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Abstract— It is shown by counter-example that slow in-
variant manifolds are not associated with points of vanishing
solution trajectory curvature. However, vanishing trajectory
curvature may be associated with an intrinsic low-dimensional
manifold, which approaches a slow invariant manifold as
stiffness increases.

I. INTRODUCTION

The identification of slow invariant manifolds associated
with nonlinear dynamical systems that describe spatially
homogeneous chemical kinetics is a key problem of model
reduction for reactive systems. See [1], [2] and references
therein for background. In short, the phase space in which
non-reduced reactive systems evolves is typically of high
dimension, and manifold methods identify manifolds of
lower dimension to which the system is attracted at long
time. Projection of high-dimensional trajectories onto lower
dimensional manifolds can potentially reduce the stiffness
of the system while maintaining high fidelity to the un-
derlying high-dimensional system. This can enable more
computationally efficient calculation of reaction dynamics.

Ginoux and co-workers [3], [4] have stated that
one can identify slow invariant manifolds (SIMs) of
two-dimensional dynamical systems by identifying zero-
curvature manifolds (ZCMs): those points within the phase
space where the curvature of solution trajectories vanishes.
Additional development is in [5]. It will be shown here that
this criterion fails for the well known Davis-Skodje (DS) [6]
system. Instead, the ZCM is found to identify the so-called
intrinsic low-dimensional manifold (ILDM) [7].

II. GENERAL ANALYSIS

We summarize some concepts discussed in detail in [1]-
[7]. Spatially homogeneous chemical kinetics can be cast
as dynamical system of the form

dx

dt
= v(x). (1)

Here, we consider x to be related to the species concentra-
tion and think of it as a position in phase space. We consider
v to be the constitutive equation for chemical kinetics, and
think of it as a velocity in phase space. Local dynamics
may often be analyzed with the aid of the Jacobian matrix
J which is the Fréchet derivative of v with respect to x:

J =
∂v

∂x
. (2)

It is the reciprocals of the real parts of the eigenvalues of J
that give the local time scales of reaction. The acceleration
a in phase space is given by

a(x) =
∂v

∂x

dx

dt
= J · v. (3)

The curvature κ of any trajectory is given by

κ =
||a× v||
||v||3

. (4)

The curvature κ vanishes at points x for which the velocity
v is aligned with the acceleration a.

III. ANALYSIS OF THE DS SYSTEM

A. Exact Solution

Consider the DS system, taking x > 0, γ > 1:

dx

dt
= −x, x(0) = x0, (5)

dy

dt
= −γy + (γ − 1)x+ γx2

(1 + x)2
, y(0) = y0. (6)

The exact solution is

x(t) = x0e
−t, (7)

y(t) =
x0e

−t

1 + x0e−t
+

(
y0 −

x0
1 + x0

)
e−γt. (8)

Eliminating t, the exact solution in the phase plane is

y(x) =
x

1 + x
+

(
y0 −

x0
1 + x0

)(
x

x0

)γ
. (9)

As γ > 1, the curve approached from arbitrary initial
conditions is

ySIM =
x

1 + x
. (10)

Thus, ySIM captures the slow dynamics of the system.
Moreover, if the initial conditions are such that they lie on
ySIM (x): y0 = x0/(1 + x0), then ySIM is itself a solution
trajectory, and thus an invariant manifold.

The exact expressions for J and a are

J =

(
−1 0

γ−1+(γ+1)x
(1+x)3 −γ

)
, (11)

a =

(
x

γ2y − x(γ2(x+1)2+x−1)
(x+1)3

)
. (12)



The eigenvalues of J are λ1 = −1, λ2 = −γ. The stiffness
ratio is |λ2/λ1| = γ. Stiffness increases as γ increases. The
unique finite fixed point (0, 0) is guaranteed stable because
both eigenvalues are everywhere negative, including in the
neighborhood of the fixed point.

B. ILDM

As derived in [7] and shown in [2], [6], the ILDM is
found by projecting Eqs. (5,6) onto a basis formed from fast
and slow eigenmodes of J and equilibrating the differential
equation associated with the fastest time scale. This yields
an algebraic equation for the ILDM; solving this for y and
simplifying, the ILDM for the DS system is given by

yILDM =
x

x+ 1︸ ︷︷ ︸
ySIM

+
2x2

γ(γ − 1)(1 + x)3
. (13)

Obviously the ILDM and SIM are different, but approach
each other as stiffness γ increases.

C. ZCM

The ZCM is seen from Eq. (4) to exist when the velocity
and acceleration vectors are parallel:

a× v = 0. (14)

Use Eqs. (5,6) to form v and Eq. (12) for a, substitute into
Eq. (14), and solve to find the ZCM:

yZCM =
x

x+ 1︸ ︷︷ ︸
ySIM

+
2x2

γ(γ − 1)(1 + x)3
. (15)

The ZCM is exactly the ILDM and is not the SIM. The ZCM
is not a solution trajectory, so it is not an invariant manifold.
Note that the ZCM itself has curvature. Solution trajectories
possess no curvature when they intersect the ZCM. The
ZCM approaches the SIM as stiffness γ increases.

Figure 1 shows a phase plane for the DS system with
moderate stiffness, γ = 3. Included are the trajectory y(x)
corresponding to x(0) = 1, y(0) = 3/5, yZCM = yILDM ,
and ySIM . Also shown are the vector fields of v and a.
The trajectory crosses through yZCM at a point where the
trajectory itself has no curvature, with v parallel to a. The
trajectory then approaches ySIM .

D. Quantification at a point

Still taking γ = 3, consider the point x = 1. At that point
the reduction that is Eq. (10) recommends for us to project
to the SIM, yielding ySIM = 1/2. At this point, the original
Eqs. (5,6) tell us dx/dt = −1 and dy/dt = −1/4. Dividing,
we see at that this point Eqs. (5,6) tell us dy/dx = 1/4.
We can differentiate directly Eq. (10) for the SIM and get

dySIM
dx

=
1

(1 + x)2
,

dySIM
dx

∣∣∣∣
x=1

=
1

4
. (16)
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Fig. 1. Trajectory, ZCM, ILDM, SIM, v, and a for DS system with
γ = 3.

Thus the slope of the SIM is identical to that predicted by
Eqs. (5,6). This is consistent with the SIM also being a
trajectory, necessary for it to be an invariant manifold.

At the same point x = 1, the ZCM, Eq. (15) recommends
we project to yZCM = 13/24. At this point, the original
Eqs. (5,6) tell us dx/dt = −1 and dy/dt = −3/8. Dividing,
we see at that this point Eqs. (5,6) tell us dy/dx = 3/8.
We can differentiate directly Eq. (15) for the ZCM and get

dyZCM
dx

=
1

(1 + x)2
+

(x− 2)x

3(1 + x)4
,

dyZCM
dx

∣∣∣∣
x=1

=
13

48
.

(17)

The slope of the ZCM is not predicted by Eqs. (5,6).

IV. CONCLUSION

The ZCM is an ILDM but not a SIM. The ZCM and
ILDM better approximate the SIM as stiffness increases.
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