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Physical Diffusion Cures the Carbuncle Phenomenon
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The supersonic flow of a calorically perfect ideal gas past a two-dimensional blunt body

was investigated. An unphysical anomaly known as the carbuncle phenomenon has been

predicted by earlier studies of this flow that use so-called high resolution schemes which

employ flux limiters within shock-capturing methods applied to the Euler equations. As

a remedy, this study introduces physical momentum and energy diffusion via a simple

discretization of the ordinary Navier-Stokes equations, employed on a sufficiently fine grid

to capture viscous shocks. To check if this cures the anomaly, flow over a cylinder of

radius a = 150 microns of viscous air with freestream Mach number M1 = 5.73, pressure

p1 = 12.4272 Pa, and temperature T1 = 39.667 K was simulated. The numerical solution was

calculated with first order spatial and fourth order temporal discretizations, and it was

seen that physical diffusion, appropriately resolved, removes the carbuncle phenomenon.

I. Introduction

For over two decades, anomalous solutions have been predicted by so-called high resolution schemes
which employ flux limiters within shock-capturing methods applied to the Euler equations in simulating the
supersonic flow of a gas over a blunt body. This aberration, often described as the “carbuncle phenomenon,”
was first predicted by Peery and Imlay [1] and has been widely reported in the literature; representative
samples include contributions from Quirk, [2] Robinet, et al., [3] Srinivasan, et al., [4] Kitamara, et al., [5]
and MacCormack. [6] The carbuncle phenomenon often appears as a high amplitude incongruity in the
neighborhood of the shock’s axis of symmetry. Dumbser, et al. [7] used a robust matrix stability analysis to
demonstrate that above a threshold Mach number M , a wide variety of high resolution schemes applied to
the Euler equations display “unconditional instability with exponential error growth,” independent of both
the time-advancement scheme and chosen Courant-Fredrichs-Lewy (CFL) number. This matrix stability
analysis was extended by Chauvat, et al. [8] As the carbuncle phenomenon is not observed in nature, most
have hypothesized that it is either an anomaly of the chosen numerical method, or an inadequacy of the
underlying mathematical model, with far more attention focused on the former than the latter. Elling [9]
has gone so far as to describe the phenomenon as “incurable.”

However, a small fraction of studies has recognized that physical diffusion can be offerred as a remedy.
Pandolfi and D’Ambrosio [10] considered this but noted for calculations for which the viscous shock was
probably under resolved that “even for unpractically low Reynolds numbers, the solution is still affected
by the carbuncle.” Ismail, et al. [11] considered a viscous cure in passing, but discounted it because the
carbuncle “disappears only at very low Reynolds number.” Liou [12] also briefly described viscous solutions,
but focused on a different approach. Recently, Ohwada, et al. [13] as well as Li, et al. [14] have modeled
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diffusion with a kinetic theory and demonstrated it provides a remedy for carbuncles. Chandrashkar [15]
has formally returned to the Navier-Stokes model. Using an intricate hybrid numerical algorithm which
introduces switches and a blending of other methods, coupled with sufficient numerical resolution, he has
correctly removed carbuncles. A related hybrid method with similar complexities is reported by Nishikawa
and Kitamura. [16] Kopriva [17] and later Hejranfar [18] give detailed discussion of viscous blunt body flows
in the context of a problem in which the shock is fixed as an inflow boundary, thus precluding any carbuncle
development; their results are validated against experimental results of Tewfik and Giedt [19] and can be
compared to the Navier-Stokes solutions of Gnoffo. [20] Additional discussion in the context of a related
problem is given by Druguet, et al. [21]

In this paper, we demonstrate a simpler antidote exists: introduction of physical momentum and energy
diffusion via a simple discretization of the ordinary Navier-Stokes equations, employed on a sufficiently fine
grid to capture viscous shocks. We demonstrate the carbuncle phenomenon and its rectification by solving
two problems. Both employ the same geometry, initial conditions, computational grid, advective flux model
of a Roe-based scheme without an entropy fix, and time-advancement scheme. For the first problem, we
neglect physical diffusion, while for the second we include it. When physical diffusion is neglected, we predict
a carbuncle phenomenon; however, when it is included and sufficiently resolved, no carbuncle is predicted,
in agreement with experiment. Thus, we show that even a simple algorithm employing first order spatial
and fourth order temporal discretizations, sufficiently resolved, fosters no carbuncle phenomena. In short,
we use examples to support two hypotheses which are difficult to discern from the literature:

• The carbuncle phenomenon, induced by many high resolution, nominally high order, shock-capturing

schemes for Euler equations applied to supersonic flow over a blunt body, is cured by inclusion of

properly resolved physical diffusion in a verified and validated Navier-Stokes model, and

• When fine scale physical diffusion structures are resolved, simple low order discretization schemes are

sufficient to capture the continuum flow physics of supersonic flow over a blunt body.

Our stratagem of reintroduction of physical diffusion gives a damping mechanism to suppress instabilities
which we believe to be of numerical origin. Our model of physical diffusion is admittedly simple: a continuum
model with constant properties. Such models induce shock waves of finite thickness with the thickness
proportional to the diffusion parameters. As reviewed by Griffith and Bleakney, [22] experimental evidence
exists for a continuum description of shock waves in gases; the continuum theory becomes increasingly
accurate as the shock weakens. However, they note for M > 1.2 “continuous fluid theory may not give as
satisfactory an interpretation as the kinetic theory of gases,” and this notion is commonly used to discount
continuum theories of shock structure in high Mach number environments. Other insist more emphatically,
e.g. Li, et al., [14] that continuum theories are “not valid” to predict shock structure in that only a small
number of molecular collisions are likely within a shock, contrary to the continuum assumption.

Nevertheless, such statements are likely overly conservative for many purposes. As noted by Vincenti
and Kruger, [23] “...comparisons with experiment show that the Navier-Stokes solution is accurate for larger
values of [Mach number than] might be expected from purely theoretical considerations.” They go on to note
“It is sometimes said that the test of a good theory is whether its usefulness exceeds its expected range of
validity; the Navier-Stokes equations amply satisfy this condition.” An extensive discussion of viscous shock
waves in the context of experiments, and supporting continuum and non-continuum theories can be found in
Müller and Ruggeri, [24] where it is demonstrated that continuum theory actually predicts shock thickness
well for an unexpectedly large range of freestream conditions, with surprisingly good agreement achieved for
1 < M < 11. Visual inspection of their Fig. 12.2 shows the correct trends as M is varied, and a maximum
validation error of ∼ 20% near M = 4. More recent theoretical insights into viscous shock structure has
been given by many sources including Myong [25] and Solovchuk and Sheu. [26]

II. Model

A. Mathematical model

Our general mathematical model, which we restrict to two spatial dimensions, is taken to be

∂ρ

∂t
+∇ · (ρu) = 0, (1)
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∂

∂t
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ρuuT
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= −∇ · q−∇ (pu) +∇ · (τ · u) , (3)

q = −k∇T, (4)

τ = 2µ

(

∇u+ (∇u)T

2
− 1

3
(∇ · u) I

)

, (5)

p = ρRT, (6)

e = cvT. (7)

Here Eqs. (1-3) represent the conservation of mass, linear momenta, and energy, respectively. Equations (4,5)
are constitutive laws for energy and momenta diffusion which assume an isotropic material that obeys
Fourier’s law and a Newtonian stress-strain rate relation for a fluid which obeys Stokes’ assumption. Equa-
tions (6,7) are thermal and caloric state equations for a calorically perfect ideal gas. The independent
variables are time t, and the spatial Cartesian coordinates x and y. Dependent variables are density ρ,
velocity vector u, pressure p, viscous stress tensor τ , specific internal energy e, heat flux vector q, and
temperature T . We take I as the identity matrix. Constant parameters are thermal conductivity k, viscosity
µ, gas constant R, and specific heat at constant volume cv. The flow is initialized at the freestream values
and thus simulates the introduction of a cylinder into an otherwise homogeneous flow at t = 0. For all
calculations, zero gradient conditions are imposed at outflow boundaries. For viscous calculations, no-slip
adiabatic boundary conditions are imposed at the cylinder surface. For inviscid calculations, a zero mass
flux condition is imposed at the cylinder surface. The flow has known freestream properties u1 = (u1, 0)

T ,
p1, and T1 and flows over a cylinder of radius a. Parameters which may be derived from the fundamental
parameters include the ratio of specific heats γ = 1+R/cv, the freestream Mach number M1 = u1/

√
γRT1,

the ambient sound speed, c1 =
√
γRT1, the ambient density ρ1 = p1/R/T1, and the ambient kinematic

viscosity ν1 = µ/ρ1.
We choose the parameters listed in Table 1, which are appropriate for air. Two of the more important

length scales in the problem are the viscous shock thickness and the cylinder radius. Both scales need to
be resolved, and resolution becomes increasingly challenging as their ratio increases. Our choice of a low
ambient pressure of 12.4272 Pa induces a shock thickness of a few microns, moderately smaller than our
cylinder radius of 150 microns. A rough estimate of shock thickness λ can be inferred from Vincenti and
Kruger, [23] showing λ ∼ ν1/c1 = 17.19 microns. This modest range of scales allows us to resolve all modeled
physics in a reasonable computational time using ordinary single-processor resources. Had we chosen higher
ambient pressures (thus inducing smaller shock thicknesses) and larger cylinders, the computational resources
necessary for resolving the flow physics would become more demanding. Nearly all of our parameters are
consistent with those employed by Kopriva [17] with the exception of cylinder radius, which was chosen to
be smaller in order to reduce the computational costs. With our choices, we thus model a Prandtl number
Pr = µcp/k = 0.77 and Reynolds number, Re = ρ1u1a/µ = 50.

B. Numerical method

All simulations were performed using the public domain software, OpenFOAM. [27] A typical calculation
took about three hours on a four core laptop computer. The time-advancement scheme was a fourth-order
Runge-Kutta method. The grids employed consisted of approximately 120, 000 hexahedral finite volume
cells. The horizontal extent of the domain is 0.0005377 m (537.7 microns). A typical cell length scale
was 5.377 microns or smaller, sufficiently small to capture all the continuum flow features. The numerical
scheme was of the Godunov type with the Roe flux difference splitting scheme used for the evaluation of
the advective face fluxes. [28] The advective numerical scheme, which had nominal second order accuracy in
space, was obtained by the linear cell-to-face interpolation utilizing the gradients of the primitive fields with a
Barth-Jespersen limiter. [29] As with all shock-capturing schemes applied to Euler equations, the asymptotic
convergence rate is less than unity. [30] For Navier-Stokes calculations, first order spatial discretization was
employed on diffusive terms, and it is possible to achieve a consistent convergence rate when the grid is
sufficiently fine to resolve the shock structure.
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III. Results

Figure 1 shows the pressure field at t = 2×10−6 s when physical diffusion is neglected (µ = k = 0). At this
time the carbuncle has appeared within the solution. The region indicated within the green triangle attached
to the cylinder surface is essentially the same carbuncle phenomenon predicted in other independent studies.
It is noted that particularities of the carbuncle vary from study to study. There is slip on the cylinder surface
and a crisp shock standing off from the surface. Detailed examination reveals that the inviscid shock jumps
over approximately two cells. Figure 2 shows analogous predictions in the presence of physical diffusion.
Clearly, there is no carbuncle.

In order to find the time in which the viscous shock has relaxed to a fixed state, the relative error of each
Navier-Stokes solution on various grids is plotted with respect to time. Figure 3 shows the relative error of
pressure at a point for three different runs with various grid sizes, using a very fine grid (having an average
∆x ≈ 1 × 10−6 m) as the “true” solution denoted by p∞. The relative error was calculated at the same
point for each run, a point located directly in front of the cylinder. The point is located at the coordinate
(−150.3× 10−6 m, 0 m, 0 m) if the origin is located at the center of the cylinder. From this plot, it is seen
that the error has sufficiently relaxed at a time of t = 5× 10−6 s. Figure 4 shows a plot of the relative error
with respect to the grid size for the same three grids, using the relative error at t = 5 × 10−6 s. A least
squares curve fit reveals that the solution is converging at O(∆x1.38). It is anticipated that had finer grids
been used, the solution would move into the asymptotic convergence regime in which the convergence rate
was O(∆x1).

A simple validation is given by comparing our prediction of shock standoff distance against the curve-fit
formula deduced from experimental data reported by Ambrosio and Wortman. [31] Their formula, ∆/a =
0.386 exp(4.67/M2

1
), where ∆ is the standoff distance, results in ∆ = 66.7±1microns. Our inviscid prediction,

which includes the effect of the carbuncle, is ∆ = 103.5± 2 microns; however, it is by no means clear that
the carbuncle has relaxed to a steady state. Our viscous prediction is ∆ = 41 ± 2 microns. Certainly the
viscous approximation is good and agrees better with experiment than the inviscid approximation. The
remaining discrepancies between the viscous approximation and the experiment might be attributable to
either the finite domain size or more likely other neglected physics, such as temperature-dependent specific
heat, viscosity, and thermal conductivity, as well as real gas effects.

IV. Discussion

We note that our remedy of resolving physical viscous shocks is impractical given present computational
resources for problems involving devices with the larger geometries and higher pressures encountered in
typical aerospace engineering applications. An imperfect compromise which also should avoid the carbuncle
phenomenon could be achieved by introducing an artificial strain rate dependency into the viscosity coeffi-
cient in a tensorially invariant fashion that is guaranteed to satisfy a Clausius-Duhem inequality and allow
resolution of enhanced shock thicknesses by ordinary numerical methods. A similar strategy has been em-
ployed in a different context by Bhagatwala and Lele. [32] This approach however runs the risk of artificially
filtering high frequency phenomena which have a physical origin, such as in acoustics, shock-boundary layer
instabilities, or combustion instabilities. Whatever the ultimate approach one takes to engineering prob-
lems, there is always value to fully resolved benchmarking exercises which resolve a broad range of the actual
multi-scale physics without resort to artificial viscosity.

V. Conclusions

In summary, when a simple physical diffusion model is introduced into the model of fluid motion and its
effects simulated on a sufficiently fine grid, the carbuncle phenomenon is removed. We speculate that the
carbuncle may arise due to what amounts to what is sometimes called “anti-diffusion,” an effect which has
been shown to exist via construction of the so-called “modified equation” for many shock-capturing schemes
when exercised on Euler equations; see Banks, et al. [30]
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Table 1. Parameter values for Navier-Stokes simulations of flow over a cylinder.

parameter value units

R 287.7 J/kg/K

cv 719.3 J/kg/K

cp 1007 J/kg/K

p1 12.4272 Pa

T1 39.667 K

u1 724.293 m/s

M1 5.73

γ 7/5

µ 2.3648× 10−6 Pa s

k 0.003093 W/m/K

a 0.00015 m

ρ1 0.001088 kg/m3

c1 126.404 m/s

ν1 0.002174 m2/s

Re 50

Pr 0.77
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Figure 1: Detail of pressure field with physical diffusion neglected.
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Figure 2: Detail of pressure field with physical diffusion.
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Figure 3: Relative error of the pressure at a single point with respect to time for three different grid
resolutions.
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Figure 4: Relative error of the pressure at a single point as a function of ∆x for three different grid resolutions.
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