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Some semantics....

Verification: solving the
equations right

Validation: solving the right
equations

Direct Numerical Simulation
(DNS): a verified and validated
computation that resolves all
ranges of relevant continuum
physical scales present
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“Research needs for future internal combustion
engines,” Physics Today, Nov. 2008, pp. 47-52.
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Some local history....

Two of our Notre Dame AE alums
have pioneered the field of
verification and validation,
especially with regard to aerospace
computations:

Patrick J. Roache, BSAE,
1960; MSAE, 1962; Ph.D.,
1967.

William L. Oberkampf, BSAE,
1966; Ph.D., 1970.

Both have been scholars and
leaders over long and impactful
careers.
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Some provocation....

Hypothesis: DNS of fundamental detonation flow
fields (thus, detailed kinetics, viscous shocks,
multi-component diffusion, etc. are represented,
verified, and validated) is on a trajectory toward
realization via advances in

adaptive refinement algorithms, and
massively parallel architectures.

Corollary I: A variety of modeling compromises, e.g.

shock-capturing (FCT, PPM, ENO, WENO, etc.),
implicit chemistry with operator splitting,
turbulence modeling (RANS, k − ǫ, LES, etc.), or
reduced/simplified kinetics, flamelet models,

could enjoy a graceful retirement when and if this
difficult goal of DNS is realized.

Corollary II: Macro-device-level DNS remains in the
distant future; micro-device DNS is feasible.

C. E. Yeager, 1923-
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Consultation with an expert

Shepherd’s 2009 review article
identifies the key issue in
verification and validation.
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Evidence of complexity in detonations

images from Shepherd, 2009;

2H2 + O2 + 12Ar at 20 kPa

adopted from Austin, 2003.

Euler simulation of �ve-step

model of  hydrogen combustion,

adopted from Liang, et al. 2007

Because detonation physics is multiscale, both experimental and
numerical characterization is challenging.
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Midcourse diversion

There’s a lot of discussion
about detonation theory
(e.g. SWACER, turbulent
flame brushes, explosions
within explosions, etc.) that is
difficult to verify and validate
via computation today.

Let’s take a brief historical
diversion to a see how some
sister sciences, e.g. star-gazing,
succeeded... Abell 2744, “Pandora’s Cluster,” from

Chandra X-Ray Observatory, released 22

June 2011
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Appeal to an ancient

Ptolemy (90-168 AD)

Science develops theory
to predict behavior of
nature, e.g. Ptolemy’s
epicylces to predict the
motion of the planets.

Theory of epicycles
needs no verification;
for many planetary
motions, it is fully
validated.
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Renaissance revision

Galileo, et al. invalidate the
Ptolemaic theory with new
data

Galileo Galilei (1564-1642)
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Multiscale instrumentation

Telescope
Microscope

Improvements of telescopes (Galileo, 1609) and microscopes (van
Leeuwnehoek, 1670s) induced revolutions in astronomy and
biology by use of optical instruments which clearly revealed more
scales, large and small, in our multiscale universe.
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Enlightenment mathematization

Sir Isaac Newton

(1643-1727)

Newton’s calculus gave an efficient
mathematical tool to encapsulate predictive
theories for the motion of heavenly bodies
and better enable their validation.

df

dx
= lim

∆x→0

f(x+∆x)− f(x)

∆x

Since Newton insisted ∆x → 0, the theory is
verified, a priori.

Finite ∆x > 0 introduces the need for
verification!
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Victorian mechanization

Schematic of difference engine of Babbage

(1791-1871)

The need to solve discrete
approximate versions of
continuous equations with no
analytic solution motivated
computing machinery.

The discrete approximate
nature of the solution
introduces the new need for
verification of the solution to
see if it has essential fidelity
with its mathematical analog.
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Fast forward to a 2007 retrospective of the 1980s
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Quotations from NASA’s commissioned history:

Still NASP fell short, and there were reasons. CFD proved not to be an exact

science, particularly at high Mach.

Roshko sees some similarity between turbulence modeling and the astronomy of

Ptolemy, who flourished when the Roman Empire was at its height. Ptolemy

represented the motions of the planets using epicycles and deferents in a purely

empirical fashion and with no basis in physical theory. “Many of us have used

that example,” Roshko declares. “lt’s a good analogy. People were able to

continually keep on fixing up their epicyclic theory; to keep on accounting for

new observations, and they were completely wrong in knowing what was going

on. I don’t think we’re that badly off, but it’s illustrative of another thing that

bothers some people. Every time some new thing comes around, you’ve got to

scurry and try to figure out how you’re going to incorporate it.”

T. A. Heppenheimer, 2007, Facing the Heat Barrier: A History of Hy-
personics, NASA SP-2007-4232, Washington DC.
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Modern hardware: a computational
“telescope/microscope” to circumvent the high Mach

CFD problem?

Today’s Peta- and tomorrow’s Exa-scale hardware enables heroic
calculations,

Tianhe-2, world’s fastest computer, 33.86 Pflop/s
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Let us look through the computational
“telescope/microscope” at detonations and closely

related phenomena

This improved computational
hardware and associated adaptive
mesh refinement software provides a
better “telescope” for observing
nature.

When seeking fundamental
understanding, we should choose to
look through this new “telescope”
without clouding its images with
de-focusing effects of shock-capturing,
turbulence modeling, etc.
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Results from University of Chicago’s FLASH code

Fryxell, et al., 2000, The Astrophysical Journal, Supplement Series

Multi-dimensional calculations of inviscid compressible flows are in
general, unverifiable because of lack of a cutoff viscous length scale.
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Flame calculation verifies chemistry-induced fine length
scales; Al-Khateeb, Powers, & Paolucci, 2013.
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Scale necessary for verified calculation

The simple length scale analysis dictates that ∆x < 8.0× 10−4 cm
for a verified calculation for detailed kinetics simulations of
P = 1 atm hydrogen-air combustion.

This scale is consistent with Shepherd’s 2009 discussion.

This scale is equivalent to a few mean free paths.

High order methods applied to under-resolved problems will not
be verified, and will likely miss important dynamics.

In other words, in a so-called h− p refinement, one must first and
foremost refine the grid (decrease h), and perhaps polish
predictions via a refinement of order (increase p).
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One-dimensional detonation instability; Lehr, 1972.

Shock-induced combustion experiment

2H2 +O2 + 3.76N2 at 0.421 atm.

Observed 1.04 MHz frequency.

Calculation predicts 0.97 MHz:
calculation is validated!
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Calculation of one-dimensional detonation instability;
Romick, Aslam, & Powers, 2015.
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harmonics.
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harmonics are revealed
along with sideband
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Richtmyer-Meshkov instability; Zikoski, 2011

Initial conditions:

20 cm× 1.08 cm

YN2 = 0.99, YSF6 = 0.01, P = 79.5 kPa,
T = 300 K, M = 1.2

Calculations using an wavelet-based adaptive
refinement method; finest scale ∼ 10−4 cm

64 cores, 118 hours computational time experimental image from

Balakumar et al., 2008
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Verified RM calculation with validated NS model

=⇒ Shock Direction =⇒
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Verified RM calculation with validated NS model

⇐ Reshock ⇐
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Verified RM calculation with validated NS model

t = 390 µs t = 600 µs
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Wavelet adaptive detonation calculation gives verified
multiscale structure (from 10−4 cm to 10 cm); Paolucci

et al., 2014

Initial Conditions, 1-D ZND detonation with 2-D perturbation:

2H2 +O2 + 7Ar, Po = 6.67 kPa, To = 300 K

9 species, 37 reactions, multi-component diffusion

60 cm× 6 cm spatial domain; finest scale ∼ 10−4 cm

128 cores, 391 hours run time
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Verified multiscale detonation calculation

100 µs 120 µs 140 µs 160 µs
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Verified multiscale detonation calculation

240 µs 250 µs 260 µs 270 µs

AIAA–ND student chapter V&V of Detonation 3 November 2015 29 / 31



Conclusions

Verified two-dimensional detonation calculations for realistic
reacting gas mixtures with detailed kinetics and multicomponent
transport are realizable with modern adaptive algorithms working
within a massively parallel computing architecture.

It is possible for 2D calculations to span over five orders of
magnitude of length scale: ranging from near mean-free path
scales (10−4 cm) to small scale device scales (10 cm).

True validation of detonation flows against detailed unsteady
calculations awaits three-dimensional extensions.

Realization of verified and validated DNS calculation of detonation
would remove the need for common, but problematic, modeling
assumptions (shock-capturing, turbulence modeling, implicit
chemistry with operator splitting, reduced kinetics).

Such 3D V&V could be viable in an exascale environment;
however, routine desktop DNS detonation calculations remain
difficult to envision at macro-device scales.
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