spectrum, ℓ1 = |1/µ1|, ℓ2 = |1/µ2|, twice the number

in the time scale spectrum found earlier. The scale ℓ1 becomes irrelevant in the limit as L → ∞. In that
limit, recalling that x ∈ [0,∞), the steady solution becomes

ψs(x) = ψu exp(µ2x). (7)

Let us examine Eq. (6) in the limit when reaction dominates advection and diffusion, a >> u2/D. In this
limit Eq. (6) reduces to µ1,2 ∼ ±

√
a/D, and thus

ℓ1 = ℓ2 = ℓ =

∣∣∣∣
1

µ1,2

∣∣∣∣ =

√
D

a
. (8)

We take the spatial stiffness Sx as the ratio of the largest to the smallest length scale. Since both are
the same, the spatial stiffness here is unity, Sx = 1, i.e. the system is not spatially stiff. The length
scale ℓ provides an upper bound for the required numerical resolution, ∆x ≤ ℓ, in order for any numerical
calculation to remain faithful to the underlying mathematics, which itself reflects the physics of coupled
reaction-advection-diffusion, and to bring the numerical solution of Eq. (1) into the convergence domain.
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II.C. Spatio-temporal spectrum

II.C.1. Continuous spectrum

In the limit as L→ ∞, it is possible to find a simple analytic expression for the continuous spectrum of time
scales τ associated with a particular Fourier mode of wavenumber k. A Fourier mode with wavenumber k
has wavelength λ = 2π/k. We ignore here boundary conditions and assume a solution of the form

ψ(x, t) = Ψ(t)eıikx, (9)

where Ψ(t) is the time-dependent amplitude of the chosen Fourier mode. Substituting this into Eq. (1) gives
the ordinary differential equation (ODE):

dΨ(t)

dt
= −

(
ıiku+Dk2 + a

)
Ψ(t). (10)

This has a solution of the form
Ψ(t) = C exp

(
−(ıiku+Dk2 + a)t

)
, (11)

where C is an arbitrary constant. The continuous time scale spectrum thus is given by

τ =
1

a+ ıiuk +Dk2
, 0 < k ∈ R. (12)

From Eq. (12), it is clear that for small wavenumbers, i.e. long wavelengths, the time scales will be dominated
by reaction:

lim
k→0

τ = lim
λ→∞

τ =
1

a
. (13)

However, for large wavenumber (small wavelength) the time scales are dominated by diffusion:

lim
k→∞

τ = lim
λ→0

τ =
1

Dk2
=

1

4π2

λ2

D
. (14)

Advection does not play a role in determining the limiting values of the time scale spectrum. We take
the temporal stiffness St as the ratio of the largest to the smallest time scale. Here we have

St =
1/a

λ2/(4π2D)
, (15)

and we see as the wavelength approaches zero, the stiffness becomes infinite.
From Eq. (12) we see that a balance between reaction and diffusion exists for wavenumber k =

√
a/D.

In terms of wavelength and recalling Eq. (8), we see the balance at

λ

2π
=

√
D

a
= ℓ, (16)

where ℓ = 1/k is proportional to the wavelength.
Let us now study how the magnitude of τ varies with wavelength as predicted by Eq. (12). We find by

expansion that the magnitude of the complex τ is given by

|τ | =




(
a+

D
(
λ
2π

)2

)2

+
u2

(
λ
2π

)2




−1/2

. (17)

Additional insight is gained by examining how |τ | behaves in the long wavelength limit. Taylor expansion
of Eq. (17) in this limit reveals that

|τ | =
1

a

(
1 −

D

a
(
λ
2π

)2 −
u2

2a2
(
λ
2π

)2

)
+ O

(
1

λ4

)
. (18)
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So in the large λ limit, |τ | is dominated by reaction effects, and we see that advection and diffusion both
lower its magnitude.

We examine the behavior of the system quantitatively by choosing numerical values of a = 108 1/s,
D = 101 cm2/s, u = 102 cm/s. These values are somewhat similar to those for the fastest reaction in a
hydrogen–air flame at atmospheric pressure. For these values, we find the estimate from Eq. (8) for the
length scale where reaction balances diffusion as ℓ = λ/(2π) = 3.2×10−4 cm. A plot of |τ | versus ℓ = λ/(2π)
from Eq. (17) is given in Fig. (1). For long wavelengths, the time scales are determined by reaction; for fine
wavelengths, the time scale’s falloff is dictated by diffusion, and our simple formula for the critical ℓ predicts
the transition well. Lastly, for small λ, it is seen that a one decade decrease in λ induces a two decade
decrease in |τ |, consistent with the prediction of Eq. (14) of limλ→0 ln τ ∼ 2 lnλ− ln(4π2D).

II.C.2. Discrete spectrum

For finite L, Eq. (1) possesses a discrete spectrum of time scales, not given here, which reduces to the
continuous spectrum in the limit of large L. To find this, one would use separation of variables to solve the
initial-boundary value problem.

II.C.3. Spatially discretized spectrum

Original boundary conditions. We next approximate the time scale spectrum of Eq. (1) following
discrete approximation of the spatial derivative operators. We do this for illustrative purposes, as the
same technique will be used for the more complicated problem of detailed chemical kinetics later. To this
end, Eq. (1) is spatially discretized ψ(x, t) → ψi(t) using a second order central difference scheme. After
rearrangement of Eq. (1) and application of both boundary conditions, we find the system of Differential
Algebraic Equations (DAEs):

dψ1

dt
= 0, (19a)

dψi
dt

= ψi+1

(
D

∆x2
−

u

2∆x

)
− ψi

(
a+

2D

∆x2

)
+ ψi−1

(
D

∆x2
+

u

2∆x

)
, i = 2, . . . ,N − 1, (19b)

0 = 3ψN − 4ψN−1 + ψN−2 (19c)

where ∆x > 0 and N > 3 is the total number of the spatial points. Equation (19b) takes a general compact
form of

A ·
dψ

dt
= B ·ψ. (20)

Here A is a singular matrix. If we assume ψ is approximated by υ exp(µt), Eq. (20) reduces to

(µA − B) · υ = 0. (21)

This is a generalized eigenvalue problem, with generalized eigenvalues µ and generalized eigenvectors υ,
which approximate the eigenfunctions of the continuous spatial derivative operator. Both of these can easily
be studied numerically.

Dirichlet boundary condition modification. Additional insights can be drawn by a slight modifica-
tion of the x = L boundary condition to ψ(L, t) = ψu. As a result, Eq. (19b) becomes a complete system, as
the values for ψ1 and ψN are now known. The system takes can be written in the form

dψ

dt
= B ·ψ + C, (22)

where C is a constant vector, and B is a tri-diagonal constant matrix. The time scale spectrum of Eq. (22)
is given by the reciprocal of each of matrix B’s eigenvalues. Since B is a tridiagonal constant matrix, its
eigenvalues can be calculated analytically using a known formula.3 They are, after rearrangement,

µj = −a−
2D

∆x2

(
1 −

√
1 −

u2∆x2

4D2
cos

(
jπ

N − 1

))
, j = 1, . . . ,N − 2. (23)
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Thus, the time scales are

τj =
1

a+ 2D
∆x2

(
1 −

√
1 − u2∆x2

4D2 cos
(

jπ
N−1

)) , j = 1, . . . ,N − 2. (24)

From Eq. (24), it is clear that for large ∆x, the time scales will be dominated by reaction, lim∆x→∞ τj →
1/a. Consequently, to capture these reaction dynamics, it is necessary to employ ∆t ≤ 1/a. We can capture
the first effects of advection and diffusion by studying Eq. (24) in the limits of large N and fast reaction
(a >> D/L2, a >> u2/D) and focusing on the fundamental mode, j = 1. In this case, Taylor series
expansion reveals that

τ1 ∼
1

a

(
1 −

D

a(L/π)2
−

1

4

u2

aD

)
. (25)

Thus, advection and diffusion induce a lowering of the time scale of the fundamental mode, and these
dynamics are based on the physics not the discretization.

On the other hand, for small ∆x the time scales become dominated by diffusion,

lim
∆x→0

τj →
∆x2

4D
. (26)

So, the time step to capture diffusion dynamics is ∆t ≤ ∆x2/(4D). Now, in order to resolve the spatial
structure, the upper bound for the required spatial resolution given by Eq. (8) must at least be employed,
∆x =

√
D/a. By substituting that into Eq. (26), it is clear that the fastest time scale in the minimally

resolved solution is τ = 1/(4a). This is a consequence of the system identifying a natural length scale where
reaction balances diffusion. The temporal stiffness ratio here is

St =
1/a

∆x2/(4D)
, (27)

and becomes ever-greater as ∆x is decreased. Lastly, it is clear that advection is not a major player in
determining the system’s finest time scale.

III. Simple two species problem

In this model problem, an uncoupled reaction-diffusion system of PDEs that exhibits chemical stiffness
is considered; the advection term is excluded. We take

∂ψ1

∂t
= D

∂2ψ1

∂x2
− a1ψ1, (28)

∂ψ2

∂t
= D

∂2ψ2

∂x2
− a2ψ2, (29)

ψ1(0, t) = ψ1u, ψ2(0, t) = ψ2u, (30)

∂ψ1

∂x
(L, t) = 0,

∂ψ2

∂x
(L, t) = 0, (31)

ψ1(x, 0) = ψ1u, ψ2(x, 0) = ψ2u. (32)

where x ∈ [0, L], a1 >> a2 > 0, and D > 0. The chemical stiffness is a consequence of a1 >> a2. Similar
to the previous example, we will see that in addition to chemical stiffness that diffusion induces additional
stiffness, which can be even more demanding than chemical stiffness.

III.A. Time scale spectrum

Here, the spatially homogenous version of this system of PDEs, Eqs. (28)–(29), is given by

dψ1

dt
= −a1ψ1, ψ1(0) = ψ1u (33)

dψ2

dt
= −a2ψ2, ψ2(0) = ψ2u, (34)
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The solution is
ψ1(t) = ψ1u exp(−a1t), ψ2(t) = ψ2u exp(−a2t). (35)

The system has two time scales in its spectrum which are τ1 = 1/a1, τ2 = 1/a2; the temporal stiffness is
St = a1/a2, and the fastest time scale over which the system evolves is τ1 = 1/a1. Thus, to capture the
physical dynamics in a numerical simulation ∆t < 1/a1 needs to be employed.

III.B. Length scale spectrum

To determine an upper bound for the required grid resolution, we solve for the steady structure ψis(x), i = 1, 2
of Eqs. (28)-(29), which is governed by

D
d2ψ1s(x)

dx2
= a1ψ1s(x), (36)

D
d2ψ2s(x)

dx2
= a2ψ2s(x). (37)

We take the boundary conditions to be

x = 0 : ψ1 = ψ1u, ψ2 = ψ2u, (38)

x = L :
dψ1

dx
=
dψ2

dx
= 0. (39)

Assuming solutions of the form ψis(x) = C exp(µx) leads to two characteristic polynomials of the form
Dµ2 − ai = 0. These yield four roots µ = ±

√
ai/D, i = 1, 2. This induces four length scales; note this is

twice as many as the two time scales associated with the spatially homogeneous version of Eqs. (28)-(29).
The associated length scales, two of which are degenerate, are ℓ =

√
D/ai, i = 1, 2. So the system exhibits

a spatial stiffness of Sx =
√
a1/a2.

The steady solution is given by

ψ1s(x) =
ψ1u

cosh
(√

a1

D L
) cosh

(√
a1

D
(L− x)

)
, (40)

ψ2s(x) =
ψ2u

cosh
(√

a2

D L
) cosh

(√
a2

D
(L− x)

)
, (41)

Because a1 >> a2, the smallest physical length scale that has to be captured is

ℓ =

√
D

a1
. (42)

III.C. Spatio-temporal spectrum

III.C.1. Continuous spectrum

Similar to the one species model, if we take L→ ∞ and ignore the boundary conditions, it is possible to find a
simple analytic expression for the continuous spectrum of time scales associated with each particular Fourier
mode. The details of the analysis are similar to that previously given. We assume ψi(x, t) = Ψi(t) exp(ıikx),
which leads to

τi =
1

ai +Dk2
, 0 < k ∈ R. (43)

We then see that limk→0 τi = limλ→∞ τi = 1/ai, and limk→∞ τi = limλ→0 τi = 1/(Dk2) = λ2/(4π2D).

III.C.2. Discrete spectrum

Now consider finite L and re-employ the appropriate boundary conditions. It can be shown using separation
of variables that the solution of Eqs. (28)–(29), is given by

ψi(t, x) = ψis(x) +

∞∑

κ=1

Aκ exp

(
−

(
ai +

(2κ− 1)2π2D

4L2

)
t

)
sin

(
(2κ− 1)π

2L
x

)
, i = 1, 2, (44)

6
American Institute of Aeronautics and Astronautics Paper 2010-0954



where Aκ are constants that can be determined by a Fourier decomposition of the initial conditions. Con-
sequently, the analytical time scale spectrum of this system is given by

τi =
1

ai +D
(

(2κ−1)π
2L

)2 , i = 1, 2, κ = 1, 2, . . . ,∞. (45)

Because we chose a finite spatial domain, the spectrum is discrete.

III.C.3. Spatially discretized spectrum

To illustrate the numerical method which will be used for realistic chemistry, we numerically approximate
the time scale spectrum using a discrete representation of the differential operators. Thus, the eigenvalue
spectrum of Eqs. (28)–(29) is calculated. First, Eqs. (28)–(29) are spatially discretized using second order
central differences. The resulting system of ODEs is written in a compact form as

A ·
dz

dt
= B · z, (46)

where A and B are constant matrices of size 4N × 4N , and z is the set of dependent variables,

A =

[
I2N×2N 02N×2N

02N×2N 02N×2N

]
, (47)

B =





a1IN×N 0N×N ∆N×N 0N×N

0N×N a2IN×N 0N×N ∆N×N

DN×N 0N×N
I 2N×2N

0N×N DN×N




, (48)

z =





ψ1i

ψ2i
dψ1i

dx
dψ2i

dx




, i = 1, . . . ,N , (49)

(50)

where

D =





−3D
2∆x

2D
∆x

−D
2∆x

−D
2∆x 0 D

2∆x 0
. . .

. . .
. . .

0 −D
2∆x 0 D

2∆x

0 0 0




, (51)

∆ =





0 0 0
−1
2∆x 0 1

2∆x 0
. . .

. . .
. . .

0 −1
2∆x 0 1

2∆x
−1
2∆x

2
∆x

−3
2∆x




. (52)

Second, the eigenvalues of Eq. (46) are calculated. Since A is singular, standard eigenvalue analysis is not
applicable. Instead, the generalized eigenvalues and the associated generalized eigenvectors, (i.e. discrete
approximations of the continuous eigenfunctions, which are normal modes), of this dynamical system are
calculated.3 The system’s time scales are the reciprocals of its generalized eigenvlaues.

For a system with a1 = 104 1/s, a2 = 102 1/s,D = 101 cm2/s and a length L = 101 cm, the system’s

time scale spectrum is presented in Fig. 2. Here, for the numerical results, the modified wavelength λ̂ has
been defined based on the number of zero crossings (i.e. normal mode nodes) n, such that

λ̂ =
4L

2n − 1
, n = 1, 2, . . . (53)
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We see that the associated length scale ℓ = λ̂/(2π) is

ℓ =
2L

(2n − 1)π
, n = 1, 2, . . . . (54)

This can be directly compared with the length scale associated with the sine wave of Eq. (44), which is
ℓκ = 2L/((2κ− 1)π), κ = 1, 2, . . . .

Figure 2 shows that the numerically estimated time scales associated with large wavelength modes agree
well with the ones predicted analytically; numerical error becomes higher as the wavelength decreases.
Because of the difficulty in calculating the generalized eigenvalues and eigenvectors of large systems, only a
small window of about three decades of wavelength is shown in Fig. 2.

By focusing only on the fundamental mode and varying L, a clearer understanding can be realized. In
Fig. 3, the system’s time scales associated with the fundamental modes, i.e. eigenfunctions with n = 1, are
tracked as we vary L. Because for n = 1, λ̂ = 2L from Eq. (53), we have λ̂/(2π) = L/π, and we use this for
the abscissa. Here, turning points are seen near L/π ∼ 3 × 10−1 cm and L/π ∼ 3 × 10−2 cm and represent
the length scales where diffusion starts to balance reaction. For this system, one independently predicts
from Eq. (42) that the reaction-diffusion balance for the fastest reaction exists at ℓ1 = 3.2 × 10−2 cm. For
the slowest reaction, one would comparably predict the balance to exist at ℓ2 = 3.2 × 10−1 cm. Moreover,
short domain lengths have fast time scales which are dominated by diffusion, and long domain lengths have
time scales which are reaction-dominated. Furthermore, the effect of adopting identical diffusion coefficients
for each species evolution equation is realized in the diffusion-dominated region; here the two time scales
associated with the fundamental modes are identical.

IV. Laminar Premixed Flames

The one-dimensional laminar premixed mixture of N molecular species composed of L atomic elements
which undergoes J reversible reactions is modeled by the reactive Navier-Stokes equations. By neglecting
body forces and adopting the low-Mach number assumption, which is reasonable for weak deflagration,4 the
governing equations can be written as

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (55)

∂

∂t
(ρh) +

∂

∂x
(ρuh+ Jq) = 0, (56)

∂

∂t
(ρYi) +

∂

∂x
(ρuYi + Jmi ) = ω̇im̄i, i = 1, . . . , N − 1, (57)

where the independent variables are the spatial coordinate x and the time t. In Eqs. (56)–(57), u is the
mixture velocity, ρ is the mass density, h is the mixture specific enthalpy, Jq is total heat flux, and for the ith

species, m̄i, Yi, J
m
i and ω̇i are the molecular mass, the mass fraction, the diffusive mass flux, and the molar

production rate per unit volume, respectively.
By neglecting the thermal diffusion effects, the constitutive relations for diffusive mass fluxes and heat

flux are

Jmi =
ρm̄i

m̄

N∑

j=1
j 6=i

DijYj
Xj

∂Xj

∂x
, i = 1, . . . , N, (58)

Jq = q +

N∑

i=1

Jmi hi, (59)

where

q = −k
∂T

∂x
. (60)

Here, T is the temperature, q is the Fourier heat flux, Dij is the multi-compenent diffusion coefficient, k

is the mixture thermal conductivity, and for the ith species, Xi, hi are the mole fraction and the specific
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enthalpy, respectively. To complete the system, the following set of relations is adopted,

p = ρℜ̄T
N∑

i=1

Yi
m̄i

, (61a)

ω̇i =

J∑

j=1

νijAj T
βj exp

(
−Ēj
ℜ̄T

)( N∏

i=1

(ρ̄i)
ν′

ij −
1

Kc
j

N∏

i=1

(ρ̄i)
ν′′

ij

)
, i = 1, . . . , N, (61b)

Kc
j =

(
pref

ℜ̄T

)P

N
i=1

νij

exp

(
−

∑N
i=1 µ̄

o
i νij

ℜ̄T

)
, j = 1, . . . , J, (61c)

hi = hfi +

∫ T

T ref

cpi(T̃ )dT̃ , i = 1, . . . , N, (61d)

soi = sfi +

∫ T

T ref

cpi

T̃
dT̃ , i = 1, . . . , N, (61e)

µ̄oi = m̄i (hi − Tsoi ) , i = 1, . . . , N, (61f)

h =

N∑

i=1

Yihi, (61g)

m̄ =

N∑

i=1

Xim̄i, (61h)

Xi =
m̄

m̄i
Yi, i = 1, . . . , N, (61i)

ρ̄i =
ρYi
m̄i

, i = 1, . . . , N, (61j)

νij = ν′′ij − ν′ij , i = 1, . . . , N, j = 1, . . . , J, (61k)

0 =
N∑

i=1

φliνij , j = 1, . . . , J, l = 1, . . . , L, , (61l)

1 =

N∑

i=1

Yi, (61m)

0 =

N∑

i=1

Jmi , (61n)

In Eqs. (61), p is the pressure, m̄ is the mixture-average molecular mass, Kc
j denotes the equilibrium

constant for the jth reaction, φli the element index of species i, which gives the number of moles of element
l in species i, and for the ith specie, ρ̄i, cpi, s

o
i , and µ̄oi , which are the concentration (i.e. molar density),

mass-based specific heat at constant pressure, mass-based specific entropy at standard pressure, and molar-
basis specific chemical potential, respectively. The constant parameters are the universal gas constant ℜ̄ =
8.314×107 erg/mole/K is the universal gas constant, pref = 1 atm the reference pressure, and T ref = 298 K
the reference temperature. Also, for each reaction from j = 1, . . . , J, there are Aj , βj , Ēj , ν

′′
ij , ν

′
ij , and νij

which represent the collision frequency factor, the temperature-dependency exponent, the activation energy,
the stoichiometric coefficients of species i denoting the number of moles of products, reactants, and the net
stoichiometric coefficient, respectively.

In this work, the employed kinetic mechanism is extracted from Miller et al.5 This mechanism consists
of J = 19 reversible reactions involving N = 9 species, see Table 1. In this mechanism, the reactant species
are H2, O2, H,O,OH,HO2, H2O2, and H2O. The inert diluent for the mixture is N2.
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IV.A. Time scale spectrum

First, we consider unsteady spatially homogeneous systems. Thus, the governing equations, extracted from
Eqs. (55)–(57), are the following set of ODEs:

dh

dt
= 0, (62)

dYi
dt

=
ω̇im̄i

ρ
, i = 1, . . . , N, (63)

where ρ is governed by the thermal equation of state (61a).
To calculate the time scale spectrum over which the system evolves, an eigenvalue analysis is performed.6

The set of ODEs are lineraized at each time step about the local solution state, and the temporally local
Jacobian matrix J is calculated. The local time scales τi over which the system evolves are given by the
reciprocal of the real parts of the local J’s eigenvalues; τi = 1/ |Re(µi)|. Furthermore, the ratio between the
largest and the smallest time scales identifies the system’s temporal stiffness, St.

Here, a stoichiometric atmospheric–pressure premixed mixture is considered, where the initial molar ratio
is given by 2H2+O2+3.76N2. The system is adiabatic, isobaric, and initially at T ∗ = 1000 K. The evolution
of species mass fractions and the time scales over which the system evolves are presented in Figs. 4–5.

In Fig. 4, at t ≈ 10−7 s the species growth rates change slightly, which indicates that significant disso-
ciation reactions are induced. For 10−6 < t < 10−4 s, the minor species continue to increase rapidly with
different growth rates. On the other hand, the major species H2, O2, and N2 have essentially constant con-
centrations. Just past t ≈ 10−4 s all the species undergo significant change, and the radicals’ mass fractions
reach their maximum values. At t ≈ 3×10−4 s, an exothermic recombination of radicals commences forming
the predominant product H2O, which continues up to t ≈ 10−3 s, after which the system approaches the
equilibrium state.

The time scales over which the system evolves are presented in Fig. 5. There are six time scales in the
spectrum. Because our reaction mechanism has N = 9 species with L = 3 elements being conserved, we find
N − L = 6 independent modes. The multi-scale nature of this problem is clearly seen. Near equilibrium the
slowest time scale is O(10−4 s), and the fastest time scale is O

(
10−8 s

)
, giving rise to St ∼ O(104). The

fastest time scale is consistent with the time scale over which minor species evolve.

IV.B. Length scale spectrum

For the steady planar flame, the following set of equations, which commonly appears in the literature7–9 and
can be easily extracted from Eqs. (55)–(57), is used

d

dx
(ρu) = 0, (64)

ρucp
dT

dx
+
dq

dx
= −

N∑

i=1

(
Jmi

dhi
dx

+ ω̇im̄ihi

)
, (65)

ρu
dYi
dx

+
dJmi
dx

= ω̇im̄i, i = 1, . . . , N − 1. (66)

Equations (64)–(66) describe the steadily propagating laminar premixed flame, and the appropriate set of
boundary conditions is

x = 0 : T = To, Yi +
Jmi
ρu

= Yio, i = 1, . . . , N − 1, (67)

x → ∞ :
dT

dx
→ 0,

dYi
dx

→ 0, i = 1, . . . , N − 1, (68)

x = xf : T = Tf , (69)

where xf is a specified spatial point and Tf is the specified temperature at that location.7 A solution for
this boundary value problem, Eqs. (64)–(66) with the boundary conditions Eqs. (67)–(69), can be obtained
using PREMIX.10

Here, an adiabatic steady one-dimensional laminar premixed flame freely propagating in a stoichiometric
hydrogen–air mixture at p = 1 atm is considered. The unburned mixture’s temperature is Tu = 800 K, the
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specified temperature is assigned at xf = 2.30 cm as Tf = 900 K. Using a grid that has been adaptively
refined to control the error and capture regions of steep gradient, a fully resolved steady species profile is
obtained and presented in Fig. 6.

To numerically obtain all the length scales inherent in this system, the spatial eigenvalue spectrum of
the system’s governing equations is calculated. The robust method developed by Al-Khateeb et al.1, 2 to
calculate the length scales is employed. As a result, the local length scales ℓi are predicted throughout the
domain, Fig. 7. The multi-scale nature of the problem and the length scales over which the species evolve
are shown. There are 2N − L = 15 length scales in the spectrum; this almost twice the number of time
scales for the spatially homogeneous version. It would be exactly twice if element conservation were not
a feature of this system. Extrapolating our analysis of the simple systems, we speculate for large domain
lengths that many of these length scales in the spectrum will become irrelevant. The finest length scale and
the largest length scale for this system vary from 7.60 × 10−4 cm and 1.62 × 107 cm in the preheat zone to
2.41 × 10−4 cm and 2.62 × 100 cm in the hot far-field region, respectively. The spatial stiffness in the hot
region is Sx ∼ O(104).

IV.C. Spatio-temporal spectrum

We next study the time spectrum of a reacting flow system. In principle, we would perturb the steady laminar
flame structure of the previous section. However, this presents overwhelming computational demands in
solving for eigenvalues of very large matrices.

As a useful alternative, we instead find the time scale spectrum associated with a system initially near a
spatially homogenous chemical equilibrium state. This is certainly relevant for laminar flame structure, as it
represents the hot end. A spatially homogeneous system at chemical equilibrium is subjected to a spatially
inhomogeneous perturbation, and its spatio-temporal response is predicted. To achieve this, the equations
are most conveniently posed as a set of 2N + 2 partial differential algebraic equations (PDAEs) in terms
of 2N + 2 state variables z, composed of species mass fraction Yi, species mass flux Jmi , mixture specific
enthalpy h, and Fourier heat flux q. This system, in a compact representation, is

A(z) ·
∂z

∂t
+ B(z) ·

∂z

∂x
= f(z). (70)

When z = ze, a constant vector, the system is in its equilibrium state, such that f(ze) = 0. At this state,
A(z), B(z) take on constant values, A(ze) ≡ Ae, B(ze) ≡ Be. We next define perturbations from the
equilibrium state as z′ ≡ z − ze. We next eliminate z in favor of z′ and linearize f about ze in Eq. (70) to
obtain

Ae ·
∂z′

∂t
+ Be ·

∂z′

∂x
= Je · z′. (71)

Here the constant Jacobian matrix Je has been defined as

Je =
∂f

∂z

∣∣∣∣
z=ze

. (72)

IV.C.1. Continuous spectrum

The continuous spectrum could be studied by assuming solutions of the form z′(x, t) = Z(t) exp(ıikx). We
would arrive at a complicated generalized eigenvalue problem of finite dimension. This is challenging and
will be examined in future work.

IV.C.2. Discrete spectrum

Even more challenging is the calculation of the discrete spectrum over a finite domain, which is again deferred
to the future.

IV.C.3. Spatially discretized spectrum

We instead address the problem via spatial discretization of the spatial derivative operators. Equation (71)
is spatially discretized using a second order finite difference approximation on a spatially uniform grid. Then,
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the resulting equations are cast as a standard dynamical system of the form

A
e ·
dZ

dt
= (J e − B

e) · Z , (73)

where A
e and J

e − B
e are matrices of dimensions 2N (N + 1) × 2N (N + 1), and Z is the set of state

variables. Here A
e is singular. This dynamical system is similar to the dynamical system studied in Sec. III.

The generalized eigenvalues and the associated generalized eigenvectors of this dynamical system can be
calculated, where the system’s time scales are given by the reciprocal of its generalized eigenvlaues.

For the system resulting from perturbing the chemical equilibrium state of the one-dimensional laminar
premixed hydrogen–air flame, the time scale spectrum is presented in Fig. 8, where the modified wavelength
is defined by Eq. (53). Figure 8 clearly shows that the time scales associated with long wavelength modes
match with the chemical time scales shown in Fig 5; they are dictated by reaction. Moreover, the diffusion
effect starts to appear through the slowest time scales associated with small wavelength modes.

In Fig. 9, the system’s times scales associated with the fundamental modes are tracked as we change
the system’s length. For large L, the reaction-advection-diffusion system’s time scales and the reaction-only
system’s time scales are identical; compare Fig. 5 with Fig. 9 at large L. However, for L/π ∼ 10−1 cm the
effect of diffusion can be noted; it increases monotonically as L decreases. Also, the balance between reaction
and diffusion is clear: short wavelength modes are dominated by diffusion, and large wavelength modes are
dominated by reaction. Furthermore, the effect of adopting non-uniform diffusion coefficients, the Dij in
Eqs. (58), is noted in the diffusion dominated region, L ≤ 10−2 cm. One would expect τ ∼ L2/Dij , and thus
on the log-log scale, ln τ ∼ 2 lnL− lnDij , so that the slope of each should be the same, but the intercept is
different for each Dij . It is obvious that in the diffusion-dominated region, there is a two decade drop in τ
for every one decade drop in L, consistent with our estimate.

It is clear from Figs. 8–9 that the branch associated with the slowest chemical time scales starts to become
influenced by diffusion before branches associated with the faster chemical time scales; the turning point for
the fastest chemical time scale branch is L/π ∼ 10−3 cm and for the slowest chemical time scale branch is
L/π ∼ 10−1 cm.

Now we can also try to estimate the turning points by a formula similar to Eq. (8). This is subject to
greater error because we actually have a multicomponent diffusion process, coupled with diffusion of energy
as well. Let us crudely estimate the diffusion coefficient as Dmix and take it to be the largest of either the
mixture mass diffusion coefficient or the energy diffusion coefficient. Our computational prediction gives
Dmix = 11 cm2/s, which arises from energy diffusion. Let us estimate the most rapid reaction rate as the
reciprocal of the fastest reaction time constant, af = 1/(8.3 × 10−9 s) = 1.2 × 108 1/s and likewise for the
slowest reaction rate, as = 1/(1.4 × 10−4 s) = 7.1 × 103 1/s. Then we estimate the turning points for fast
and slow reactions to be

ℓf =

√
Dmix

af
= 3 × 10−4 cm, (74a)

ℓs =

√
Dmix

as
= 5 × 10−2 cm. (74b)

Both of these estimates under-predict the turning points by a factor around two, and this is evident in
Fig. 9. Interestingly, the simple estimate predicts the finest length scale shown by spatial eigenvalue analysis
quite well. Reasons for the discrepancies are unclear, but could be related to the approximations involved
such as the use of mixture properties in the estimates.

However, the location of the turning point for the slowest time scale, where the reaction-diffusion balance
exists, is higher than our prediction in Sec. IV.B for the hydrogen–air flame. This may be due to the full
laminar flame being composed of Fourier modes of smaller wavelengths which have more demanding time
constants.

V. Conclusion

The time scale spectrum of a one-dimensional atmospheric-pressure hydrogen–air system was calculated
via conducting a generalized eigenvalue analysis. It was shown that when the reaction zone structure is
resolved, the small wavelength modes critical in the thin reaction zone structures induced by fast reaction
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have associated with them time scales which are dictated by a balance between reaction and diffusion.
Moreover, for this time spectrum, one can say that: 1) short wavelength modes have very fast time scales
which are dominated by diffusion, 2) modes which have wavelengths ranging from the finest combustion
length scale to the coarsest combustion length scale have time scales which are dictated by a combination
of reaction and diffusion effects, and 3) modes which have coarse wavelengths have time scales which are
reaction-dominated.

The implications for the very fine length and time scales necessary to claim a resolved simulation, i.e. a
Direct Numerical Simulation (DNS), of a combustion process with realistic kinetics and diffusion are obvious.
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Table 1. Hydrogen–air detailed kinetics mechanism.

j Reaction Aj βj Ej[(
mol/cm3

)1−P

N
i=1

ν′

ij /s/Kβj

]
[cal/mol]

1 H2 +O2 ⇋ OH +OH 1.70 × 1013 0.0 47780

2 OH +H2 ⇋ H2O +H 1.17 × 109 1.3 3626

3 H +O2 ⇋ OH +O 5.13 × 1016 −0.816 16507

4 O +H2 ⇋ OH +H 1.80 × 1010 1.0 8826

5 H +O2 +M ⇋ HO2 +Ma 2.10 × 1018 −1.0 0

6 H +O2 +O2 ⇋ HO2 +O2 6.70 × 1019 −1.42 0

7 H +O2 +N2 ⇋ HO2 +N2 6.70 × 1019 −1.42 0

8 OH +HO2 ⇋ H2O +O2 5.00 × 1013 0.0 1000

9 H +HO2 ⇋ OH +OH 2.50 × 1014 0.0 1900

10 O +HO2 ⇋ O2 +OH 4.80 × 1013 0.0 1000

11 OH +OH ⇋ O +H2O 6.00 × 108 1.3 0

12 H2 +M ⇋ H +H +Mb 2.23 × 1012 0.5 92600

13 O2 +M ⇋ O +O +M 1.85 × 1011 0.5 95560

14 H +OH +M ⇋ H2O +M c 7.50 × 1023 −2.6 0

15 H +HO2 ⇋ H2 +O2 2.50 × 1013 0.0 700

16 HO2 +HO2 ⇋ H2O2 +O2 2.00 × 1012 0.0 0

17 H2O2 +M ⇋ OH +OH +M 1.30 × 1017 0.0 45500

18 H2O2 +H ⇋ HO2 +H2 1.60 × 1012 0.0 3800

19 H2O2 +OH ⇋ H2O +HO2 1.00 × 1013 0.0 1800

The non-unity third body collision efficiency coefficients are:
a for reaction 5, αH2

= 3.3, αH2O = 21.
b for reaction 12, αH2

= 3, αH2O = 6, αH = 2.
c for reaction 14, αH2O = 20.
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Figure 1. Time scale spectrum for the versus wavelength for the simple one species reaction-advection-diffusion system;

a = 108 1/s, D = 101 cm2/s, u = 102 cm/s.
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